Skip to main content
Log in

Reversible changes of visual acuity and pattern-electroretinograms after blue-green argon laser photocoagulation of diabetic patients

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Visual acuity, color vision, pattern-visual-evoked-potentials (P-VEPs) and pattern-electroretinograms (P-ERGs) were measured in 13 diabetic subjects before, and 24 hours and 5 weeks after blue-green argon laser treatment. As control, the same examinations were performed in 7 normal subjects and 7 diabetic patients before and after slit lamp examination with the Goldman three mirror contact lens.

Visual acuity and P-ERG amplitudes were significantly reduced one day after the laser treatment, while 5 weeks after the laser coagulation, visual acuity and P-ERG amplitudes recovered to pretreatment values. The control group showed no significant changes after slit lamp examination. Since fluorescein angiography revealed no macular changes after laser treatment, the possibility of a reversible functional light damage after blue-green argon laser coagulation (ALC) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tso MOM, Fine BS, Zimmermann LE. Photopic maculopathy produced by the indirect ophthalmoscope. Am J Ophthalmol 1972; 73: 686–99.

    Google Scholar 

  2. Tso MOM, Woodford BJ. Effect of photic injury on the retinal tissues. Ophthalmology 1983; 90: 954–63.

    Google Scholar 

  3. Parver LM, Auker CR, Fine BS. Observations on monkey eyes exposed to light from an operating microscope. Ophthalmology 1983; 90: 964–72.

    Google Scholar 

  4. Irvine AR, Wood I, Morris BW. Retinal damage from the illumination of the operating microscope. Arch Ophthalmol 1984; 102: 1358–65.

    Google Scholar 

  5. Fuller D, Machemer R, Jnighton RW. Retinal damage produced by intraocular fiber optic light. Vis Res 1980; 20: 1055–72.

    Google Scholar 

  6. Hochheimer BF, D'Anna SA, Calkins JL. Retinal damage from light. Am J Ophthalmol 1979; 88: 1039–44.

    Google Scholar 

  7. McDonald R, Irvine AR. Light induced maculopathy from the operating microscope in extracapsular cataract extraction and intraocular lens implantation. Ophthalmology 1983; 90: 945–51.

    Google Scholar 

  8. Berler DK, Peyser R. Light intensity and visual acuity following cataract surgery. Ophthalmology 1983; 90: 933–6.

    Google Scholar 

  9. Khwarg SG, Linstone FA, Daniels SA, Isenberg SJ, Hanscom TA, Goeghegan M, Straatsma BR. Incidence, risk factors, and morphology in operating microscope light retinopathy. Am J Ophthalmol 1987; 103: 255–63.

    Google Scholar 

  10. Ham WT, Mueller HA, Sliney DH. Retinal sensitivity to damage from short wavelength light. Nature 1976; 260: 153–5.

    Google Scholar 

  11. Kubawara T. Retinal recovery from exposure to light. Am J Ophthalmol 1970; 70: 187–98.

    Google Scholar 

  12. Birngruber R. Die Lichtbelastung unbehandelter Netzhautareale bei der Photokoagulation. Fortschr Ophthalmol 1984; 81: 147–9.

    Google Scholar 

  13. Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of DRS findings. Ophthalmology 1978; 85: 82–105.

    Google Scholar 

  14. Birch-Cox J. Defective color vision in diabetic retinopathy before and after laser photocoagulation. Mod Prob Ophthalmol 1978; 19: 326–9.

    Google Scholar 

  15. Crick MDP, Chignell AH, Shilling JS. Argon laser versus xenon arc photocoagulation in proliferative diabetic retinopathie. Trans Ophthal Soc UK 1978; 98: 170–71.

    Google Scholar 

  16. Ghafour IM, Foulds WS, Allan D. Short-term effect of slit lamp illumination and argon laser light on visual function of diabetic and non-diabetic subjects. Brit J Ophthalmol 1984; 298–302.

  17. Parver LM, Fine BS, D'Anna S, Hoccheimer B. Photochemical macular damage produced by panretinal photocoagulation. Invest Ophthalmol Vis Sci suppl 1988; 29: 412.

    Google Scholar 

  18. Arden GM, Carter RM, Hogg C, Siegel IM, Margolis S. A gold foil electrode: extending horizons for clinical electroretinography. Invest Ophthalmol Vis Sci 1979; 18: 421–6.

    Google Scholar 

  19. Roy MS, McCulloch C, Hanna AK, Mortimer C. Color vision in long standing diabetes. Brit J Ophthalmol 1984; 68: 215–7.

    Google Scholar 

  20. Bopp M, Papst N, Remler B. Helligkeits und Muster-Elektroretinogramm bei diabetischer Retinopathie. Fortschr Ophthalmol 1985; 82: 601–3.

    Google Scholar 

  21. Green FD, Ghafour IM, Allan D, Barrie T, McClure E, Foulds WS. Color vision of diabetics. Brit J Ophthalmol 1985; 69: 533–6.

    Google Scholar 

  22. Hienert I, Gottlob I, Stelzer N, Prskavec FH, Weghaqupt H. Wertigkeit von Muster Elektrokretinogramm und Farnthworth Munsell 100 Hue Test bei diabetischer Retinopathie. Spektrum der Augenheilk. 1987; pp. 281–3.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by the “Medizinisch - Wissenschaftlicher Fonds des Bürgermeisters der Bundeshauptstadt Wien”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlob, I., Prskavec, F.H., Stelzer, N. et al. Reversible changes of visual acuity and pattern-electroretinograms after blue-green argon laser photocoagulation of diabetic patients. Doc Ophthalmol 72, 105–113 (1989). https://doi.org/10.1007/BF00156700

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156700

Key words

Navigation