Skip to main content
Log in

Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The shells of three important food nuts, walnut, almond, and pine nut, were studied in view of valorization as residues. The shells differed chemically: walnut shells had 10.6% extractives, 30.1% lignin, and 49.7% polysaccharides; almond shells 5.7% extractives, 28.9% lignin, and 56.1% polysaccharides; and pine nut shells 4.5% extractives, 40.5% lignin, and 48.7% polysaccharides. The polysaccharide composition also differed, e.g., glucose/xylose ratio of 1.12, 0.94, and 2.29 for walnut, almond, and pine nut shells, respectively. Walnut and almond shells have a SG lignin (S/G 1.6 and 1.0, respectively) and pine nut shell a G lignin. The lipophilic extracts contained mostly saturated and unsaturated alkanoic acids. The ethanol-water extracts contained total phenolics, flavonoids, and condensed tannins. The antioxidant activity was moderate (IC50 15.2, 7.9, and 8.2 μg/mL for walnut, almond, and pine nut). The three nut shells fractured easily with little formation of fines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  1. Mandalari G, Arcoraci T, Martorana M, Bisignano C, Rizza L, Bonina FP, Trombetta D, Tomaino A (2013) Antioxidant and photoprotective effects of blanch water, a byproduct of the almond processing industry. Molecules 18(10):12426–12440. https://doi.org/10.3390/molecules181012426

    Article  Google Scholar 

  2. Wijeratne SSK, Abou-Zaid MM, Shahidi F (2006) Antioxidant polyphenols in almond and its coproducts. J Agric Food Chem 54(2):312–318. https://doi.org/10.1021/jf051692j

    Article  Google Scholar 

  3. INE (2017) Instituto Nacional de Estatística, I.P. Estastíticas Agrícolas 2016. Portugal

  4. Abdallah IB, Tlili N, Martinez-Force E, Rubio AGP, Perez-Camino MC, Albouchi A, Boukhchina S (2015) Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem 173:972–978. https://doi.org/10.1016/j.foodchem.2014.10.095

    Article  Google Scholar 

  5. Pereira JA, Oliveira I, Sousa A, Valentão P, Andrade PB, Ferreira ICFR, Ferreres F, Bento A, Seabra R, Estevinho L (2007) Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem Toxicol 45(11):2287–2295. https://doi.org/10.1016/j.fct.2007.06.004

    Article  Google Scholar 

  6. Adhikari B, Dhungana SK, Waqas Ali M, Adhikari A, Kim I-D, Shin D-H (2018) Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2018.02.004

    Article  Google Scholar 

  7. Zhang Z, Liao L, Moore J, Wu T, Wang Z (2009) Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem 113(1):160–165. https://doi.org/10.1016/j.foodchem.2008.07.06

    Article  Google Scholar 

  8. Esfahlan AJ, Jamei R, Esfahlan RJ (2010) The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem 120(2):349–360. https://doi.org/10.1016/j.foodchem.2009.09.063

    Article  Google Scholar 

  9. Gonçalves AC, Dias AB, Afonso A, Pereira DG, Pinheiro A, Peça JO (2016) Mechanical versus manual harvest of Pinus pinea cones. Biosyst Eng 143:50–60. https://doi.org/10.1016/j.biosystemseng.2016.01.004

    Article  Google Scholar 

  10. Muñoz VL, Rodríguez CD, Balzarini M, Contreras AÁ, Navarro-Cerrillo RM (2015) Impact of climate and management variables on stone pine (Pinus pinea L.) growing in Chile. Agric For Meteorol 214–215:106–116. https://doi.org/10.1016/j.agrformet.2015.08.248

    Article  Google Scholar 

  11. Evaristo I, Tenreiro R, Costa R (2008) Characterisation of biometric parameters and fatty acids content of Pinus pinea L. pine nuts of Portuguese populations. Silva Lusitana 16(1):1–19

    Google Scholar 

  12. Dolatabadi KSM, Dehghan G, Hosseini S, Jahanban Esfahlan A (2015) Effect of five year storage on total phenolic content and antioxidant capacity of almond (Amygdalus communis L.) hull and shell from different genotypes. Avicenna J Phytomed 5(1):26–33

