

16

APPENDICES

A. Training by Back Propagation for Self-ONNs with
Generative Neurons

For Self-ONNs, the contributions of each pixel in the 𝑀 𝑁
output map, 𝑦 𝑚, 𝑛 on the next layer input map, 𝑥 𝑚, 𝑛 ,
can now be expressed as in Eq. (12). Using the chain rule, the delta
error of the output pixel, 𝑦 𝑚, 𝑛 , can therefore, be expressed as
in Eq. (13) in the generic form of pool, 𝑃 , and composite nodal
operator function, 𝚿, of each operational neuron 𝑖 ∈ 1, . . , 𝑁
in the next layer. In Eq. (13), note that the first term,

,

..,𝚿 , ,𝒘𝒊𝒌
𝒍 𝟏 𝒓,𝒕 ,..

1.

Let ∇𝚿Ρ 𝑚, 𝑛, 𝑟, 𝑡
..,𝚿 , ,𝒘𝒊𝒌

𝒍 𝟏 𝒓,𝒕 ,..

𝚿 , ,𝒘𝒊𝒌
𝒍 𝟏 𝒓,𝒕

 and

∇ 𝚿 𝑚, 𝑛, 𝑟, 𝑡
𝚿 , ,𝒘𝒊𝒌

𝒍 𝟏 𝒓,𝒕

,
. Then, Eq. (13) simplifies to

Eq. (14). Note further that Δ𝑦 , ∇ Ρ and ∇ 𝚿 have the same
size, 𝑀 𝑁 while the next layer delta error, Δ , has the size,
𝑀 K 1 𝑁 K 1 , respectively. Therefore, to

enable this variable 2D convolution in this equation, the delta
error, Δ , is padded by zeros at all four boundaries (K 1
zeros on left and right, K 1 zeros on the bottom and top). Thus,
∇ 𝚿 𝑚, 𝑛, 𝑟, 𝑡 can simply be expressed as in Eq. (15).

𝑥 𝑚 1, 𝑛 1 . . . 𝑃 𝚿 𝑦 𝑚 1, 𝑛 1 , 𝒘𝒊𝒌
𝒍 𝟏 𝟎, 𝟎 , . . . , 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌

𝒍 𝟏 𝟏, 𝟏 . . .

𝑥 𝑚 1, 𝑛 . . . 𝑃 𝚿 𝑦 𝑚 1, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝟎, 𝟎 , . . . , 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌

𝒍 𝟏 𝟏, 𝟎 ,

𝒙𝒊
𝒍 𝟏 𝒎, 𝒏 . . . 𝑃 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌

𝒍 𝟏 𝟎, 𝟎 , . . , 𝚿 𝑦 𝑚 𝑟, 𝑛 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝐭 ,

.

∴ 𝑥 𝑚 𝑟, 𝑛 𝑡
,

,
𝑏 𝑃 . . . , 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌

𝒍 𝟏 𝒓, 𝒕 , . . .

 (12)

∴
∂𝐸

∂𝑦
𝑚, 𝑛

,

,

Δ𝑦 𝑚, 𝑛

⎝

⎜
⎛

∂𝐸

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑃 . . , 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝑃 . . , 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝒕

∂𝑦 𝑚, 𝑛 ⎠

⎟
⎞
 (13)

Δ𝑦 𝑚, 𝑛
,

,

Δ 𝑚 𝑟, 𝑛 𝑡 ∇𝚿Ρ 𝑚, 𝑛, 𝑟, 𝑡 ∇ 𝚿 𝑚, 𝑛, 𝑟, 𝑡

𝐿𝑒𝑡 ∇ Ρ 𝑚, 𝑛, 𝑟, 𝑡 ∇𝚿Ρ 𝑚, 𝑛, 𝑟, 𝑡 ∇ 𝚿 𝑚, 𝑛, 𝑟, 𝑡 , 𝑡ℎ𝑒𝑛

 Δ𝑦 𝐶𝑜𝑛𝑣2𝐷𝑣𝑎𝑟 Δ , ∇ Ρ 𝑚, 𝑛, 𝑟, 𝑡

 (14)

∇ 𝚿 𝑚, 𝑛, 𝑟, 𝑡 𝑤 r, t, 1 2𝑤 r, t, 2 𝑦 𝑚, 𝑛 ⋯ 𝑄𝑤 r, t, Q 𝑦 𝑚, 𝑛 (15)

 Once the Δ𝑦 is computed, using the chain-rule, one can
express,

Δ
∂𝐸

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑥

∂𝐸

∂𝑦
𝑓 𝑥 Δ𝑦 𝑓 𝑥 (16)

When there is a down-sampling by factors, ssx and ssy, then the
back-propagated delta-error should be first up-sampled to
compute the delta-error of the neuron. Let zero order up-sampled
map be: 𝑢𝑦 up

,
𝑦 . Then Eq. (16) can be modified, as

follows:

Δ
∂𝐸

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑢𝑦

∂𝑢𝑦

∂𝑥

up
,

Δ𝑦 𝛽 𝑓 𝑥

(17)

where 𝛽
.

 since each pixel of 𝑦 is now obtained by

averaging (ssx.ssy) number of pixels of the intermediate
output, 𝑢𝑦 . Finally, when there is a up-sampling by factors, usx
and usy, then let the average-pooled map be: 𝑑𝑦 down

,
𝑦 .

Then Eq. (17) can be updated as follows:

17

Δ
∂𝐸

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑑𝑦

∂𝑑𝑦

∂𝑥

down
,

Δ𝑦 𝛽 𝑓 𝑥

(18)

As for the computation of the kernel and bias sensitivities, recall
the expression between an individual kernel weight array,
𝒘𝒊𝒌

𝒍 𝟏 𝐫, 𝐭 , and the input map of the next layer, 𝑥 𝑚, 𝑛 :

𝑥 𝑚, 𝑛
,

,
𝑏

𝑃
𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌

𝒍 𝟏 𝟎, 𝟎 , . . ,

𝚿 𝑦 𝑚 𝑟, 𝑛 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝐭 . . .

(19)

where the qth element of the array, 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝐭 , contributes to all

the pixels of 𝑥 𝑚, 𝑛 . By using the chain rule of partial

derivatives, one can express the weight sensitivities, , in Eq.

(20). A close look to Eq. (20) reveals that,
𝚿 , ,𝒘𝒊𝒌

𝒍 𝟏 𝒓,𝒕

, ,
𝑦 𝑚 𝑟, 𝑛 𝑡 , which then

simplifies to Eq. (21) Note that in this equation, the first term,
Δ 𝑚, 𝑛 , is independent from the kernel indices, r and t. It will
be element-wise multiplied by the other two latter terms, each
with the same dimension M Kx 1 x(𝑁 Ky 1 , and
created by derivative functions of nodal and pool operators
applied over the shifted pixels of 𝑦 𝑚 𝑟, 𝑛 𝑡 and the
corresponding weight value, 𝒘𝒊𝒌

𝒍 𝟏 𝒓, 𝒕 .

∂𝐸

∂𝑤
𝑟, 𝑡, 𝑞

, ,

, ,

∂𝐸
∂𝑥 𝑚, 𝑛

∂𝑥 𝑚, 𝑛

∂𝑃 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝟎, 𝟎 , . . , 𝚿 𝑦 𝑚 𝑟, 𝑛 𝑡 , 𝒘𝒊𝒌

𝒍 𝟏 𝐫, 𝐭 . . .

∂𝑃 𝚿 𝑦 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝟎, 𝟎 , . . , 𝚿 𝑦 𝑚 𝑟, 𝑛 𝑡 , 𝒘𝒊𝒌

𝒍 𝟏 𝐫, 𝐭 …

∂𝚿 𝑦 𝑚 𝑟, 𝑛 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝚿 𝑦 𝑚 𝑟, 𝑛 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝑤 𝑟, 𝑡, 𝑞

 (20)

where
,

𝚿 , ,𝒘𝒊𝒌
𝒍 𝟏 𝟎,𝟎 ,..,𝚿 , ,𝒘𝒊𝒌

𝒍 𝟏 𝐫,𝐭 ...
1 and

𝚿 , ,𝒘𝒊𝒌
𝒍 𝟏 𝒓,𝒕

, ,
𝑦 𝑚 𝑟, 𝑛 𝑡

∴
∂𝐸

∂𝑤
𝑟, 𝑡, 𝑞

, ,

, ,

Δ 𝑚, 𝑛 ∇𝚿Ρ 𝑚 𝑟, 𝑛 𝑡, 𝑟, 𝑡 𝑦 𝑚 𝑟, 𝑛 𝑡 (21)

If Ρ Σ, then

∂𝐸

∂𝑤
𝑟, 𝑡, 𝑞

, ,

, ,

Δ 𝑚, 𝑛 𝑦 𝑚 𝑟, 𝑛 𝑡

∴
∂𝐸

∂𝑤
〈𝑞〉 𝑐𝑜𝑛𝑣2𝐷 Δ , y , ′𝑁𝑜𝑍𝑒𝑟𝑜𝑃𝑎𝑑′

(22)

∂𝐸

∂𝑏

∂𝐸

∂𝑥 𝑚, 𝑛

∂𝑥 𝑚, 𝑛

∂𝑏
Δ 𝑚, 𝑛 (23)

In Eq. (21) there is no need to register a 4D matrix for ∇ 𝚿
𝑦 𝑚 𝑟, 𝑛 𝑡 since it can directly be computed from the
outputs of the neurons. Moreover, when the pool operator is the
sum, then ∇𝚿Ρ 𝑚, 𝑛, 𝑟, 𝑡 1 and Eq. (21) will simplify to Eq.

(22) where 〈𝑞〉 is the qth 2D sensitivity kernel, which

contains the updates (SGD sensitivities) for the weights of the qth
order outputs in Maclaurin polynomial. Finally, the bias
sensitivity expressed in Eq. (23) is the same for ONNs and CNNs
since the bias is the common additive term for all.

Let 𝑤 〈𝑞〉 be the qth 2D sub-kernel where q=1..Q and
composed of kernel elements, 𝑤 r, t, q . During each BP
iteration, 𝑡, the kernel parameters (weights), 𝑤 〈𝑞〉 𝑡 , and
biases, 𝑏 𝑡 , of each neuron in the Self-ONN are updated until a
stopping criterion is met. Let, ε t , be the learning factor at
iteration, t. One can express the update for the weight kernel and
bias at each neuron, i, at layer, l as follows:

18

𝑤 〈𝑞〉 𝑡 1 𝑤 〈𝑞〉 𝑡 ε t
∂𝐸

∂𝑤𝑖𝑘
𝑙 1 〈𝑞〉

 𝑏 𝑡 1 𝑏 𝑡 ε t
∂𝐸

∂𝑏

 (24)

As a result, the pseudo-code for BP is presented in Alg. 1.

