Skip to main content
Log in

A Composite Nano-ink of Liquid Metal Nanoparticles and Carbon Nanotubes for the Fabrication of Flexible Pressure Sensors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Liquid metal (LM) eutectic gallium–indium (EGaIn) possesses the ductility of a polymer and the conductivity of metal materials, making it a promising material for flexible electronics. Fabricating LM-based circuits is challenging because of the large surface tension of EGaIn. However, the circuit can be fabricated on various substrates using an additive printing process based on the principle of ultrasonic resonance. To improve the wettability between the LM and a substrate material, LM nanoparticles/carbon nanotubes (LMP/CNT) composite nano-ink was prepared, which has excellent colloidal stability and biocompatibility. A conductive circuit was realized by attaching CNTs to LMPs for imparting intrinsic electrical conductivity. Subsequently, flexible polydimethylsiloxane (PDMS) was used as the substrate, and a flexible pressure sensor with a response time of 103 ms was produced. This study introduces fabrication strategies for a flexible pressure sensor based on LMP/CNT composite nano-ink and additive printing processes, providing enormous possibilities for the application of LM in the field of printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Data and materials will be made available on request.

Code Availability

Not applicable.

References

  1. L.Y. Lan, J.F. Ping, J.Q. Xiong, and Y.B. Ying, Sustainable natural bio-origin materials for future flexible devices. Adv. Sci. 9(15), 34 (2022). https://doi.org/10.1002/advs.202200560.

    Article  CAS  Google Scholar 

  2. T. Cheng, Y.Z. Zhang, W.Y. Lai, and W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27(22), 3349 (2015). https://doi.org/10.1002/adma.201405864.

    Article  CAS  Google Scholar 

  3. B.W. Zhu, H. Wang, W.R. Leow, Y.R. Cai, X.J. Loh, M.Y. Han, and X.D. Chen, Silk fibroin for flexible electronic devices. Adv. Mater. 28(22), 4250–4265 (2016). https://doi.org/10.1002/adma.201504276.

    Article  CAS  Google Scholar 

  4. A. Rafique, I. Ferreira, G. Abbas, and A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15(1), 58 (2023). https://doi.org/10.1007/s40820-022-01008-y.

    Article  CAS  Google Scholar 

  5. X. Chen, X. Han, and Q.D. Shen, PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron Mater. 3(5), 18 (2017). https://doi.org/10.1002/aelm.201600460.

    Article  CAS  Google Scholar 

  6. M. Li, C.Q. Miao, M.H. Zou, J.H. Guo, H.Z. Wang, M. Gao, H.C. Zhang, and Z.F. Deng, The development of stretchable and self-repairing materials applied to electronic skin. Front. Chem. 11, 5 (2023). https://doi.org/10.3389/fchem.2023.1198067.

    Article  CAS  Google Scholar 

  7. J. Lin, Z.R. Zhu, C.F. Cheung, F. Yan, and G.J. Li, Digital manufacturing of functional materials for wearable electronics. J. Mater. Chem. C. 8(31), 10587 (2020). https://doi.org/10.1039/d0tc01112f.

    Article  CAS  Google Scholar 

  8. A.S. Almuslem, S.F. Shaikh, and M.M. Hussain, Flexible and stretchable electronics for harsh-environmental applications. Adv. Mater. Technol. 4(9), 18 (2019). https://doi.org/10.1002/admt.201900145.

    Article  Google Scholar 

  9. Y.Q. Liu, K. He, G. Chen, W.R. Leow, and X.D. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893 (2017). https://doi.org/10.1021/acs.chemrev.7b00291.

    Article  CAS  Google Scholar 

  10. L. Gao, Flexible device applications of 2D semiconductors. Small 13(35), 15 (2017). https://doi.org/10.1002/smll.201603994.

    Article  CAS  Google Scholar 

  11. Q. Wang, Y. Yu, and J. Liu, Preparations, characteristics and applications of the functional liquid metal materials. Adv. Eng. Mater. 20(5), 21 (2018). https://doi.org/10.1002/adem.201700781.

    Article  CAS  Google Scholar 

  12. B.Y. Ping, G.X. Zhou, Z.H. Zhang, and R. Guo, Liquid metal enabled conformal electronics. Front. Bioeng. Biotechnol. 11, 19 (2023). https://doi.org/10.3389/fbioe.2023.1118812.

    Article  Google Scholar 

  13. J. Park, D.H. Han, and J.K. Park, Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab. Chip. 20(7), 1191–1203 (2020). https://doi.org/10.1039/d0lc00047g.

