Skip to main content
Log in

Heavy vector and axial-vector D mesons in hot magnetized asymmetric nuclear matter

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We observed the impact of the finite magnetic field on the in-medium mass and decay constant of isospin averaged vector \(D^*(D^{*^+},D^{*^0})\) and axial-vector \(D_1(D^+_1, D^0_1)\) mesons. The quark and gluon condensates of the nuclear medium at the finite magnetic field, temperature, isospin asymmetry, and density have been obtained by the meson exchange scalar fields within the chiral SU(3) model. The medium attributes modify the scalar and vector density of the nuclear medium and this variation reflects in the in-medium mass and decay constant of spin 1 D mesons. We calculate these observables by comparing the Operator Product Expansion (OPE) and the phenomenological side in the QCD Sum Rules. In the results, we observed a positive mass shift for charged vector and axial-vector D mesons concerning the magnetic field. For neutral vector (axial-vector) D mesons we observed negative (positive) mass shift as a function of the magnetic field. In the application part, we calculate the in-medium partial decay width of the process \(D^*_s\)(2715/2860) \(\rightarrow \) \(D^* K\) by using \(^3P_0\) model. The in-medium effects are incorporated through the in-medium masses of \(D^*\) and K mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is represented in form of figures and given in tables in the manuscript.]

