Skip to main content
Log in

The prostate response to prolactin modulation in adult castrated rats subjected to testosterone replacement

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Despite the androgenic dependence, other hormones, growth factors, and cytokines are necessary to support prostatic growth and maintain the glandular structure; among them, prolactin is a non-steroidal hormone secreted mainly by the pituitary gland. However, extra-pituitary expression of prolactin, such as in the prostate, has also been demonstrated, highlighting the paracrine and autocrine actions of prolactin within the prostate. Here, we investigated whether prolactin modulation alters ventral prostate (VP) morphophysiology in adult castrated rats. Sprague Dawley rats were castrated and after 21 days, divided into ten experimental groups (n = 6/group): castrated control: castrated animals that did not receive treatment; castrated+testosterone: castrated animals that received T (4 mg/kg/day); castrated+PRL (PRL): castrated animals receiving prolactin (0.3 mg/kg/day); castrated+T+PRL: castrated animals that received a combination of testosterone and prolactin; and castrated+bromocriptine (BR): castrated animals that received bromocriptine (0.4 mg/kg/day). The control group included intact animals. The animals were treated for 3 or 10 consecutive days. At the end of experimental period, the animals were euthanized, and the blood and VP lobes were collected and analyzed by different methods. The main findings were that the administration of prolactin to castrated rats did not exert anabolic effects on the VP. Although we observed activation of downstream prolactin signaling after prolactin administration, this was not enough to overcome the prostatic androgen deficiency. Likewise, there was no additional glandular involution in the castrated group treated with bromocriptine. We concluded that despite stimulating the downstream signaling pathway, exogenous prolactin does not act on VP in the absence or presence of high levels of testosterone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahonen TJ, Härkönen PL, Rui H, Nevalainen MT (2002) PRL signal transduction in the epithelial compartment of rat prostate maintained as long-term organ cultures in vitro. Endocrinology 143:228–238

    Article  CAS  PubMed  Google Scholar 

  • Arunakaran J, Aruldhas MM, Govindarajulu P (1987) Effect of prolactin and androgens on the prostate of bonnet monkeys,Macaca radiata: I. nucleic acids, phosphatases, and citric acid. Prostate 10:265–273

    Article  CAS  PubMed  Google Scholar 

  • Assimos D, Smith C, Lee C, Grayhack JT (1984) Action of prolactin in regressing prostate: independent of action mediated by androgen receptors. Prostate 5:589–595

    Article  CAS  PubMed  Google Scholar 

  • Baranão JLS, Legnani B, Chiauzzi VA et al (1981) Effects of prolactin on androgen metabolism in androgen target tissues of immature rats. Endocrinology 109:2188–2195

    Article  PubMed  Google Scholar 

  • Bernard V, Young J, Chanson P, Binart N (2015) New insights in prolactin: pathological implications. Nat Rev Endocrinol 11:265–275

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carón RW, Jahn GA, Deis RP (1994) Lactogenic actions of different growth hormone preparations in pregnant and lactating rats. J Endocrinol 142:535–545

    Article  PubMed  Google Scholar 

  • Chandrasekar T, Yang JC, Gao AC, Evans CP (2015) Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 4:365–380

    PubMed  PubMed Central  Google Scholar 

  • Colombelli KT, Santos SA, Camargo AC et al (2017) Impairment of microvascular angiogenesis is associated with delay in prostatic development in rat offspring of maternal protein malnutrition. Gen Comp Endocrinol 246:258–269

  • Cunha GR, Bigsby RM, Cooke PS, Sugimura Y (1985) Stromal-epithelial interactions in adult organs. Cell Differ 17:137–148

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta S, Srinidhi S, Vishwanatha JK (2012) Oncogenic activation in prostate cancer progression and metastasis: molecular insights and future challenges. J Carcinog 11:14

    Article  Google Scholar 

  • de Carvalho HF, Vilamaior PS, Taboga SR (1997) Elastic system of the rat ventral prostate and its modifications following orchiectomy. Prostate 32:27–34

    Article  PubMed  Google Scholar 

  • DeKlerk DP, Coffey DS (1978) Quantitative determination of prostatic epithelial and stromal hyperplasia by a new technique. Biomorphometrics Invest Urol 16:240–245

    CAS  PubMed  Google Scholar 

  • Eisenberg ML (2015) Testosterone replacement therapy and prostate cancer incidence. World J Mens Health 33:125–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Euker JS, Meites J, Riegle GD (1975) Effects of acute stress on serum LH and prolactin in intact, castrate and dexamethasone-treated male rats. Endocrinology 96:85–92