    Article  CAS  Google Scholar 

  14. J. Park, Y. Lee, H. Lee, and H. Ko, Transfer printing of electronic functions on arbitrary complex surfaces. ACS Nano. 14(1), 12–20 (2020). https://doi.org/10.1021/acsnano.9b09846.

    Article  CAS  Google Scholar 

  15. M. Wang, C. Ma, P.C. Uzabakiriho, X. Chen, Z.R. Chen, Y. Cheng, Z.R. Wang, and G. Zhao, Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano. 15(12), 19364–19376 (2021). https://doi.org/10.1021/acsnano.1c05762.

    Article  CAS  Google Scholar 

  16. G.G. Guymon and M.H. Malakooti, Multifunctional liquid metal polymer composites. J. Polym. Sci. 60(8), 1300–1327 (2022). https://doi.org/10.1002/pol.20210867.

    Article  CAS  Google Scholar 

  17. M. Hassan, G. Abbas, N. Li, A. Afzal, Z. Haider, S. Ahmed, X.R. Xu, C.F. Pan, and Z.C. Peng, Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Adv. Mater. Technol. 7(3), 45 (2022). https://doi.org/10.1002/admt.202100773.

    Article  Google Scholar 

  18. Z.Z. Hou, H. Lu, Y. Li, L.X. Yang, and Y. Gao, Direct ink writing of materials for electronics-related applications: a mini review. Front. Mater. 8, 8 (2021). https://doi.org/10.3389/fmats.2021.647229.

    Article  Google Scholar 

  19. Y.S. Rim, S.H. Bae, H.J. Chen, N. De Marco, and Y. Yang, Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28(22), 4415–4440 (2016). https://doi.org/10.1002/adma.201505118.

    Article  CAS  Google Scholar 

  20. N. Ochirkhuyag, R. Matsuda, Z.H. Song, F. Nakamura, T. Endo, and H. Ota, Liquid metal-based nanocomposite materials: fabrication technology and applications. Nanoscale 13(4), 2113–2135 (2021). https://doi.org/10.1039/d0nr07479a.

    Article  CAS  Google Scholar 

  21. J.W. Boley, E.L. White, and R.K. Kramer, Mechanically sintered gallium–indium nanoparticles. Adv. Mater. 27(14), 2355–2360 (2015). https://doi.org/10.1002/adma.201404790.

    Article  CAS  Google Scholar 

  22. Y.L. Lin, C. Cooper, M. Wang, J.J. Adams, J. Genzer, and M.D. Dickey, Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small 11(48), 6397–6403 (2015). https://doi.org/10.1002/smll.201502692.

    Article  CAS  Google Scholar 

  23. M.A. Rahim, F. Centurion, J.L. Han, R. Abbasi, M. Mayyas, J. Sun, M.J. Christoe, D. Esrafilzadeh, F.M. Allioux, M.B. Ghasemian, J. Yang, J.B. Tang, T. Daeneke, S. Mettu, J. Zhang, M.H. Uddin, R. Jalili, and K. Kalantar-Zadeh, Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing. Adv. Funct. Mater. 31(10), 12 (2021). https://doi.org/10.1002/adfm.202007336.

    Article  CAS  Google Scholar 

  24. M.Y. Zhang, G.Q. Li, L. Huang, P.H. Ran, J.P. Huang, M. Yu, H.Y. Yuqian, J.H. Guo, Z.Y. Liu, and X. Ma, Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl. Mater. Today 22, 9 (2021). https://doi.org/10.1016/j.apmt.2020.100903.

    Article  Google Scholar 

  25. G.H. Lee, H. Woo, C. Yoon, C.Q. Yang, J.Y. Bae, W. Kim, D.H. Lee, H.M. Kang, S. Han, S.K. Kang, S. Park, H.R. Kim, J.W. Jeong, and S. Park, A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv. Mater. 34(32), 10 (2022). https://doi.org/10.1002/adma.202204159.

    Article  CAS  Google Scholar 

  26. Y. Jo, J.H. Hwang, S.S. Lee, S.Y. Lee, Y.S. Kim, D.G. Kim, Y. Choi, and S. Jeong, Printable self-activated liquid metal stretchable conductors from polyvinylpyrrolidone-functionalized eutectic gallium indium composites. ACS Appl. Mater. Interfaces 14(8), 10747–10757 (2022). https://doi.org/10.1021/acsami.1c20185.