References

  1. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    ADS  Google Scholar 

  2. J. D. Bjorken, Fermilab-Pub-82/59-THY, Batavia (1982)

  3. N. Masera (HELIOS-3 collaboration), Nucl. Phys. A 590, 93c (1995)

  4. W.K. Wilson et al., DLS Collaboration. Phys. Rev. C 57, 1865 (1998)

  5. D.K. Srivastava, R. Chatterjee, Phys. Rev. C 80, 054914 (2009)

    ADS  Google Scholar 

  6. A. Capella, Phys. Lett. B 364, 175 (1995)

    ADS  Google Scholar 

  7. S. Soff et al., Phys. Lett. B 471, 89 (1999)

    ADS  Google Scholar 

  8. R. Chhabra, A. Kumar, Eur. Phys. J. A 53, 105 (2017)

    ADS  Google Scholar 

  9. R. Chhabra, A. Kumar, Eur. Phys. J. C 77, 726 (2017)

    ADS  Google Scholar 

  10. R. Kumar, A. Kumar, Phys. Rev. C 101, 015202 (2020)

    ADS  Google Scholar 

  11. R. Chhabra, A. Kumar, Phys. Rev. C 98, 025205 (2018)

    ADS  Google Scholar 

  12. D.E. Kharzeev et al., Nucl. Phys. A 803, 227 (2008)

    ADS  Google Scholar 

  13. K. Fukushima et al., Phys. Rev. D 78, 074033 (2008)

    ADS  Google Scholar 

  14. V.V. Skovov et al., Int. J. Mod. Phys. A 24, 5925 (2009)

    ADS  Google Scholar 

  15. D. Kharzeev et al., Strongly Interacting Matter in Magnetic Fields (Springer, New York, 2013)

    MATH  Google Scholar 

  16. A. Vilenkin, Phys. Rev. D 22, 3080 (1980)

    ADS  Google Scholar 

  17. Y. Burnier et al., Phys. Rev. Lett. 107, 052303 (2011)

    ADS  Google Scholar 

  18. R. Kumar, A. Kumar, Eur. Phys. J C 79, 403 (2019)

    ADS  Google Scholar 

  19. S. Reddy et al., Phys. Rev. C 97, 065208 (2018)

    ADS  Google Scholar 

  20. R. Rapp et al., Prog. Part. Nucl. Phys. 65, 209 (2010)

    ADS  Google Scholar 

  21. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    ADS  Google Scholar 

  22. A. Mishra et al., Phys. Rev. C 69, 015202 (2004)

    ADS  Google Scholar 

  23. A. Mishra et al., Eur. Phys. J. A 41, 205 (2009)

    ADS  Google Scholar 

  24. P. Papazoglou et al., Phys. Rev. C 59, 411 (1999)

    ADS  Google Scholar 

  25. P.A.M. Guichon, Phys. Lett. B 200, 235 (1988)

    ADS  Google Scholar 

  26. S.W. Hong, B.K. Jennings, Phys. Rev. C 64, 038203 (2001)

    ADS  Google Scholar 

  27. K. Tsushima et al., Phys. Rev. C 59, 2824 (1999)

    ADS  Google Scholar 

  28. A. Sibirtsev et al., Eur. Phys. J. A 6, 351 (1999)

    ADS  Google Scholar 

  29. K. Saito, A.W. Thomas, Phys. Lett. B 327, 9 (1994)

    ADS  Google Scholar 

  30. P.K. Panda et al., Phys. Rev. C 56, 3134 (1997)

    ADS  Google Scholar 

  31. L.J. Reinders et al., Nucl. Phys. B 186(109), 2 (1981)

    Google Scholar 

  32. A. Hayashigaki, Phys. Lett. B 487, 96 (2000)

    ADS  Google Scholar 

  33. T. Hilger et al., Phys. Rev. C 79, 025202 (2009)

    ADS  Google Scholar 

  34. L.J. Reinders et al., Phys. Rep. 127, 1 (1985)

    ADS  Google Scholar 

  35. F. Klingl et al., Nucl. Phys. A 624, 527 (1997)

    ADS  Google Scholar 

  36. F. Klingl et al., Phys. Rev. Lett. 82, 3396 (1999)

    ADS  Google Scholar 

  37. L. Tolós et al., Phys. Rev. C 763, 025203 (2004)

    ADS  Google Scholar 

  38. L. Tolós et al., Phys. Lett. B 635, 85 (2006)

    ADS  Google Scholar 

  39. L. Tolós et al., Phys. Rev. C 77, 015207 (2008)

    ADS  Google Scholar 

  40. J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 763, 90 (2005)

    ADS  Google Scholar 

  41. K. Fukushima, Phys. Lett. B 591, 277 (2004)

    ADS  Google Scholar 

  42. K. Kashiwa et al., Phys. Lett. B 662, 26 (2008)

    ADS  Google Scholar 

  43. S.K. Ghosh et al., Phys. Rev. D 91, 054005 (2015)

    ADS  Google Scholar 

  44. S. Chatterjee, K.A. Mohan, Phys. Rev. D 85, 074018 (2012)

    ADS  Google Scholar 

  45. B.J. Schaefer et al., Phys. Rev. D 81, 074013 (2010)

    ADS  Google Scholar 