Algorithm 1: BP training for Self-ONNs with generative
neurons

Input: Self-ONN, 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, 𝑚𝑖𝑛𝑀𝑆𝐸)

Output: Self-ONN* = BP(Self-ONN, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, 𝑚𝑖𝑛𝑀𝑆𝐸)
1) Initialize network parameters randomly (i.e., ~U(‐a, a))

2) UNTIL a stopping criterion is reached, ITERATE:
a. For each mini‐batch in the train dataset, DO:

i. FP: Forward propagate from the input layer to the output

layer to find qth order outputs, 𝑦 and the required

derivatives and sensitivities for BP such as 𝑓 𝑥 ,
 ∇ Ψ , ∇ Ρ and ∇ Ψ of each neuron,k, at

each layer, l.

ii. BP: Compute delta error at the output layer and then

using Eqs. (14) and (16) back‐propagate the error back to

the first hidden layer to compute delta errors of each

neuron, k, Δ at each layer, l.

iii. PP: Find the bias and weight sensitivities using Eqs. (22)

and (23), respectively.

iv. Update: Update the weights and biases with the

(cumulation of) sensitivities found in previous step scaled

with the learning factor, ε, as in Eq. (49):

3) Return Self‐ONN*

19

B. BP for Non-localized Kernel Operations by Random Bias
In a conventional BP, starting from the output (operational) layer,
the error is back-propagated to the 1st hidden layer. For the sake
of simplicity, for an image I in the training dataset suppose that
the error (loss) function is L2-loss or the Mean-Square-Error
(MSE) error function, 𝐸 𝐼 , is used can be expressed as,

𝐸 𝐼
1

|𝐼|
𝑦 𝐼 𝑇 𝐼 (25)

where 𝐼 is the pixel p of the image 𝐼, 𝑇 is the target output and
𝑦 is the predicted output. The delta error in the output layer of
the input map can then be expressed in Eq. (26).

Δ
∂𝐸
∂𝑥

∂𝐸
∂𝑦

∂𝑦
∂𝑥

2
|𝐼|

𝑦 𝐼 𝑇 𝐼 𝑓 𝑥 𝐼 (26)

For Self-ONNs with super neurons, the contributions of each
shifted pixel in the output map, 𝑦 𝑚 α , 𝑛 β , on the next
layer input map, 𝑥 𝑚, 𝑛 , can now be expressed as in Eq. (27)

(highlighted in red for clarity). So for the hidden operational
layers, a close look at Eq. (27) will reveal the fact that the
contributions of each pixel in the 𝑀 2𝚪 𝑁 2𝚪 shifted
output map, 𝑦 𝑚 α , 𝑛 β on the next layer input maps,
𝑥 𝑚, 𝑛 , 𝑖 ∈ 1, 𝑁 , depend solely on the bias of each
connection, α , β . Therefore, the delta error of the output
pixel, 𝑦 𝑚, 𝑛 , should be computed for each connection and then
cumulated. Using the chain rule, the delta error of the output pixel,
𝑦 𝑚, 𝑛 , can therefore, be expressed as in Eq. (28) in the generic
form of pool, 𝑃 , and composite nodal operator function, 𝚿, of
the ith super neuron, 𝑖 ∈ 1, . . , 𝑁 . In Eq. (28), note that the first

term,
,

..,𝚿 , ,𝒘𝒊𝒌
𝒍 𝟏 𝒓,𝒕 ,..

1. Let the (shifted)

4D matrices ∇𝚿Ρ 𝑚 α , 𝑛 β , 𝑟, 𝑡
..,𝚿 , ,𝒘𝒊𝒌

𝒍 𝟏 𝒓,𝒕 ,..

𝚿 , ,𝒘𝒊𝒌
𝒍 𝟏 𝒓,𝒕

 and ∇ 𝚿 𝑚 α , 𝑛

β , 𝑟, 𝑡
𝚿 , ,𝒘𝒊𝒌

𝒍 𝟏 𝒓,𝒕

,
. Then, Eq. (28) simplifies

to Eq. (29).
𝑥 𝑚 1, 𝑛 1 . . .

𝑃 𝚿 𝑦 𝑚 α 1, 𝑛 α 1 , 𝒘𝒊𝒌
𝒍 𝟏 𝟎, 𝟎 , . . . , 𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌

𝒍 𝟏 𝟏, 𝟏 . . .

𝑥 𝑚 1, 𝑛 . . .

𝑃 𝚿 𝑦 𝑚 α 1, 𝑛 α , 𝒘𝒊𝒌
𝒍 𝟏 𝟎, 𝟎 , . . . , 𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌

𝒍 𝟏 𝟏, 𝟎 ,

𝒙𝒊
𝒍 𝟏 𝒎, 𝒏 . . .

𝑃 𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌
𝒍 𝟏 𝟎, 𝟎 , . . , 𝚿 𝑦 𝑚 α 𝑟, 𝑛 α 𝑡 , 𝒘𝒊𝒌

𝒍 𝟏 𝐫, 𝐭
…

∴ 𝑥 𝑚 𝑟, 𝑛 𝑡
,

,
𝑏 𝑃 . . . , 𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌

𝒍 𝟏 𝒓, 𝒕 , . . .

 (27)

∴
∂𝐸

∂𝑦
𝑚 α , 𝑛 β

,

,

Δ𝑦 𝑚 α , 𝑛 β

∂𝐸

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑃 . . , 𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝑃 . . , 𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝚿 𝑦 𝑚 α , 𝑛 β , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝒕

∂𝑦 𝑚 α , 𝑛 β

 (28)

Δ𝑦 𝑚 α , 𝑛 β

Δ 𝑚 𝑟, 𝑛 𝑡 ∇𝚿Ρ 𝑚 α , 𝑛 β , 𝑟, 𝑡 ∇ 𝚿 𝑚 α , 𝑛 β , 𝑟, 𝑡

 (29)

where ∇ 𝚿 𝑚 α , 𝑛 β , 𝑟, 𝑡 can be directly computed as,
∇ 𝚿 𝑚 α , 𝑛 β , 𝑟, 𝑡 𝑤 r, t, 1 2𝑤 r, t, 2 𝑦 𝑚 α , 𝑛 β ⋯