    Article  CAS  Google Scholar 

  27. T.R. Lear, S.H. Hyun, J.W. Boley, E.L. White, D.H. Thompson, and R.K. Kramer, Liquid metal particle popping: macroscale to nanoscale. Extreme Mech. Lett. 13, 126–134 (2017). https://doi.org/10.1016/j.eml.2017.02.009.

    Article  Google Scholar 

  28. U. Park, K. Yoo, and J. Kim, Development of a MEMS digital accelerometer (MDA) using a microscale liquid metal droplet in a microstructured photosensitive glass channel. Sens Actuator A Phys. 159(1), 51–57 (2010). https://doi.org/10.1016/j.sna.2010.02.011.

    Article  CAS  Google Scholar 

  29. M.D. Dickey, R.C. Chiechi, R.J. Larsen, E.A. Weiss, D.A. Weitz, and G.M. Whitesides, Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18(7), 1097–1104 (2008). https://doi.org/10.1002/adfm.200701216.

    Article  CAS  Google Scholar 

  30. L.T. Yi and J. Liu, Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int. Mater. Rev. 62(7), 415–440 (2017). https://doi.org/10.1080/09506608.2016.1271090.

    Article  CAS  Google Scholar 

  31. S.L.Z. Liu, M.C. Yuen, E.L. White, J.W. Boley, B.W. Deng, G.J. Cheng, and R. Kramer-Bottiglio, Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl. Mater. Interfaces 10(33), 28232–28241 (2018). https://doi.org/10.1021/acsami.8b08722.

    Article  CAS  Google Scholar 

  32. Z. Qin, Z. Yi, and L. Jing, Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4), 311–340 (2012). https://doi.org/10.1007/s11708-012-0214-x.

    Article  Google Scholar 

  33. R.J. Slaughter, R.W. Mason, D.M.G. Beasley, J.A. Vale, and L.J. Schep, Isopropanol poisoning. Clin. Toxicol. 52(5), 470–478 (2014). https://doi.org/10.3109/15563650.2014.914527.

    Article  CAS  Google Scholar 

  34. M. Schongut, D. Smrcka, and F. Stepanek, Experimental and theoretical investigation of the reactive granulation of sodium carbonate with dodecyl–benzenesulfonic acid. Chem. Eng. Sci. 86, 2–8 (2013). https://doi.org/10.1016/j.ces.2012.01.003.

    Article  CAS  Google Scholar 

  35. X.L. He, J. Zhou, L.Z. Meng, J.X. Liu, X.B. Wang, S.X. Zhang, W.C. Li, and L.B. Yuan, High sensitivity strain sensor based on micro-helix micro taper long period fiber grating. IEEE Photonics Technol. Lett. 34(8), 432–435 (2022). https://doi.org/10.1109/lpt.2022.3164640.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial contributions are gratefully acknowledged. This work was financially supported by the Science and Technology Project of Jiaxing (2022AY10005), Science and Technology Project of Jiaxing (2019AY11018), and General scientific research project of Zhejiang Education Department (Y202250333).

Funding

This research is funded by the Science and Technology Project of Jiaxing (2022AY10005), Science and Technology Project of Jiaxing (2019AY11018), and General scientific research project of Zhejiang Education Department (Y202250333)

Author information

Authors and Affiliations

Authors

Contributions

T.Y.: investigation, data curation, writing—original draft preparation, writing—review and editing, formal analysis. J.Y.F.: conceptualization, investigation, methodology, validation, data curation, writing—review and editing, resources, supervision, project administration. H.Z.A.: investigation, data curation, formal analysis. P.C.: investigation, data curation, formal analysis. T.S.: formal analysis. B.X.: review and editing, formal analysis, funding acquisition.

Corresponding authors

Correspondence to Junyan Feng or Bo Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Ethics Approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11664_2023_10841_MOESM1_ESM.pdf

Supplementary file 1 SEM image of LM in different ultrasonic power and time, SEM image of CNT in LMP ink. Without dispersed, Dispersed, image of printed patterns on different substrates, PET, PI and PDMS, image of printed conductive film surface. Conductivity of conductive films with different thickness. the pressure test of conductive films with different thicknesses printed on PDMS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Feng, J., Ao, H. et al. A Composite Nano-ink of Liquid Metal Nanoparticles and Carbon Nanotubes for the Fabrication of Flexible Pressure Sensors. J. Electron. Mater. 53, 652–660 (2024). https://doi.org/10.1007/s11664-023-10841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10841-9

Keywords

Navigation