  46. T.K. Herbst et al., Phys. Lett. B 731, 248 (2014)

    ADS  Google Scholar 

  47. M. Drews et al., Phys. Rev. D 88, 096011 (2013)

    ADS  Google Scholar 

  48. R. Bonnaz, B. Silvestre-Brac, Few Body Syst. 27, 163 (1999)

    ADS  Google Scholar 

  49. S. Furui, A. Faessler, Nucl. Phys. Phys. A 468, 669 (1987)

    ADS  Google Scholar 

  50. R. Kokoski, N. Isgur, Phys. Rev. D 35, 907 (1987)

    ADS  Google Scholar 

  51. B. Friman et al., Phys. Lett. B 548, 153 (2002)

    ADS  Google Scholar 

  52. S. Cho et al., Phys. Rev. D 91, 045025 (2015)

    ADS  Google Scholar 

  53. P. Gubler et al., Phys. Rev. D 93, 054026 (2016)

    ADS  Google Scholar 

  54. R. Kumar, A. Kumar, Chin. Phys. C 43, 12 (2019)

    Google Scholar 

  55. S. Cho et al., Phys. Rev. Lett. 113, 172301 (2014)

    ADS  Google Scholar 

  56. A. Mishra et al., Eur. Phys. J. A 55, 107 (2019)

    ADS  Google Scholar 

  57. H. Liu et al., Phys. Rev. D 91, 014017 (2015)

    ADS  Google Scholar 

  58. C.S. Machado et al., Phys. Rev. D 89, 074027 (2014)

    ADS  Google Scholar 

  59. N. Dhale et al., Phys. Rev. C 98, 015202 (2018)

    ADS  Google Scholar 

  60. A. Kumar, R. Chhabra, Phys. Rev. C 92, 035208 (2015)

    ADS  Google Scholar 

  61. A. Kumar, Adv. High Energy Phys. 2014, 549726 (2014)

    Google Scholar 

  62. A. Kumar, A. Mishra, Phys. Rev. C 82, 045207 (2010)

    ADS  Google Scholar 

  63. R. Bruschini, P. Gonzalez, Phys. Rev. C 99, 045205 (2019)

    ADS  Google Scholar 

  64. B. Zhang et al., Eur. Phys. J. C 50, 617 (2007)

    ADS  Google Scholar 

  65. L. Micu, Nucl. Phys. B 10, 521 (1969)

    ADS  Google Scholar 

  66. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Rev. D 8, 2223 (1973)

    ADS  Google Scholar 

  67. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Rev. D 9, 1415 (1974)

    ADS  Google Scholar 

  68. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Lett. B 71, 397 (1977)

    ADS  Google Scholar 

  69. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Lett. B 72, 57 (1977)

    ADS  Google Scholar 

  70. T. Barns, N. Black, P.R. Page, Phys. Rev. D 68, 054014 (2003)

    ADS  Google Scholar 

  71. T. Barns, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005)

    ADS  Google Scholar 

  72. F.E. Close, C.E. Thomas, O. Lakhina, E.S. Swanson, Phys. Lett. B 647, 159 (2007)

    ADS  Google Scholar 

  73. J. Sagovia, D.R. Entem, F. Fernandez, Phys. Lett. B 715, 322 (2012)

    ADS  Google Scholar 

  74. J. Ferretti, G. Galat’a, E. Santopinto, Phys. Rev. D 90, 054010 (2014)

    ADS  Google Scholar 

  75. J. Ferretti, E. Santopinto, Phys. Rev. D 90, 094022 (2014)

    ADS  Google Scholar 

  76. D.M. Li, B. Ma, Phys. Rev. D 81, 014021 (2010)

    ADS  Google Scholar 

  77. F.E. Close, E.S. Swanson, Phys. Rev. D 72, 094004 (2005)

    ADS  Google Scholar 

  78. S. Godfrey, K. Moats, Phys. Rev. D 90, 117501 (2014)

    ADS  Google Scholar 

  79. X. Liu, Int. J. Mod. Phys. Conf. Ser. 02, 147 (2011)

    ADS  Google Scholar 

  80. A. Mishra et al., Phys. Rev. C 69, 024903 (2004)

    ADS  Google Scholar 

  81. A. Mishra et al., Phys. Rev. C 70, 044904 (2004)

    ADS  Google Scholar 

  82. A. Mishra, S. Schramm, Phys. Rev. C 74, 064904 (2006)

    ADS  Google Scholar 

  83. A. Mishra et al., Phys. Rev. C 78, 024901 (2008)

    ADS  Google Scholar 

  84. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    ADS  Google Scholar 

  85. S. Coleman et al., Phys. Rev. 177, 2239 (1969)

    ADS  Google Scholar 

  86. W.A. Bardeen, B.W. Lee, Phys. Rev. 177, 2389 (1969)

    ADS  Google Scholar 

  87. D. Zschiesche, Description of Hot, Dense, and Strange Hadronic Matter in a Chiral \(SU(3)_L \times SU(3)_R\)-Model, Diploma Thesis, Goethe University Frankfurt (1997)