𝑄𝑤 r, t, 𝑄 𝑦 𝑚 α , 𝑛 β
 (30)

Now let ∇ Ρ 𝑚 α , 𝑛 β , 𝑟, 𝑡 ∇𝚿Ρ 𝑚 α , 𝑛
β , 𝑟, 𝑡 ∇ 𝚿 𝑚 α , 𝑛 β , 𝑟, 𝑡 . In this study, the
summation is used as the pool operator for the sake of simplicity,
i.e., Ρ Σ, so, ∇𝚿Ρ 𝑚, 𝑛, 𝑟, 𝑡 1 and thus, ∇ Ρ 𝑚
α , 𝑛 β , 𝑟, 𝑡 ∇ 𝚿 𝑚 α , 𝑛 β , 𝑟, 𝑡 then the delta

error computed for the connection to the ith neuron at layer l+1 can
be expressed as,

𝚻 𝛂𝒌
𝒊 ,𝛃𝒌

𝒊
Δ𝑦 Δ𝑦 𝑚 α , 𝑛 β

𝐶𝑜𝑛𝑣2𝐷𝑣𝑎𝑟 Δ , 𝚻 𝛂𝒌
𝒊 ,𝛃𝒌

𝒊
∇ 𝚿 (31)

20

Finally, the overall delta error for the output map, Δ𝑦 , is
computed as the cumulation of the back-shifted individual delta-
errors, i.e.,

Δ𝑦 𝑚, 𝑛
,

,

𝚻 𝛂𝒌
𝒊 , 𝛃𝒌

𝒊
Δ𝑦 𝑚 α , 𝑛 β

 (32)

Once the Δ𝑦 is computed, using the chain-rule, one can finalize
the back-propagation of the delta error from layer l+1 to layer l,
as follows:

Δ
∂𝐸

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑥

∂𝐸

∂𝑦
𝑓 𝑥 Δ𝑦 𝑓 𝑥 (33)

When there is a pooling (down-sampling) by factors, ssx, and ssy,
then the back-propagated delta-error by Eq. (33) should be first
up-sampled to compute the delta-error of the neuron. Let zero-
order up-sampled map be: 𝑢𝑦 up

,
𝑦 . Then Eq. (33) can

be modified, as follows:

Δ
∂𝐸

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑢𝑦

∂𝑢𝑦

∂𝑥
up

,
Δ𝑦 𝛽 𝑓 𝑥

 (34)

where 𝛽
.

 since each pixel of 𝑦 is now obtained by

averaging (𝑠𝑠𝑥. 𝑠𝑠𝑦) number of pixels of the intermediate
output, 𝑢𝑦 . Finally, when there is an up-sampling by factors, usx,
and usy, then let the average-pooled map be: 𝑑𝑦 down

,
𝑦 .

Then Eq. (33) can be updated as follows:

Δ
∂𝐸

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑥

∂𝐸

∂𝑦

∂𝑦

∂𝑑𝑦

∂𝑑𝑦

∂𝑥
down

,
Δ𝑦 𝛽 𝑓 𝑥

 (35)

As for the computation of the sensitivities for kernel parameters,

𝑟, 𝑡, 𝑞
, ,

, ,

, and bias, , Eq. (3) indicates that the

qth element of the array, 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝐭 , contributes to all the pixels of

𝑥 𝑚, 𝑛 . Once again by using the chain rule of partial
derivatives, the sensitivities for kernel parameters can be

expressed in Eq. (36). Since
𝚿 , ,𝒘𝒊𝒌

𝒍 𝟏 𝒓,𝒕

, ,

𝑦 𝑚 α 𝑟, 𝑛 β 𝑡 , Ρ Σ, and ∇𝚿Ρ 𝑚 α
𝑟, 𝑛 β 𝑡 1. then Eq. (36) simplifies to Eq. (37).

∂𝐸

∂𝑤
𝑟, 𝑡, 𝑞

, ,

, ,

⎝

⎜
⎜
⎜
⎜
⎛

∂𝐸
∂𝑥 𝑚, 𝑛

∂𝑥 𝑚, 𝑛

∂𝑃 . . , 𝚿 𝑦 𝑚 α 𝑟, 𝑛 β 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝐭 . . .

∂𝑃 . . , 𝚿 𝑦 𝑚 α 𝑟, 𝑛 β 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝐭 , …

∂𝚿 𝑦 𝑚 α 𝑟, 𝑛 β 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝚿 𝑦 𝑚 α 𝑟, 𝑛 β 𝑡 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝑤 𝑟, 𝑡, 𝑞 ⎠

⎟
⎟
⎟
⎟
⎞
 (36)

∂𝐸

∂𝑤
𝑟, 𝑡, 𝑞

, ,

, ,

Δ 𝑚, 𝑛 ∇𝚿Ρ 𝑚 α 𝑟, 𝑛 β 𝑡 𝑦 𝑚 α 𝑟, 𝑛 β 𝑡

Δ 𝑚, 𝑛 𝑦 𝑚 α 𝑟, 𝑛 β 𝑡

∴
∂𝐸

∂𝑤
〈𝑞〉 𝑐𝑜𝑛𝑣2𝐷 Δ , Τ , y , ′𝑁𝑜𝑍𝑒𝑟𝑜𝑃𝑎𝑑′

 (37)

For the bias sensitivity, the chain rule yields:

∂𝐸

∂𝑏

∂𝐸

∂𝑥 𝑚, 𝑛

∂𝑥 𝑚, 𝑛

∂𝑏
Δ 𝑚, 𝑛 (38)

21

C. BP for Non-localized Kernel Operations by the BP-
optimized Bias

Recall that Eq. (6) allows us to compute the derivatives of the
output map w.r.t the individual bias elements, as expressed in Eq.
(41). These derivatives will be needed in the BP formulation that
will be covered in this section.