    Google Scholar 

  13. Isfahlan AJ, Mahmoodzadeh A, Hasanzadeh A, Heidari R, Jamei R (2010) Antioxidant and antiradical activities of phenolic extracts from Iranian almond (Prunus amygdalus L.) hulls and shells. Turk J Biol 34(2):165–173. https://doi.org/10.3906/biy-0807-21

    Article  Google Scholar 

  14. Moure A, Domínguez H, Parajó JC (2008) Antioxidant activity of fractions from acid hydrolysates of almond shells. J Food Process Eng 31(6):817–832. https://doi.org/10.1111/j.1745-4530.2007.00192.x

    Article  Google Scholar 

  15. Demirbas A (2006) Effect of temperature on pyrolysis products from four nut shells. J Anal Appl Pyrolysis 76(1–2):285–289. https://doi.org/10.1016/j.jaap.2005.12.012

    Article  Google Scholar 

  16. Pirayesh H, Khazaeian A, Tabarsa T (2012) The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos Part B-Eng 43(8):3276–3280. https://doi.org/10.1016/j.compositesb.2012.02.016

    Article  Google Scholar 

  17. Demirbas A (2002) Fuel characteristics of olive husk and walnut, hazelnut, sunflower, and almond shells. Energ Source 24(3):215–221. https://doi.org/10.1080/009083102317243601

    Article  Google Scholar 

  18. González JF, Ramiro A, González-García CM, Gañán J, Encinar JM, Sabio E, Rubiales J (2005) Pyrolysis of almond shells. Energy applications of fractions. Ind Eng Chem Res 44(9):3003–3012. https://doi.org/10.1021/ie0490942

    Article  Google Scholar 

  19. Kacem I, Koubaa M, Maktouf S, Chaari F, Najar T, Chaabouni M, Ettis N, Ellouz Chaabouni S (2016) Multistage process for the production of bioethanol from almond shell. Bioresour Technol 211:154–163. https://doi.org/10.1016/j.biortech.2016.03.057

    Article  Google Scholar 

  20. Sartori C, Mota GS, Ferreira J, Miranda I, Mori FA, Pereira H (2016) Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70(9):819–828. https://doi.org/10.1015/hf-2015-0258

    Article  Google Scholar 

  21. Miranda I, Lima L, Quilhó T, Knapic S, Pereira H (2015) The bark of Eucalyptus syderoxylon as a source of phenolic extracts with anti-oxidant properties. Ind Crop Prod 82:81–87. https://doi.org/10.1016/j.indcrop.2015.12.0203

    Article  Google Scholar 

  22. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76. https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  23. Lourenço A, Gominho J, Curt MD, Revilla E, Villar JC, Pereira H (2017) Steam explosion as a pretreatment of Cynara cardunculus prior to delignification. Ind Eng Chem Res 56(1):424–433. https://doi.org/10.1021/acs.iecr.6b03854

    Article  Google Scholar 

  24. Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgwater AV, Bridgwater AV, Barraclough T, Shield I, Yates N, Thain SC, Donnison IS (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86(1–2):60–72. https://doi.org/10.1016/j.fuel.2006.06.022

    Article  Google Scholar 

  25. Miranda I, Gominho J, Mirra I, Pereira H (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. IndCrops Prod 41:299–305. https://doi.org/10.1016/j.indcrop.2012.04.024

    Article  Google Scholar 

  26. Nabarlatz D, Farriol X, Montané D (2005) Autohydrolysis of almond shells for the production of xylo-oligosaccharides: product characteristics and reaction kinetics. Ind Eng Chem Res 44(20):7746–7755. https://doi.org/10.1021/ie050664n

    Article  Google Scholar 

  27. Chen L, Wang X, Yang H, Lu Q, Li D, Yang Q, Chen H (2015) Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. J Anal Appl Pyrolysis 113:499–507. https://doi.org/10.1016/j.jaap.2015.03.018

    Article  Google Scholar 

  28. Soleimani M, Kaghazchi T (2008) Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones—an agricultural waste. Bioresour Technol 99:5374–5383. https://doi.org/10.1016/j.biortech.2007.11.021

    Article  Google Scholar 

  29. Martin C, Alriksson B, Sjöde A, Nilvebrant NO, Jönsson LJ (2007) Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol 137-140(1–12):339–352. https://doi.org/10.1007/s12010-007-9063-1