  88. A. Broderick et al., Astrophys. J. 537, 351 (2000)

    ADS  Google Scholar 

  89. A.E. Broderick et al., Phys. Lett. B 531, 167 (2002)

    ADS  Google Scholar 

  90. J. Schechter, Phys. Rev. D 21, 3393 (1980)

    ADS  Google Scholar 

  91. H. Gomm, Phys. Rev. D 33, 801 (1986)

    ADS  Google Scholar 

  92. T. Barnes, E.S. Swanson, Phys. Rev. C 49, 1166 (1994)

    ADS  Google Scholar 

  93. Z.G. Wang, Phys. Rev. C 92, 065205 (2015)

    ADS  Google Scholar 

  94. Z.G. Wang, Int. J. Mod. Phys. A 28, 1350049 (2013)

    ADS  Google Scholar 

  95. K. Morita, S.H. Lee, Phys. Rev. C 85, 044917 (2012)

    ADS  Google Scholar 

  96. K. Azizi, N. Er, H. Sundu, Eur. Phys. J. C 74, 3021 (2014)

    ADS  Google Scholar 

  97. D.B. Leinweber, Ann. Phys. 254, 328 (1997)

    ADS  Google Scholar 

  98. T. Hilger, QCD Sum Rules for D Mesons in Nuclear Matter. Diploma Thesis, Technical University of Dresden (2008)

  99. M. Nielsen et al., Phys. Rep. 497, 41 (2010)

    ADS  Google Scholar 

  100. X. Jin et al., Phys. Rev. C 49, 1 (1994)

    Google Scholar 

  101. R. Thomas et al., Nucl. Phys. A 795, 19 (2007)

    ADS  Google Scholar 

  102. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    ADS  Google Scholar 

  103. Z.G. Wang, T. Huang, Phys. Rev. C 84, 048201 (2011)

    ADS  Google Scholar 

  104. H. G. Blundell, arXiv:hep-ph/9608473

Download references

Acknowledgements

One of the author, (R.K) sincerely acknowledge the support towards this work from Ministry of Science and Human Resources Development (MHRD), Government of India via Institute fellowship under National Institute of Technology Jalandhar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

Communicated by Ralf Rapp.

Appendix A: Even-odd QCD Sum Rules

Appendix A: Even-odd QCD Sum Rules

QCD Sum Rules are another formalism to study the physics of non-perturbative regime [32,33,34]. This formalism is based on the Borel transformation which is a mathematical technique to avoid the divergence in the perturbative expansion [34, 36]. To relate the mesons properties from medium to the vacuum, we start with the two-point current co-relation function

$$\begin{aligned} \Pi (p) = i \int d^4y \, e^{ipy} \left\langle \langle {\hat{O}} |\text {T} \left[ \text {j} \right] (y) \text {j}^\dagger (0) | {\hat{O}} \rangle \right\rangle \end{aligned}$$
(A1)

which represents time-ordered product of the meson currents \(\text {j}(y)\) and \(\text {j}^\dagger (0)\). To study the in-medium mass of \(D^+\) and \(D^-\) mesons separately, we split the co-relation function \(\Pi (p_0,\mathbf {p}\,)\) into an even (e) and odd (o) part as

$$\begin{aligned} \Pi (p_0,\mathbf {p}\,) = \Pi _e(p^2_0,\mathbf {p}\,) + p_0 \Pi _o(p^2_0,\mathbf {p}\,). \end{aligned}$$
(A2)

Explicitly,

$$\begin{aligned} \Pi _e(p_0,\mathbf {p}\,)&= \frac{1}{2} \left( \Pi (p_0,\mathbf {p}\,) + \Pi (-p_0,\mathbf {p}\,)\right) = \Pi _e(-p_0,\mathbf {p}\,) \, , \end{aligned}$$
(A3)

and

$$\begin{aligned} \Pi _o(p_0,\mathbf {p}\,)&= \frac{1}{2p_0} \left( \Pi (p_0,\mathbf {p}\,) - \Pi (-p_0,\mathbf {p}\,)\right) \nonumber \\&= \Pi _o(-p_0,\mathbf {p}\,) \, . \end{aligned}$$
(A4)

