Skip to main content
Log in

Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ultrasensitive detection of low-quantity drugs is important for personalized therapeutic approaches in several diseases and, in particular, for cancer treatment. In this field, surface-enhanced Raman scattering (SERS) can be very useful for its ability to precisely identify analytes from their unique vibrational spectra, with very high sensitivity. Here, we report a study about SERS detection of sunitinib, paclitaxel and irinotecan, i.e. three commonly used antineoplastic drugs, and of SN-38, i.e. the metabolite of irinotecan, dissolved in methanol solutions. By using commercial Klarite substrates, we found that sunitinib, irinotecan and SN-38 have detection limits of 20–70 ng, which is below the threshold for applications in cancer therapy. Conversely, the SERS signal was not appreciable with paclitaxel, and this is explained by the absence of optical resonances in the visible range. Overall, our results show that ultrasensitive SERS detection of sunitinib, irinotecan and SN-38 is feasible, encouraging further development of this technology also for other drugs with similar molecular structure especially for those analytes with absorption bands in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beumer J. Without therapeutic drug monitoring, there is no personalized cancer care. Clin Pharmacol Therap. 2013;93:228–30.

    Article  CAS  Google Scholar 

  2. Rousseau A, Marquet P. Application of pharmacokinetic modelling to the routine therapeutic drug monitoring of anticancer drugs. Fundam Clin Pharmacol. 2002;16:253–62.

    Article  CAS  Google Scholar 

  3. Sirot EJ, van der Velden JW, Rentsch K, Eap CB, Baumann P. Therapeutic drug monitoring and pharmacogenetic tests as tools in pharmacovigilance. Drug Saf. 2006;29:735–68.

    Article  CAS  Google Scholar 

  4. Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of therapeutic drug monitoring of anticancer drugs part 1—cytotoxics. Eur J Cancer. 2014;50:2012–9.

    Article  Google Scholar 

  5. Haouala A, Zanolari B, Rochat B, Montemurro M, Zaman K, Duchosal M, et al. Therapeutic drug monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J Chromat B. 2009;877:1982–96.

    Article  CAS  Google Scholar 

  6. Dodds H, Robert J, Rivory L. The detection of photodegradation products of irinotecan (CPT-11, Campto®, Camptosar®), in clinical studies, using high-performance liquid chromatography/atmospheric pressure chemical ionisation/mass spectrometry. J Pharm Biomed Anal. 1998;17:785–92.

    Article  CAS  Google Scholar 

  7. Lankheet NA, Blank CU, Mallo H, Adriaansz S, Rosing H, Schellens JH, et al. Determination of sunitinib and its active metabolite N-desethylsunitinib in sweat of a patient. J Anal Toxicol. 2011;35:558–65.

    Article  CAS  Google Scholar 

  8. Marangon E, Falcioni C, Manzotti C, Fontana G, D’Incalci M, Zucchetti M. Development and validation of a LC–MS/MS method for the determination of the novel oral 1, 14 substituted taxane derivatives, IDN 5738 and IDN 5839, in mouse plasma and its application to the pharmacokinetic study. J Chromat B. 2009;877:4147–53.

    Article  CAS  Google Scholar 

  9. Marangon E, Sala F, Caffo O, Galligioni E, D’Incalci M, Zucchetti M. Simultaneous determination of gemcitabine and its main metabolite, dFdU, in plasma of patients with advanced non-small-cell lung cancer by high-performance liquid chromatography-tandem mass spectrometry. J Mass Spectrom. 2008;43:216–23.

    Article  CAS  Google Scholar 

  10. Cline DJ, Zhang H, Lundell GD, Harney RL, Riaz HK, Jarrah J, et al. An automated nanoparticle-based homogeneous immunoassay for determining docetaxel concentrations in plasma. Ther Drug Monit. 2013;35:803–8.

    Article  CAS  Google Scholar 

  11. Everson RB, Ratcliffe JM, Flack PM, Hoffman DM, Watanabe AS. Detection of low levels of urinary mutagen excretion by chemotherapy workers which was not related to occupational drug exposures. Cancer Res. 1985;45:6487–97.

