Skip to main content

Advertisement

Log in

Electrocardiographic T wave alterations and prediction of hyperkalemia in patients with acute kidney injury

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Electrocardiographic (ECG) alterations are common in hyperkalemic patients. While the presence of peaked T waves is the most frequent ECG alteration, reported findings on ECG sensitivity in detecting hyperkalemia are conflicting. Moreover, no studies have been conducted specifically in patients with acute kidney injury (AKI). We used the best subset selection and cross-validation methods [via linear and logistic regression and leave-one-out cross-validation (LOOCV)] to assess the ability of T waves to predict serum potassium levels or hyperkalemia (defined as serum potassium ≥ 5.5 mEq/L). We included the following clinical variables as a candidate for the predictive models: peaked T waves, T wave maximum amplitude, T wave/R wave maximum amplitude ratio, age, and indicator variates for oliguria, use of ACE-inhibitors, sartans, mineralocorticoid receptor antagonists, and loop diuretics. Peaked T waves poorly predicted the serum potassium levels in both full and test sample (R2 = 0.03 and R2 = 0.01, respectively), and also poorly predicted hyperkalemia. The selection algorithm based on Bayesian information criterion identified T wave amplitude and use of loop diuretics as the best subset of variables predicting serum potassium. Nonetheless, the model accuracy was poor in both full and test sample [root mean square error (RMSE) = 0.96 mEq/L and adjR2 = 0.08 and RMSE = 0.97 mEq/L, adjR2 = 0.06, respectively]. T wave amplitude and the use of loop diuretics had also poor accuracy in predicting hyperkalemia in both full and test sample [area-under-curve (AUC) at receiver-operator curve (ROC) analysis 0.74 and AUC 0.72, respectively]. Our findings show that, in patients with AKI, electrocardiographic changes in T waves are poor predictors of serum potassium levels and of the presence of hyperkalemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The full dataset of this study is available from the Authors on request.

References

  1. Faubel S, Shah PB (2016) Immediate consequences of acute kidney injury: the impact of traditional and nontraditional complications on mortality in acute kidney injury. Adv Chron Kidney Dis 23:179–185

    Article  Google Scholar 

  2. Bagshaw SM, Wald R (2017) Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Kidney Int 91:1022–1032

    Article  Google Scholar 

  3. Liborio AB, Leite TT, Neves FM, Teles F, Bezerra CT (2015) AKI complications in critically ill patients: association with mortality rates and RRT. Clin J Am Soc Nephrol 10:21–28

    Article  Google Scholar 

  4. Freeman K, Feldman JA, Mitchell P et al (2008) Effects of presentation and electrocardiogram on time to treatment of hyperkalemia. Acad Emerg Med 15:239–249

    Article  Google Scholar 

  5. Long B, Warix JR, Koyfman A (2018) Controversies in management of hyperkalemia. J Emerg Med 55:192–205

    Article  Google Scholar 

  6. Mattu A, Brady WJ, Robinson DA (2000) Electrocardiographic manifestations of hyperkalemia. Am J Emerg Med 18:721–729

    Article  CAS  Google Scholar 

  7. Aslam S, Friedman E, Ifudu O (2002) Electrocardiography is unreliable in detecting potentially lethal hyperkalemia in hemodialysis patients. Nephrol Dial Transpl 17:1639–1642

    Article  Google Scholar 

  8. Moulik PK, Nethaji C, Khaleeli AA (2002) Misleading electrocardiographic results in patient with hyperkalemia and diabetic ketoacidosis. BMJ 325:1346–1347

    Article  CAS  Google Scholar 

  9. Wang K (2004) “Pseudoinfarction” pattern due to hyperkalemia. New Engl J Med 351:593

    Article  CAS  Google Scholar 

  10. Fiaccadori E, Maggiore U, Clima B, Melfa L, Rotelli C, Borghetti A (2011) Incidence, risk factors and prognosis of gastrointestinal hemorrhage complcating acute renal failure. Kidney Int 59:1510–1519

    Article  Google Scholar 

  11. Fiaccadori E, Maggiore U, Lombardi M, Leonardi S, Rotelli C, Borghetti A (2000) Predicting patient outcome from acute renal failure comparing three general severity illness scoring systems. Kidney Int 58:283–292