In the rest frame, the OPE side is derived using pseudoscalar current \(\text {j}_{D^+} = i {\overline{d}} \gamma _5 c\) and \(\text {j}_{D^-} = \text {j}^\dagger _{D^+}(x) = i {\overline{c}} \gamma _5 d\). By application of the Borel transformation operator on the OPE side with the condition of large pole mass of charm quark \(m_c\) and \(m_d \rightarrow 0\), we obtain

$$\begin{aligned}&{\mathcal {B}} \left[ \Pi _e^{OPE}(\omega ^2, \mathbf {p} = 0\,) \right] \left( M^2 \right) \nonumber \\&= \frac{1}{\pi } \int _{m_c^2}^\infty ds e^{-s/M^2} \text {Im} \Pi ^{per}(s, \mathbf {p} = 0\,) + e^{-m_c^2/M^2} \nonumber \\&\qquad \left( -m_c \langle {\overline{d}}d \rangle + \frac{1}{2} \left( \frac{m_c^3}{2M^4} - \frac{m_c}{M^2} \right) \langle {\overline{d}}g\sigma {\mathcal {G}}d \rangle \right. \nonumber \\&\quad + \frac{1}{12} \langle \frac{\alpha _s}{\pi } G^2 \rangle + \left[ \left( \frac{7}{18} + \frac{1}{3} \ln \frac{\mu ^2 m_c^2}{M^4} - \frac{2\gamma }{3} \right) \right. \nonumber \\&\qquad \left. \left( \frac{m_c^2}{M^2} - 1 \right) - \frac{2}{3} \frac{m_c^2}{M^2} \right] \langle \frac{\alpha _s}{\pi } \left( \frac{(vG)^2}{v^2} - \frac{G^2}{4} \right) \rangle \nonumber \\&\quad + 2 \left( \frac{m_c^2}{M^2} - 1 \right) \langle d^\dagger iD_0 d \rangle + 4 \left( \frac{m_c^3}{2M^4} - \frac{m_c}{M^2} \right) \nonumber \\&\quad \left. \left[ \langle {\overline{d}} D_0^2 d \rangle - \frac{1}{8} \langle {\overline{d}} g \sigma {\mathcal {G}} d \rangle \right] \right) \, , \end{aligned}$$
(A5a)
$$\begin{aligned}&{\mathcal {B}} \left[ \Pi _o^{OPE}(\omega ^2, \mathbf {p} = 0\,) \right] \left( M^2 \right) \nonumber \\&\quad = e^{-m_c^2/M^2} \left( \langle d^\dagger d \rangle - 4 \left( \frac{m_c^2}{2M^4} - \frac{1}{M^2} \right) \right. \nonumber \\&\quad \left. \langle d^\dagger D_0^2 d \rangle - \frac{1}{M^2} \langle d^\dagger g \sigma {\mathcal {G}} d \rangle \right) , \end{aligned}$$
(A5b)

where

$$\begin{aligned}&{\text {Im}} \Pi ^{p e r}\left( p^{2}\right) \nonumber \\&\quad = \frac{3}{8 \pi } \frac{\left( p^{2}-m_{c}^{2}\right) ^{2}}{p^{2}}\left\{ 1+\frac{4 \alpha _{s}\left( p^{2}\right) }{3 \pi }\left[ \frac{9}{4}+2 {\text {Li}}_{2}\left( \frac{m_{c}^{2}}{p^{2}}\right) \right. \right. \nonumber \\&\qquad + \ln \left( \frac{p^{2}}{m_{c}^{2}}\right) \ln \left( \frac{p^{2}}{p^{2}-m_{c}^{2}}\right) \nonumber \\&\qquad +\frac{3}{2} \ln \left( \frac{m_{c}^{2}}{p^{2}-m_{c}^{2}}\right) +\ln \left( \frac{p^{2}}{p^{2}-m_{c}^{2}}\right) \nonumber \\&\qquad \left. +\frac{m_{c}^{2}}{p^{2}} \ln \left( \frac{p^{2}-m_{c}^{2}}{m_{c}^{2}}\right) +\frac{m_{c}^{2}}{p^{2}-m_{c}^{2}} \ln \left( \frac{p^{2}}{m_{c}^{2}}\right) \right] . \end{aligned}$$
(A6)

In the above equation, \({\text {Li}}_{2}(y)=-\int _{0}^{y} z^{-1} \ln (1-z) d z\) is the Spence function.