The delta error in the output layer of the input map is the same
as in Eq. (25). With �⃗� 𝑚, 𝑛 𝑦 𝑚 α , 𝑛 β Eq. (28)
can be simplified as in Eq. (42) and with Ρ Σ, it yields Eq.
(43) where ∇ ⃗Ρ 𝑚, 𝑛, 𝑟, 𝑡 ∇𝚿Ρ 𝑚, 𝑛, 𝑟, 𝑡
∇ ⃗𝚿 𝑚, 𝑛, 𝑟, 𝑡 ∇ ⃗𝚿 𝑚, 𝑛, 𝑟, 𝑡 and ∇ ⃗𝚿 𝑚, 𝑛, 𝑟, 𝑡 can be
directly computed as in Eq. (44). Finally, the delta error of �⃗�
(from its contribution to 𝒙𝒊

𝒍 𝟏 alone) can be computed as,

𝚻 𝛂𝒌
𝒊 ,𝛃𝒌

𝒊
Δ𝑦 Δ�⃗� 𝐶𝑜𝑛𝑣2𝐷𝑣𝑎𝑟 Δ , ∇ ⃗𝜳 (39)

Basically, in these equations, we are using the grid of �⃗� 𝑚, 𝑛 -
not the original grid of 𝑦 . However, we need to compute
individual Δ𝑦 from the Δ�⃗� for each connection in the next layer
so that we can cumulate them to compute the overall delta error
for 𝑦 . To accomplish this, as in the earlier approach with random
(integer) bias, the overall delta error for the output map, Δ𝑦 , will
be computed as the cumulation of the back-shifted individual
delta-errors, Δ�⃗� computed for each connection, i.e.,

Δ𝑦 𝑚, 𝑛
,

,

𝚻 𝛂𝒌
𝒊 , 𝛃𝒌

𝒊
Δ𝑦 𝑚 α , 𝑛 β

𝚻 𝜶𝒌
𝒊 , 𝜷𝒌

𝒊
Δ𝑦 𝑚 , 𝑛

 (40)

where 𝑚 𝑚 𝛼 and 𝑛 𝑛 𝛽 . Since the bias
elements are not an integer, we should now use the reverse-
interpolation to compute first, Δ𝑦 𝑚 𝛼 , 𝑛 𝛽 as
illustrated in Figure 11. Once again using bilinear interpolation,
Δ𝑦 𝑚 , 𝑛 can be computed as expressed in Eq. (45). As in
the random bias approach, the overall delta error for the output
map, Δ𝑦 , is computed as the cumulation of the back-shifted
individual delta-errors using Eq. (40). Once on the integer grid, it
is straightforward to compute Δ𝑦 using Eq. (32).

After the (overall) Δ𝑦 is computed, using Eq. (33) (or Eq. (34)
or (35) in case down- or up-sampling is performed), the delta

error, Δ , can be computed and hence, the back-propagation of the
(delta) error from layer l+1 to the kth neuron at layer l is completed.

𝒎,𝒏

1 ζβ

ζβ

1 ζα ζα

ζα α α , ζβ β β

Δ�⃗� (m‐1,n)

Δ�⃗� (m,n‐1)Δ�⃗� (m‐1,n‐1)

Δ�⃗� (m,n)

∆𝒚𝒌
𝒍 𝒎𝜶 , 𝒏𝜷 ∆𝒚𝒌

𝒍 𝒎𝜶 𝟏, 𝒏𝜷

∆𝒚𝒌
𝒍 𝒎𝜶 𝟏, 𝒏𝜷 𝟏∆𝒚𝒌

𝒍 𝒎𝜶 , 𝒏𝜷 𝟏

𝒎𝜶 𝒎𝜶+1

𝒏𝜷 𝟏

𝒏𝜷

𝒎𝜶 𝒎 𝜶𝒌
𝒊 , 𝒏𝜷 𝒏 𝜷𝒌

𝒊

𝛥�⃗� (m,n) 𝛥𝑦 𝑚 𝛼 , 𝑛 𝛽

Figure 11: The reverse interpolation from the shifted delta
error, 𝚫�⃗�𝒌

𝒍 𝒎, 𝒏 𝚫𝒚𝒌
𝒍 𝒎 𝛂𝒌

𝒊 , 𝒏 𝛃𝒌
𝒊 by the bias,

𝛂𝒌
𝒊 , 𝛃𝒌

𝒊 ∈ ℝ, to the original delta error with integer shifts,
𝚫𝒚𝒌

𝒍 𝒎 𝜶𝒌
𝒊 , 𝒏 𝜷𝒌

𝒊 where 𝜶𝒌
𝒊 , 𝜷𝒌

𝒊 ∈ ℤ.

Once the back-propagation of delta errors is completed, then

weight and bias sensitivities can be computed using Eqs. (37) and

(38) with the same simplifications. Note that �⃗� Τ , y is
the shifted (interpolated) output map as before with the only
difference that α , β ∈ ℝ.

Finally, for the spatial bias sensitivities, ∆α , ∆β ,

the spatial bias pair, α , β , shifts only the pixels of the output
map, 𝑦 , to contribute to all pixels of 𝑥 . By using the chain rule
of partial derivatives, the sensitivities of the spatial bias pair can

be expressed in Eq. (46). Let ∇ �⃗� 𝑚, 𝑛
⃗ ,

, which was

expressed in Eq. (41), Eq. (46) finally simplifies to Eq. (47) where
Δα is a scalar and ∇ �⃗�⨂Δ�⃗� is the 2D cross-correlation between
∇ �⃗� and Δ�⃗� .