    Article  CAS  Google Scholar 

  12. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470

    Article  CAS  Google Scholar 

  13. Rafique Z, Aceves J, Espina I, Peacock F, Sheikh-Hamad D, Kuo D (2019) Can physicians detect hyperkalemia based on the electrocardiogram? Am J Emerg Med. 10:11. doi: 10.1016/j.ajem.2019.04.036

  14. Montague BT, Ouellette JR, Buller GK (2008) Retrospective review of ECG changes in hyperkalemia. Clin J Am Soc Nephrol 3:324–330

    Article  Google Scholar 

  15. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, New York, pp 178–183

    Book  Google Scholar 

  16. Dreyfuss D, Jondeau G, Couturier R et al (1989) Tall T waves during metabolic acidosis without hyperkalemia: a prospective study. Crit Care Med 17:404–408

    Article  CAS  Google Scholar 

  17. Martinez-Vea A, Bardaji A, Garcia C, Oliver JA (1999) Severe hyperkalemia with minimal electrocardiographic manifestations. J Electrocardiol 32:45–49

    Article  CAS  Google Scholar 

  18. Yu AS (1996) Atypical electrocardiographic changes in severe hyperkalemia. Am J Cardiol 77:906–908

    Article  CAS  Google Scholar 

  19. Green D, Green HD, New DI, Kalra PA (2013) The clinical significance of hyperkalemia-associated repolarization abnormalities in end-stage renal disease. Nephrol Dial Transpl 28:99–105

    Article  Google Scholar 

  20. Wrenn KD, Slovis CM, Slovis BS (1991) The ability of physicians to predict hyperkalemia from the ECG. Ann Emerg Med 20:1229–1232

    Article  CAS  Google Scholar 

  21. Dillon JJ, DeSimone CV, Sapir Y et al (2015) Noninvasive potassium determination using a mathematically processed ECG: proof of concept for a novel “blood-less blood test”. J Electrocardiol 48:12–18

    Article  Google Scholar 

  22. Somers MP, Brady WJ, Perron AD, Mattu A (2002) The prominant T wave: electrocardiographic differential diagnosis. Am J Emerg Med 20:243–251

    Article  Google Scholar 

  23. Littmann L, Gibbs MA (2018) Electrocardiograhic manifestations of severe hyperkalemia. J Electrocardiol 51:814–817

    Article  Google Scholar 

  24. Dittrich KL, Walls RM (1986) Hyperkalemia: ECG manifestations and clinical considerations. J Emerg Med 4:449–455

    Article  CAS  Google Scholar 

  25. Varga C, Kalma Z, Szakall A et al (2019) ECG alterations suggestive of hyperkalemia in normokalemic versus hyperkalemic patients. BMC Emerg Med 19:33

    Article  Google Scholar 

  26. Einhorn LM, Zhan M, Hsu VD et al (2019) The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med 169:1156–1162

    Article  Google Scholar 

  27. Bleyer AJ, Hartman J, Brannon PC, Reeves-Daniel A, Satko SG, Russell G (2006) Characteristics of sudden death in hemodialysis patients. Kidney Int 69:2268–2273

    Article  CAS  Google Scholar 

  28. Corsi C, Cortesi M, Callisesi G et al (2017) Noninvasive quantification of blood potassium concentration from ECG in hemodialysis patients. Sci Rep 7:42492

    Article  CAS  Google Scholar 

  29. Galloway CD, Valys AV, Shreibati JB et al (2019) Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol 4:428–436

    Article  Google Scholar 

  30. El-Sherif N, Turitto G (2011) Electrolyte disorders and arrhythmogenesis. Cardiol J 18:233–245

    PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Regolisti.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Statement of human and animal rights

The study was approved by the local ethical board Comitato Etico dell’Area Vasta Emilia Nord).

Informed consent

This was a retrospective study. Informed consent was obtained at the time of enrollment by each patient or next-of-kin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 173 kb)

Supplementary file2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regolisti, G., Maggiore, U., Greco, P. et al. Electrocardiographic T wave alterations and prediction of hyperkalemia in patients with acute kidney injury. Intern Emerg Med 15, 463–472 (2020). https://doi.org/10.1007/s11739-019-02217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-019-02217-x

Keywords

Navigation