The physical quantity mentioned inside \(\langle \rangle _{\rho _N}\) in Eqs. (A5b) and (A5a) are known as condensates. The density dependent down quark condensate, \(\langle {\overline{d}}d \rangle _{\rho _N}\) and scalar gluon condensate, \(\langle \frac{\alpha _s}{\pi } G^2 \rangle _{\rho _N}\) are calculated from chiral SU(3) model by Eqs. (23) and (27), respectively and the values of other in-medium quark and gluon condensates are taken from Ref. [33]. The numerical values of these in-medium condensates along with other sum rules parameters are mentioned in the Table 6. In the Borel transformed sum rules of pseudoscalar D meson, the charm quark mass, \(m_c\) plays a crucial role to intensify the contribution of light quark condensate, \( \langle {\overline{d}}d \rangle _{\rho _N}\).

The in-medium sum rules for the even part up to mass dimension 5, can be rewritten in the functional form [33, 98]

$$\begin{aligned}&h\left( M, s_{0}, m_{c}, \mu \right) \equiv m_+ H_{+} e^{-m_{+}^{2} / M^{2}}+m_{-}H_{-} e^{-m_{-}^{2} / M^{2}} \nonumber \\&\quad =\frac{1}{\pi } \int _{m_{c}^{2}}^{s_{0}} d s e^{-s / M^{2}} {\text {Im}} \Pi ^{p e r}(s) \nonumber \\&\qquad +e^{-m_{c}^{2} / M^{2}}\left( -m_{c}\langle {\bar{d}} d\rangle _{\rho _N}+\frac{1}{2}\left( \frac{m_{c}^{3}}{2 M^{4}}-\frac{m_{c}}{M^{2}}\right) \right. \nonumber \\&\qquad \langle {\bar{d}} g \sigma {\mathcal {G}} d\rangle _{\rho _N}+\frac{1}{12}\left\langle \frac{\alpha _{s}}{\pi } G^{2}\right\rangle _{\rho _N} \nonumber \\&\qquad +\left[ \left( \frac{7}{18}+\frac{1}{3} \ln \frac{\mu ^{2} m_{c}^{2}}{M^{4}}-\frac{2 \gamma }{3}\right) \left( \frac{m_{c}^{2}}{M^{2}}-1\right) -\frac{2}{3} \frac{m_{c}^{2}}{M^{2}}\right] \nonumber \\&\qquad \left\langle \frac{\alpha _{s}}{\pi }\left( \frac{(v G)^{2}}{v^{2}}-\frac{G^{2}}{4}\right) \right\rangle _{\rho _N} \nonumber \\&\qquad +2\left( \frac{m_{c}^{2}}{M^{2}}-1\right) \left\langle d^{\dagger } i D_{0} d\right\rangle _{\rho _N}+4\left( \frac{m_{c}^{3}}{2 M^{4}}-\frac{m_{c}}{M^{2}}\right) \nonumber \\&\qquad \left[ \left\langle {\bar{d}} D_{0}^{2} d\right\rangle _{\rho _N}-\frac{1}{8}\langle {\bar{d}} g \sigma {\mathcal {G}} d\rangle _{\rho _N}\right] , \end{aligned}$$
(A7)

where \(s_0\) is the continuum threshold parameter and its density dependence is given by the relation, \({s^*_0}^2=s^2_0 \pm \frac{\rho _N}{\rho _0}\) [33].

Now, the in-medium sum rules for the odd part can be written as

$$\begin{aligned} s\left( M, m_{c}\right)&\equiv H_{+} e^{-m_{+}^{2} / M^{2}}-H_{-} e^{-m_{-}^{2} / M^{2}}\nonumber \\&=e^{-m_{c}^{2} / M^{2}}\left( \left\langle d^{\dagger } d\right\rangle _{\rho _N}-4\left( \frac{m_{c}^{2}}{2 M^{4}}-\frac{1}{M^{2}}\right) \right. \nonumber \\&\quad \left. \left\langle d^{\dagger } D_{0}^{2} d\right\rangle _{\rho _N}-\frac{1}{M^{2}}\left\langle d^{\dagger } g \sigma {\mathcal {G}} d\right\rangle _{\rho _N}\right) . \end{aligned}$$
(A8)