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto N, Suzuki T, Ohta S, Kitamura S (2009) Identification of rat prostatic secreted proteins using mass spectrometric analysis and androgen-dependent mRNA expression. J Androl 30:669–678

    Article  CAS  PubMed  Google Scholar 

  • Goffin V, Bernichtein S, Touraine P, Kelly P a. (2005) Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 26:400–422

    Article  CAS  PubMed  Google Scholar 

  • Gómez V, Ingelmo I, Martín R et al (2009) Effect of prolactin on the population of epithelial cells from ventral prostate of intact and cyproterone acetate-treated peripubertal rats: stereological and immunohistochemical study. Anat Rec (Hoboken) 292:746–755

    Article  Google Scholar 

  • Grattan DR (2015) 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 226:T101-122

    Article  Google Scholar 

  • Gray H, Seltzer J, Talbert RL (2015) Recurrence of prostate cancer in patients receiving testosterone supplementation for hypogonadism. Am J Health Syst Pharm 72:536–541

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Covarrubias D, Coria-Avila GA, Chavarría-Xicoténcatl P et al (2015) Long-term administration of prolactin or testosterone induced similar precancerous prostate lesions in rats. Exp Oncol 37:13–18

    CAS  PubMed  Google Scholar 

  • Johansson R (1976) Effect of prolactin, growth hormone and insulin on the uptake and binding of dihydrotestosterone to the cultured rat ventral prostate. Acta Endocrinol (Copenh) 81:854–864

    CAS  Google Scholar 

  • Justulin LA, Ureshino RP, Zanoni M, Felisbino SL (2006) Differential proliferative response of the ventral prostate and seminal vesicle to testosterone replacement. Cell Biol Int 30:354–364

    Article  CAS  PubMed  Google Scholar 

  • Justulin LA, Della-Coleta HHM, Taboga SR, Felisbino SL (2010) Matrix metalloproteinase (MMP)-2 and MMP-9 activity and localization during ventral prostate atrophy and regrowth. Int J Androl 33:696–708

    Article  CAS  PubMed  Google Scholar 

  • Kindblom J, Dillner K, Sahlin L et al (2003) Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. Endocrinology 144:2269–2278

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Franklin RB, Costello LC (1997) Prolactin and testosterone regulation of mitochondrial zinc in prostate epithelial cells. Prostate 30:26–32

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Xu Y-F, Feng Y et al (2013) Androgen-STAT3 activation may contribute to gender disparity in human simply renal cysts. Int J Clin Exp Pathol 6:686–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marker PC, Donjacour A a., Dahiya R, Cunha GR (2003) Hormonal, cellular, and molecular control of prostatic development. Dev Biol 253:165–174

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen MT, Valve EM, Ingleton PM, Härkönen PL (1996) Expression and hormone regulation of prolactin receptors in rat dorsal and lateral prostate. Endocrinology 137:3078–3088

    Article  CAS  PubMed  Google Scholar 

  • Ojo D, Lin X, Wong N et al (2015) Prostate cancer stem-like cells contribute to the development of castration-resistant prostate cancer. Cancers (Basel) 7:2290–2308

    Article  Google Scholar 

  • Oliveira SM, Leite Vilamaior PS, Corradi LS et al (2007) Cellular and extracellular behavior in the gerbil (Meriones unguiculatus) ventral prostate following different types of castration and the consequences of testosterone replacement. Cell Biol Int 31:235–245

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Mathey LI, Rojas-Duran F, Aranda-Abreu GE et al (2016) Effect of hyperprolactinemia on PRL-receptor expression and activation of Stat and Mapk cell signaling in the prostate of long-term sexually-active rats. Physiol Behav 157:170–177

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Villamil B, Bordiú E, Puente-Cueva M (1992) Involvement of physiological prolactin levels in growth and prolactin receptor content of prostate glands and testes in developing male rats. J Endocrinol 132:449–459

    Article  PubMed  Google Scholar 

  • Prins GS (1987) Prolactin influence on cytosol and nuclear androgen receptors in the ventral, dorsal, and lateral lobes of the rat prostate. Endocrinology 120:1457–1464

    Article  CAS  PubMed  Google Scholar 

  • Prins GS, Putz O (2008) Molecular signaling pathways that regulate prostate gland development. Differentiation 76:641–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan A, Raju R, Tuladhar N et al (2012) A pathway map of prolactin signaling. J Cell Commun Signal 6:169–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiter E, Lardinois S, Klug M et al (1995) Androgen-independent effects of prolactin on the different lobes of the immature rat prostate. Mol Cell Endocrinol 112:113–122