    Article  Google Scholar 

  30. Liu X, Bi XT (2011) Removal of inorganic constituents from pine barks and switchgrass. Fuel Proc Technol 92(7):1273–1279. https://doi.org/10.1016/j.fuproc.2011.01.016

    Article  Google Scholar 

  31. Lourenço A, Pereira H (2018) Compositional variability of lignin in biomass. In Matheus P (ed) Lignin—trends and applications. InTech. https://doi.org/10.5772/intechopen.71208

    Google Scholar 

  32. Chen D, Chen X, Sun J, Zheng Z, Fu K (2016) Pyrolysis polygeneration of pine nut shell: quality of pyrolysis products and study on the preparation of activated carbon from biochar. Bioresour Technol 216:629–636. https://doi.org/10.1016/j.biortech.2016.05.107

    Article  Google Scholar 

  33. Wei Q, Ma X, Zhao Z, Zhang S, Liu S (2010) Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J Anal Appl Pyrolysis 88(2):149–154. https://doi.org/10.1016/j.jaap.2010.03.008

    Article  Google Scholar 

  34. Jalili A, Heydari R, Sadeghzade A, Alipour S (2012) Reducing power and radical scavenging activities of phenolic extracts from Juglans regia hulls and shells. Afr J Biotechnol 11(37):9040–9047. https://doi.org/10.5897/AJB11.1489

    Article  Google Scholar 

  35. Squillaci G, Apone F, Sena LM, Carola A, Tito A, Bimonte M, De Lucia A, Colucci G, La Cara F, Morana A (2018) Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem 64:228–236. https://doi.org/10.1016/j.procbio.2017.09.017

    Article  Google Scholar 

  36. Nazzaro M, Mottola V, Cara FL, Monaco GD, Aquino RP, Volpe MG (2012) Extraction and characterization of biomolecules from agricultural wastes. Chem Eng Transactions:331–336. https://doi.org/10.3303/CET1227056

  37. Vázquez G, Fontenla E, Santos J, Freire MS, González-Álvarez J, Antorrena G (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crop Prod 28(3):279–285. https://doi.org/10.1016/j.indcrop.2008.03.003

    Article  Google Scholar 

  38. Contini M, Baccelloni S, Massantini R, Anelli G (2008) Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem 110(3):659–669. https://doi.org/10.1016/j.foodchem.2008.02.060

    Article  Google Scholar 

  39. Esposito T, Sansone F, Franceschelli S, Del Gaudio P, Picerno P, Aquino RP, Mencherini T (2017) Hazelnut (Corylus avellana L.) shells extract: phenolic composition, antioxidant effect and cytotoxic activity on human cancer cell lines. Int J Mol Sci 18(2):392. https://doi.org/10.3390/ijms18020392

    Article  Google Scholar 

  40. Yang J, Chen C, Zhao S, Ge F, Liu D (2014) Effect of solvents on the antioxidant activity of walnut (Juglans regia L.) shell extracts. J Food Nutr Res 2(9):621–626. https://doi.org/10.12691/jfnr-2-9-15

    Article  Google Scholar 

  41. Akbari V, Jamei R, Heidari R, Esfahlan AJ (2012) Antiradical activity of different parts of walnut (Juglans regia L.) fruit as a function of genotype. Food Chem 135(4):2404–2410. https://doi.org/10.1016/j.foodchem.2012.07.030

    Article  Google Scholar 

  42. Meshkini A (2016) Acetone extract of almond hulls provides protection against oxidative damage and membrane protein degradation. J Acupunct Meridian Stud 9(3):134–142. https://doi.org/10.1016/j.jams.2015.10.001

    Article  Google Scholar 

Download references

Acknowledgements

Carla Queirós and Sofia Cardoso acknowledge PhD fellowships from Fundação para a Ciência e a Tecnologia (FCT) under the SUSFOR doctoral program (SFRH/BD/52409/2013 and SFRH/BD/52404/2013) and Ana Lourenço a post-doctoral grant (SFRH/BPD/95385/2013). Centro de Estudos Florestais (UID/AGR/00239/2013) and Centro de Química Estrutural (UID/QUI/00100/2013) are research units supported by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Miranda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queirós, C.S.G.P., Cardoso, S., Lourenço, A. et al. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conv. Bioref. 10, 175–188 (2020). https://doi.org/10.1007/s13399-019-00424-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00424-2

Keywords

Navigation