Using the above two equations, the in-medium mass of \(D^+\) and \(D^-\) can be evaluated using the following formula [98]

$$\begin{aligned} m^*_{\pm }&=\left[ \frac{1}{4}\left( \frac{s\left( M, m_{c}\right) \frac{d}{dz} h\left( M, s_{0}, m_{c}, \mu \right) -h\left( M, s_{0}, m_{c}, \mu \right) \frac{d}{dz} s\left( M, m_{c}\right) }{h^{2}\left( M, s_{0}, m_{c}, \mu \right) +s\left( M, m_{c}\right) \frac{d}{dz} s\left( M, m_{c}\right) }\right) ^{2}\right. \nonumber \\&\quad \left. -\frac{h\left( M, s_{0}, m_{c}, \mu \right) \frac{d}{dz} h\left( M, s_{0}, m_{c}, \mu \right) +\left( \frac{d}{dz} s\left( M, m_{c}\right) \right) ^{2}}{h^{2}\left( M, s_{0}, m_{c}, \mu \right) +s\left( M, m_{c}\right) \frac{d}{dz} s\left( M, m_{c}\right) }\right] ^{\frac{1}{2}}\nonumber \\&\quad \pm \frac{1}{2} \frac{s\left( M, m_{c}\right) \frac{d}{dz} h\left( M, s_{0}, m_{c}, \mu \right) -h\left( M, s_{0}, m_{c}, \mu \right) \frac{d}{dz} g\left( M, m_{c}\right) }{h^{2}\left( M, s_{0}, m_{c}, \mu \right) +s\left( M, m_{c}\right) \frac{d}{dz} s\left( M, m_{c}\right) }, \end{aligned}$$
(A9)

where \(z=1 / M^{2}\), with M as a Borel mass parameter. Clearly, the in-medium mass is a function of M and to get a physical valid mass one should choose a proper Borel Window [98]. To reproduce the properties of hadronic medium, there should be balanced contribution from “pole + continuum” ansatz i.e the perturbative contributions from the continuum part should not influence the result in a larger extent. The higher excitations are controlled by the exponential factor in the perturbative integral which make sure that the continuum contribution to the spectral integral is less than the pole contribution. The expression to calculate maximum Borel mass, \(M_{max}\) is given as

$$\begin{aligned} 1 \ge \frac{\frac{1}{\pi } \int _{s_{0}}^{\infty } d s {\text {Im}} \Pi ^{p e r}(s) e^{-s / M_{\max }^{2}}}{h\left( M_{\max }, s_{0}, m_{c}, \mu \right) }. \end{aligned}$$
(A10)

For the lower bound \(M_{min}\) of the Borel window, the highest mass dimension terms, should not provide contribution greater than 10\(\%\) to the OPE side of sum rule. This condition is implied by the following inequality

$$\begin{aligned} 0.1 \ge \frac{e^{-m_{c}^{2} / M_{\min }^{2}}\left( \frac{m_{c}^{3}}{4 M_{\min }^{4}}\langle {\bar{d}} g \sigma {\mathcal {G}} d\rangle +2 \frac{m_{c}^{3}}{M_{min}^{4}}\left[ \left\langle {\bar{d}} D_{0}^{2} d\right\rangle -\frac{1}{8}\langle {\bar{d}} g \sigma {\mathcal {G}} d\rangle \right] \right) }{\frac{1}{\pi } \int _{s_{0}}^{\infty } ds \text {Im} \Pi ^{pe r}(s) e^{-s /M_{min}^{2}}+h \left( M_{min}, s_0, m_{c}, \mu \right) }.\nonumber \\ \end{aligned}$$
(A11)

Further, the mass-splitting between charged partners (\(D^+, D^-\)) can be calculated as

$$\begin{aligned} \Delta m^*=m^*_+-m^*_- \end{aligned}$$
(A12)
Table 6 List of used parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chhabra, R. & Kumar, A. Heavy vector and axial-vector D mesons in hot magnetized asymmetric nuclear matter. Eur. Phys. J. A 56, 278 (2020). https://doi.org/10.1140/epja/s10050-020-00292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00292-9

Navigation