    Article  CAS  PubMed  Google Scholar 

  • Reiter E, Hennuy B, Bruyninx M et al (1999) Effects of pituitary hormones on the prostate. Prostate 38:159–165

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi JC, Justulin LA, Lacorte LM et al (2013) Implications of intrauterine protein malnutrition on prostate growth, maturation and aging. Life Sci 92:763–774

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Durán F, Pascual-Mathey LI, Serrano K et al (2015) Correlation of prolactin levels and PRL-receptor expression with Stat and Mapk cell signaling in the prostate of long-term sexually active rats. Physiol Behav 138:188–192

    Article  PubMed  Google Scholar 

  • Rozenboim I, Mobarky N, Heiblum R et al (2004) The role of prolactin in reproductive failure associated with heat stress in the domestic turkey. Biol Reprod 71:1208–1213

    Article  CAS  PubMed  Google Scholar 

  • Sackmann-Sala L, Goffin V (2015) Prolactin-induced prostate tumorigenesis. Adv Exp Med Biol 846:221–242

    Article  CAS  PubMed  Google Scholar 

  • Sackmann-Sala L, Chiche A, Mosquera-Garrote N et al (2014) Prolactin-induced prostate tumorigenesis links sustained stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol 184:3105–3119

    Article  CAS  PubMed  Google Scholar 

  • Sackmann-Sala L, Guidotti J-E, Goffin V (2015) Minireview: prolactin regulation of adult stem cells. Mol Endocrinol 29:667–681. doi: 10.1210/me.2015-1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandford NL, Searle JW, Kerr JF (1984) Successive waves of apoptosis in the rat prostate after repeated withdrawal of testosterone stimulation. Pathology 16:406–410

    Article  CAS  PubMed  Google Scholar 

  • Santos SAA, Rinaldi JC, Martins AE et al (2014) Impact of gestational diabetes and lactational insulin replacement on structure and secretory function of offspring rat ventral prostate. Gen Comp Endocrinol 206:60–71

    Article  CAS  PubMed  Google Scholar 

  • Sethi BK, Chanukya GV, Nagesh VS (2012) Prolactin and cancer: has the orphan finally found a home? Indian J Endocrinol Metab 16:S195-198

    Google Scholar 

  • Shaar CJ, Euker JS, Riegle GD, Meites J (1975) Effects of castration and gonadal steroids on serum luteinizing hormone and prolactin in old and young rats. J Endocrinol 66:45–51

    Article  CAS  PubMed  Google Scholar 

  • Stoker TE, Robinette CL, Cooper RL (1999) Maternal exposure to atrazine during lactation suppresses suckling-induced prolactin release and results in prostatitis in the adult offspring. Toxicol Sci 52:68–79

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Cunha GR, Donjacour AA (1986) Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biol Reprod 34:973–983

    Article  CAS  PubMed  Google Scholar 

  • Timms BG, Mohs TJ, Didio LJ (1994) Ductal budding and branching patterns in the developing prostate. J Urol 151:1427–1432

    Article  CAS  PubMed  Google Scholar 

  • Van Coppenolle F, Slomianny C, Carpentier F et al (2001) Effects of hyperprolactinemia on rat prostate growth: evidence of androgeno-dependence. Am J Physiol Endocrinol Metab 280:E120-129

    Google Scholar 

  • Vilamaior PS, Felisbino SL, Taboga SR, Carvalho HF (2000) Collagen fiber reorganization in the rat ventral prostate following androgen deprivation: a possible role for smooth muscle cells. Prostate 45:253–258

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER, Kistler GS, Scherle WF (1966) Practical stereological methods for morphometric cytology. J Cell Biol 30:23–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wertz K (2009) Lycopene effects contributing to prostate health. Nutr Cancer 61:775–783

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Ning Z, Wang B et al (2015) DAB2IP loss confers the resistance of prostate cancer to androgen deprivation therapy through activating STAT3 and inhibiting apoptosis. Cell Death Dis 6:e1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript comprises part of the Mater’s degree of FBC. This study was supported by São Paulo Research Foundation, Grant No. 2013/24230-5, Coordination for the Improvement of Higher Education Personnel (CAPES) and UNESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Justulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantino, F.B., Camargo, A.C.L., Santos, S.A.A. et al. The prostate response to prolactin modulation in adult castrated rats subjected to testosterone replacement. J Mol Hist 48, 403–415 (2017). https://doi.org/10.1007/s10735-017-9738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-017-9738-z

Keywords

Navigation