𝜕�⃗� 𝑚 𝑟, 𝑛 𝑡

𝜕α
1 ζβ 𝑦 𝑚 1, 𝑛 𝑦 𝑚 , 𝑛

 ζβ 𝑦 𝑚 1, 𝑛 1 𝑦 𝑚 , 𝑛 1

𝜕�⃗� 𝑚 𝑟, 𝑛 𝑡

𝜕β
1 ζα 𝑦 𝑚 , 𝑛 1 𝑦 𝑚 , 𝑛

 ζα 𝑦 𝑚 1, 𝑛 1 𝑦 𝑚 1, 𝑛

(41)

22

∂𝐸

∂𝑦
𝑚 α , 𝑛 β

,

,

Δ𝑦 𝑚 α , 𝑛 β Δ�⃗� 𝑚, 𝑛

∂𝐸

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑃 . . , 𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝑃 . . , 𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝒕

∂�⃗� 𝑚, 𝑛

 (42)

Δ𝑦 𝑚 α , 𝑛 β Δ�⃗� 𝑚, 𝑛 Δ 𝑚 𝑟, 𝑛 𝑡 ∇ ⃗𝚿 𝑚, 𝑛, 𝑟, 𝑡 (43)

∇ ⃗𝚿 𝑚, 𝑛, 𝑟, 𝑡 𝑤 r, t, 1 2𝑤 r, t, 2 �⃗� 𝑚, 𝑛 ⋯ 𝑄𝑤 r, t, 𝑄 �⃗� 𝑚, 𝑛 (44)

Δ𝑦 𝑚 , 𝑛 Δ�⃗� 𝑚, 𝑛 1 ζα 1 ζβ Δ�⃗� 𝑚 1, 𝑛 1 ζα ζβ

 Δ�⃗� 𝑚 1, 𝑛 ζα 1 ζβ Δ�⃗� 𝑚, 𝑛 1 1 ζα ζβ
 (45)

∂𝐸

∂α
Δα

⎝

⎜
⎛

∂𝐸

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑥 𝑚 𝑟, 𝑛 𝑡

∂𝑃 . . , 𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝑃 . . , 𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕 , . .

∂𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝒓, 𝒕

∂𝚿 �⃗� 𝑚, 𝑛 , 𝒘𝒊𝒌
𝒍 𝟏 𝐫, 𝒕

∂�⃗� 𝑚, 𝑛

∂�⃗� 𝑚, 𝑛

∂α ⎠

⎟
⎞
 (46)

Δα
∂𝐸

∂α
∇ 𝐲 𝑚, 𝑛

Δ 𝑚 𝑟, 𝑛 𝑡 ∇𝚿Ρ 𝑚 α , 𝑛 β , 𝑟, 𝑡 ∇ ⃗𝚿 𝑚 α , 𝑛 β , 𝑟, 𝑡

∇ �⃗� 𝑚, 𝑛 Δ�⃗� 𝑚, 𝑛 ∇ �⃗�⨂Δ�⃗�

 (47)

Similarly, it is straightforward to show that the sensitivity,

∆β , can be expressed as,

∆β
𝜕𝐸

𝜕β
∇ �⃗� 𝑚, 𝑛 Δ�⃗� 𝑚, 𝑛

∇ �⃗�⨂Δ�⃗�

(48)

where ∇ �⃗� 𝑚, 𝑛
⃗ ,

 as expressed in Eq. (41). It is

interesting to see that both spatial bias sensitivities depend on the
cross-correlation of two distinct gradients, the shifted
(interpolated) output map delta error and its direct derivative
w.r.t the corresponding bias element. This means that during BP

iterations, the ongoing gradient descent operation, e.g. Stochastic
Gradient Descent (SGD), will keep updating the kernel location
until either correlation between these two gradients vanishes
(e.g., they become uncorrelated) or when the (magnitude of the)
delta errors diminishes eventually at the final stages of the BP
(e.g. convergence of the gradient descent). In other words, the
local optimal location of a particular kernel of a particular
connection -if exists for the particular problem at hand- will be
converged when either of the conditions is satisfied (i.e., when
Δα , ∆β 0).

During each BP iteration, 𝑡, the kernel parameters,
𝑤 〈𝑞〉 𝑡 , and biases, 𝑏 𝑡 , (spatial) bias pairs, α 𝑡 , β 𝑡 ,
of each super neuron in the Self-ONN are updated until a
stopping criterion is met. Let, ε t and γ t be the learning
factors at iteration, t, of weights and spatial bias pairs,

23

respectively. One can express the SGD update for the kernel
parameters, bias, and the kernel location of each super neuron, i,

at the layer, l, in Eq. (49). The parameters of a Self-ONN for BP
training via SGD are presented in Table 4.

𝑤 〈𝑞〉 𝑡 1 𝑤 〈𝑞〉 𝑡 ε t
∂𝐸

∂𝑤
〈𝑞〉, 𝑞 ∈ 1, 𝑄 , 𝑖 ∈ 1, 𝑁 , 𝑘 ∈ 1, 𝑁

 𝑏 𝑡 1 𝑏 𝑡 ε t
∂𝐸

∂𝑏
, 𝑖 ∈ 1, 𝑁

α 𝑡 1 α 𝑡 γ t ∆α , 𝑖 ∈ 1, 𝑁 , 𝑘 ∈ 1, 𝑁
β 𝑡 1 β 𝑡 γ t ∆β , 𝑖 ∈ 1, 𝑁 , 𝑘 ∈ 1, 𝑁

 (49)

Table 4: The train parameters of a Self-ONN with super neurons.

