Skip to main content
Log in

Characteristics of Choline Transport Across the Blood-Brain Barrier in Mice: Correlation with In Vitro Data

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We examined the functional properties of choline transport across the blood-brain barrier (BBB) in mice. We compared the kinetic parameters and transport properties with those found in our in vitro uptake experiments using mouse brain capillary endothelial cells (MBEC4).

Methods. The permeability coefficient-surface area product (PS) values of [3H]choline at the BBB were estimated by means of anin situ brain perfusion technique in mice.

Results. [3H]Choline uptake was well described by a two-component model: a saturable component and a nonsaturable linear component. The [3H]choline uptake was independent of pH and Na+, but was significantly decreased by the replacement of Na+ with K+. Various basic drugs, including substrates and inhibitors of the organic cation transporter, significantly inhibited the [3H]choline uptake. These in situ (in vivo) results corresponded well to the in vitro results and suggest that the choline transporter at the BBB is a member of the organic cation transporter (OCT) family.

Conclusion. The choline transport mechanism at the BBB is retained in MBEC4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Spector. Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J. Neurochem. 53:1667–1674 (1989).

    Google Scholar 

  2. J. K. Blusztajn and R. J. Wurtman. Choline and cholinergic neurons. Science 221:614–620 (1983).

    Google Scholar 

  3. R. J. Wurtman. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci. 15:117–122 (1992).

    Google Scholar 

  4. E. M. Cornford, L. D. Braun, and W. H. Oldendorf. Carrier mediated blood-brain barrier transport of choline and certain choline analogs. J. Neurochem. 30:299–308 (1978).

    Google Scholar 

  5. N. Sawada, H. Takanaga, H. Matsuo, M. Naito, T. Tsuruo, and Y. Sawada. Choline uptake by mouse brain capillary endothelial cells in culture. J. Pharm. Pharmacol. 51:847–852 (1999).

    Google Scholar 

  6. T. Tatsuta, M. Naito, K. Mikami, and T. Tsuruo, Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells. Cell Growth Differentiation 5:1145–1152 (1994).

    Google Scholar 

  7. H. Murakami, H. Takanaga, H. Matsuo, H. Ohtani, and Y. Sawada. Comparison of blood-brain barrier permeability in mice and rats using in situ brain perfusion technique. Am. J. Physiol. in press (2000).

  8. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobio-Dyn. 4:879–885 (1981).

    Google Scholar 

  9. I. Tamai, and A. Tsuji. Carrier-mediated approaches for oral drug delivery. Drug. Deliv. Rev. 19:401–424 (1996).

    Google Scholar 

  10. B. Giros, S. El Mestikawy, L. Bertrand, and M. G. Caron. Cloning and and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 295:149–154 (1991).

    Google Scholar 

  11. A. S. Chang, S. M. Chang, D. M. Starnes, S. Schroeter, A. L. Bauman, and R. D. Blakely. Cloning and expression of the mouse serotonin transporter. Mol. Brain Res. 43:185–192 (1996).

    Google Scholar 

  12. J. Masson, C. Sagne, M. Hamon, and S. El Mestikawy. Neurotransmitter transporters in the central nervous system. Pharm. Rev. 51:439–464 (1999).

    Google Scholar 

  13. B. M. Cohen, P. F. Renshaw, A. L. Stoll, R. J. Wurtman, D. Yurgelun-Todd, and S. M. Babb. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA 274:902–907 (1995).

    Google Scholar 

  14. J. Klein, A. Koppen, and K. Loffelholz. Uptake and storage of choline by rat brain: influence of dietary choline supplementation. J. Neurochem. 57:370–375 (1991).

    Google Scholar 

  15. J. Klein, A. Koppen, K. Loffelholz, and J. Schmitthenner. Uptake and metabolism of choline by rat brain after acute choline administration. J. Neurochem. 58:870–876 (1992).

    Google Scholar 

  16. D. Grundemann, V. Gorboulev, S. Gambaryan, M. Veyhl, and H. Koepsell. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552 (1994).

    Google Scholar 

  17. M. Okuda, H. Saito, Y. Urakami, M. Takano, and K. Inui. cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem. Biophys. Res. Commun. 224: 500–507 (1996).

    Google Scholar 

  18. R. Kekuda, P. D. Prasad, X. Wu, H. Wang, Y-J. Fei, F. H. Leibach, and V. Ganapathy. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem. 273:15971–15979 (1998).

    Google Scholar 

  19. I. Tamai, H. Yabuuchi, J. Nezu, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Cloning and characterization of a novel human pHdependent organic cation transporter, OCTN1. FEBS Lett. 419: 107–111 (1997).

    Google Scholar 

  20. I. Tamai, R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273:20378–20382 (1998).

    Google Scholar 

  21. I. Tamai, R. Ohashi, M. Katsura, K. Sakamoto, K. China, K. Yamaguchi, J. Nezu, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Multiplicity of functional characterization and tissue distribution of OCTN-transporter family. Xenobio. Metabol. Dispos. 14(suppl.): S114–S115 (1999).

    Google Scholar 

  22. A. E. Busch, S. Quester, J. C. Ulzheimer, V. Gorboulev, A. Akhoundova, S. Waldegger, F. Lang, and H. Koepsell. Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 395:153–156 (1996a).

    Google Scholar 

  23. A. E. Busch, U. Karbach, D. Miska, V. Gorboulev, A. Akhoundova, C. Volk, P. Arndt, J. C. Ulzheimer, M. S. Sonders, C. Baumann, S. Waldegger, F. Lang, and H. Koepsell. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol. Pharmacol. 54:342–352 (1998).

    Google Scholar 

  24. D. Grundemann, S. Koster, N. Kiefer, T. Breidert, M. Engelhardt, F. Spitzenberger, N. Obermuller, and E. Schomig. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J. Biol.Chem. 273:30915–30920 (1998).

    Google Scholar 

  25. A. E. Busch, S. Quester, J. C. Ulzheimer, S. Waldegger, V. Gorboulev, P. Arndt, F. Lang, and H. Koepsell. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J. Biol. Chem. 271:32599–32064 (1996b).

    Google Scholar 

  26. M. Okuda, Y. Urakami, H. Saito, and K. Inui. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim. Biophys. Acta 1417:224–231 (1999).

    Google Scholar 

  27. X. Wu, R. Kekudam, W. Huang, Y-J. Fei, F. H. Leibach, J. Chen, S. J. Conway, and V. Ganapathy. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J. Biol. Chem. 273:32776–32786 (1998).

    Google Scholar 

  28. X. Wu, W. Huang, P. D. Prasad, P. Seth, D. P. Rajan, F. H. Leibach, J. Chen, S. J. Conway, and V. Ganapathy. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther. 290:1482–1492 (1999).

    Google Scholar 

  29. H. Yabuuchi, I. Tamai, J. Nezu, K. Sakamoto, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. 289:768–773 (1999).

    Google Scholar 

  30. Y. Miyamoto, V. Ganapathy, and F. H. Leibach. Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Am. J. Physiol. 255:G85–92 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, H., Sawada, N., Koyabu, N. et al. Characteristics of Choline Transport Across the Blood-Brain Barrier in Mice: Correlation with In Vitro Data. Pharm Res 17, 1526–1530 (2000). https://doi.org/10.1023/A:1007613326759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007613326759

Navigation