Algorithm 1: Back-Propagation by SGD for Self-ONNs with Super neurons
Input: Self-ONN(0), 𝐻𝑦𝑝𝑒𝑟 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑇𝑟𝑎𝑖𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑎𝑥𝐼𝑡𝑒𝑟, 𝑚𝑖𝑛𝑀𝑆𝐸 , 𝜛, 𝚪, ε, γ
Output: Self-ONN* = BP (Self-ONN(0), SGD, 𝐻𝑦𝑝𝑒𝑟 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑇𝑟𝑎𝑖𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

1) Initialize network parameters of each super neuron:

a. 𝑤 〈𝑞〉 0 𝑈 𝜛, 𝜛 , 𝑏 𝑡 1 𝑈 𝜛, 𝜛 𝑓𝑜𝑟 ∀𝑖 ∈ 1, 𝑁 , ∀𝑘 ∈ 1, 𝑁 , ∀𝑞 ∈ 1, 𝑄
b. α 0 𝑈 𝚪, 𝚪 , β 0 𝑈 𝚪, 𝚪 𝑓𝑜𝑟 ∀𝑖 ∈ 1, 𝑁 , ∀𝑘 ∈ 1, 𝑁

2) UNTIL either stopping criterion is reached, ITERATE 𝑡 1: 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 :
a. For each batch in the train dataset, DO:

i. Init: Assign next item, 𝐼 , directly as the output map(s) in the input layer neurons and using Eq. (6) create the shifted

output map(s) along with their powers, �⃗� , ∀𝑞 ∈ 1, 𝑄 where 𝑄 is the polynomial order of the super neurons in
the 1st hidden layer.

ii. FP: From the previous layer (shifted) output maps, compute each input map in the 1st hidden layer, 𝑥 , ∀𝑖 ∈ 1, 𝑁
using Eq. (7), then the native output maps, 𝑦 and finally, the shifted output maps along with their powers, �⃗� ∀𝑞 ∈
1, 𝑄 .

iii. FP: Then compute the required derivatives and sensitivities for each hidden layer, such as 𝑓 𝑥 , ∇ Ψ , and ∇ Ψ

of each neuron, i, at each layer, l. (∇ Ρ 1)
iv. FP: Repeat (ii) until the output layer is reached. Compute the output map(s), 𝑦 𝐼 , of the neurons in the output layer

and then, compute the MSE and delta error, Δ , using Eqs. (25) and (26), respectively.
v. BP: For each hidden neuron at the last hidden layer, using Eq. (39) compute delta error for the shifted output map and

then using Eq. (45), perform reverse‐interpolation (and shift) to compute the delta error of the actual output map for
each connection to the next layer.

vi. BP: Using Eq. (32) compute the overall delta error for the output map, Δ𝑦 , as the cumulation of the back‐shifted
individual delta errors.

vii. BP: Finally, using Eq. (33) (or Eq. (34) or (35) in case down‐ or up‐sampling is performed), compute the delta error at

this level, Δ .

viii. PP: Compute sensitivities for the kernel parameters, bias, and spatial bias pair using Eqs. (37), (38), (47), and (48)
respectively.

ix. Update: Update for the kernel parameters, bias, and the kernel location of each super neuron in the network with the
(cumulation of) sensitivities found in step (viii) scaled with the current learning factors, ε t and γ t , using Eq. (49).

3) Return Self‐ONN*

To initiate the BP training by SGD over a dataset, a Self-ONN is
first configured according to the network parameters, i.e., number
of layers (𝐿) and hidden neurons 𝑁 , the kernel-size 𝐾𝑥, 𝐾𝑦 ,
the pooling type and the (polynomial) order for each layer/neuron
are set in advance. Let Self-ONN(0) be the initially configured
network ready for BP training. In the pseudo-code for BP training
presented in Alg. 1, five consecutive stages in an iterative loop are

visible: 1) BP initialization (Step 1), 2) Forward-Propagation (FP)
of each image in the batch where native and shifted (interpolated)
output maps, derivatives and output MSE and delta error are
computed (in Step 2.a, i –iii), 3) Back-Propagation (BP) of the
delta error from the output layer to the first hidden layer (in Step
2.a, v –vii), 4) post-processing (PP) where the kernel parameter
and bias sensitivities, the sensitivities of the spatial bias pair are

Parameter Symbol Default Description

Max. no. of iterations 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 200 BP stopping criterion

Target min. MSE 𝑚𝑖𝑛𝑀𝑆𝐸 10‐3 BP stopping criterion

Range for rand. initialization 𝑈 𝜛, 𝜛 𝜛 0.1 for kernel parameters

𝑈 𝚪, 𝚪 𝚪 𝟖 for spatial bias

Learning factors ε ε t 0.1 for kernel parameters

γ γ t 10 for spatial bias pairs

24

computed for each image in the batch and cumulated, and 5)
Update: when all images in the batch are processed, then the
kernel, bias and the kernel location of each super neuron in the
network are updated and this is repeated for the other batches and
iterations. The pseudo-code In Alg. 1 can be used for a Self-ONN
with super neurons that are configured with the non-localized
kernel operations by random spatial bias, the following steps
should be modified accordingly. First, the initialization of bias
elements should be an integer in 1.b., i.e., α 0 ⌊𝑈 𝚪
𝟏, 𝚪 𝟏 ⌋ and β 0 ⌊𝑈 𝚪 𝟏, 𝚪 𝟏 ⌋ for ∀𝑖 ∈
1, 𝑁 , ∀𝑘 ∈ 1, 𝑁 . Then since the spatial bias elements are

integers now, Eq. (3) can be used instead of Eq. (7) for FP. Steps
2.a.iv and 2.a.vii are identical for both approaches. The main
difference in BP is step 2.a.v where Eq. (31) should be used
instead of Eq. (39) for the delta error computed for the connection
to the ith neuron at layer l+1 and there is no need for reverse
interpolation, hence Eq. (45) is simply omitted. Obviously for
post-processing (PP) at step 2.a.vii, and Update at step 2.a.xi, Eqs.
(47), (48), and (49) are, too, omitted since there is no gradient
computation for the spatial bias pair, α , and β , as they are fixed
as integers during step 1. Since the spatial bias elements are
integers now, Eq. (3) can be used instead of Eq. (7) for FP. Steps
2.a.iv and 2.a.vii are identical for both approaches. The main
difference in BP is step 2.a.v where Eq. (31) should be used
instead of Eq. (39) for the delta error computed for the connection
to the ith neuron at layer l+1 and there is no need for reverse
interpolation, hence Eq. (45) is simply omitted. Obviously for
post-processing (PP) at step 2.a.vii, and update at step 2.a.xi, Eqs.
(47), (48), and (49) are, too, omitted since there is no gradient
computation for the spatial bias pair, α , and β , as they are fixed
as integers.

25

D. Proof of Concept

In order to validate the super neurons’ ability to learn the true shift
using BP-optimization of the spatial bias pair, a Self-ONN
network with one hidden layer and a single neuron is trained over
a toy problem where the network aims to learn to regress
(transform) an input image to an output image, which is the shifted
version of the input image by α, β ∈ ℤ 𝜞, 𝜞 , i.e.,
𝑦 𝑚, 𝑛 𝑦 𝑚 α, 𝑛 β . Therefore, with this setup, we
can now validate whether the super neurons with the non-
localized kernels are able to learn the true shift collectively during
the BP training, and if so, whether the Self-ONN is able to
generate the target (shifted) image perfectly well. Figure 12
illustrates this over a sample image where the output image is the
shifted version of the input image with α 6, β 7 pixels.
In this ideal regression case, the cumulative bias shift of the two
super neurons in x- and y-directions indeed is equal to the target
shift, i.e., ∑ α , β 6, 7 where the 1st order learned
kernels are impulses, i.e., 𝑤 r, t 𝑤 r, t δ r, t . Since
this is a validation experiment where the cumulative bias
convergence is compared against the actual shift, we keep Q=1 to
avoid the higher-order (nonlinear) operations and thus to achieve
a perfect reconstruction by linear convolution.

The ideal regression case illustrated in Figure 12 shows the
configuration of only one of the possible BP-optimized super
neurons in a Self-ONN. Another ideal output can also be
achieved, for instance, when ∑ α , β 5, 8 and the 1st
order learned kernels are impulses are 𝑤 r, t δ r, t ,
𝑤 r, t δ r 1, t 1 or 𝑤 r, t δ r 1, t 1 ,
𝑤 r, t δ r, t , or even, 𝑤 r, t δ r 1, t , 𝑤 r, t
δ r, t 1 . In this case, the cumulative bias shifts are converged

to the close vicinity of the actual shift (with an offset of (1,1)
pixels) while the kernels of the hidden and output super neurons
with the shifted impulses accommodate for the offset left out by
the biases.

Over the 40 input images randomly selected in the Pascal
dataset, we created the target images with random shifts by 𝜞 𝟖
pixels. Figure 13 shows four examples of this verification
experiment where the input, output, and target images are shown
in the first and the last two columns, respectively. The 2nd and 3rd
columns show bar plots of the kernels and the 4th column shows
the plots of the cumulative bias elements (hidden and output super
neurons) in each BP iteration with a blue point. The cumulative,
∑ α , β , and target shifts, α, β , are shown with the red circles
on the plot. The spatial bias pair is initially set as, α , β
0,0 . The BP iterations are stopped when the regression SNR

reaches 35dB. In all experiments including the four shown in the
figure, the cumulative bias converged to the close vicinity of the
actual shift and we observed that offsets such as 0,1 , 1,0 or
1,1 pixelsare accommodated by the 2x2 kernels with shifted

impulses. This is also visible in the figure where the offset is 1,1
pixels. In the experiments shown in the first and third rows, the
kernel functions in the 1st and 2nd (output) layers are: 𝑤 r, t ≅
δ r 1, t 1 and 𝑤 r, t ≅ δ r, t while the one in the fourth
row, they are: 𝑤 r, t ≅ δ r, t 1 and 𝑤 r, t ≅ δ r 1, t .
Since the early stopping criterion is set as SNR=35dB, the kernels
are only approximating the (shifted) impulses. A common
observation in all experiments is that the spatial bias elements
usually converged during the early stages of the BP, i.e., within
around 20-50 iterations while the optimization of the kernels was
initiated afterwards.

0 0 0

0

0

0 0

0

0

0

0 0 0

0

0 0

1 2 3

4 5 6

7 8 9

Input Output

Figure 12: A sample Self-ONN with a single (hidden) super neuron over the toy problem. The perfect regression of the target
is illustrated (SNR = ∞) for an ideal case.

26

Input TargetOutput

Figure 13: Four “Proof of Concept” verification experiments where the target images are created with random shifts are shown
at each row. The 2nd and 3rd columns show bar plots of the kernels and the 4th column shows the plots of the cumulative bias
elements (hidden and output super neurons) in each BP iteration with a blue point. The cumulative, ∑ 𝛂𝟎

𝟎, 𝛃𝟎
𝟎 , and target shifts

𝛂, 𝛃 are shown with the red circles on the plot. The BP is stopped at the iteration when the SNR is reached to 35dB.

In brief, such a “Proof of Concept” demonstration shows a
unique capability of the super neurons in a regression problem,
i.e., only with a single hidden neuron, from an arbitrary input
image, the network can perfectly regress the output image which
is the shifted version of the input image. Such an image
transformation is not possible for any conventional CNNs, or
even Self-ONNs with generative neurons, unless the effective
receptive field is expanded by using sufficiently deep and
complex networks.