    CAS  Google Scholar 

  12. Larmour IA, Graham D. Surface enhanced optical spectroscopies for bioanalysis. Analyst. 2011;136:3831–53.

    Article  CAS  Google Scholar 

  13. Haynes CL, McFarland AD, Duyne RPV. Surface-enhanced Raman spectroscopy. Anal Chem. 2005;77:338 A–46 A.

    Article  CAS  Google Scholar 

  14. Yazdi SH, White IM. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Anal Chem. 2012;84:7992–8.

    Article  CAS  Google Scholar 

  15. Moskovits M. Persistent misconceptions regarding SERS. Phys Chem Chem Phys. 2013;15:5301–11.

    Article  CAS  Google Scholar 

  16. Kleinman SL, Frontiera RR, Henry A, Dieringer JA, Van Duyne RP. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys. 2013;15:21–36.

    Article  CAS  Google Scholar 

  17. Shim S, Stuart CM, Mathies RA. Resonance Raman cross-sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem. 2008;9:697–9.

    Article  CAS  Google Scholar 

  18. Zhu Q, Cao Y, Cao Y, Chai Y, Lu F. Rapid on-site TLC–SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements. Anal Bioanal Chem. 2014;406:1877–84.

    Article  CAS  Google Scholar 

  19. Torul H, Çiftçi H, Çetin D, Suludere Z, Boyacı IH, Tamer U. Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal Bioanal Chem. 2015;407:8243–51.

    Article  CAS  Google Scholar 

  20. Chon H, Wang R, Lee S, Bang S, Lee H, Bae S, et al. Clinical validation of surface-enhanced Raman scattering-based immunoassays in the early diagnosis of rheumatoid arthritis. Anal Bioanal Chem. 2015;407:8353–62.

    Article  CAS  Google Scholar 

  21. Gu X, Yan Y, Jiang G, Adkins J, Shi J, Jiang G, et al. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal Bioanal Chem. 2014;406:1885–94.

    Article  CAS  Google Scholar 

  22. Sutherland W, Laserna J, Angebranndt M, Winefordner J. Surface-enhanced Raman analysis of sulfa drugs on colloidal silver dispersion. Anal Chem. 1990;62:689–93.

    Article  CAS  Google Scholar 

  23. Alharbi O, Xu Y, Goodacre R. Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering. Anal Bioanal Chem. 2015;407:8261–1.

  24. De Luca AC, Reader-Harris P, Mazilu M, Mariggiò S, Corda D, Di Falco A. Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures. ACS Nano. 2014;8:2575–83.

    Article  Google Scholar 

  25. Guerrini L, Pazos E, Penas C, Vázquez ME, Mascareñas JL, Alvarez-Puebla RA. Highly sensitive SERS quantification of the oncogenic protein c-Jun in cellular extracts. J Am Chem Soc. 2013;135:10314–7.

    Article  CAS  Google Scholar 

  26. Sørensen KM, Westley C, Goodacre R, Engelsen SB. Simultaneous quantification of the boar-taint compounds skatole and androstenone by surface-enhanced Raman scattering (SERS) and multivariate data analysis. Anal Bioanal Chem. 2015;407:7787–95.

    Article  Google Scholar 

  27. Cowcher DP, Jarvis RM, Goodacre R. Quantitative on-line LC-SERS of purine bases. Anal Chem. 2014;86:9977–84.

    Article  CAS  Google Scholar 

  28. Rajapandiyan P, Yang J. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. Anal Chem. 2012;84:10277–82.

    Article  CAS  Google Scholar 

  29. Gao F, Lei J, Ju H. Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Anal Chem. 2013;85:11788–93.

    Article  CAS  Google Scholar 

  30. Yuen C, Zheng W, Huang Z. Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens Bioelectr. 2010;26:580–4.

    Article  CAS  Google Scholar 

  31. Loren A, Eliasson C, Josefson M, Murty K, Käll M, Abrahamsson J, et al. Feasibility of quantitative determination of doxorubicin with surface-enhanced Raman spectroscopy. J Raman Spectrosc. 2001;32:971–4.

    Article  CAS  Google Scholar 

  32. Eliasson C, Lorén A, Murty K, Josefson M, Käll M, Abrahamsson J, et al. Multivariate evaluation of doxorubicin surface-enhanced Raman spectra. Spectr Acta A Mol Biomol Spectr. 2001;57:1907–15.

    Article  CAS  Google Scholar 

  33. McLaughlin C, MacMillan D, McCardle C, Smith WE. Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal Chem. 2002;74:3160–7.

    Article  CAS  Google Scholar 

  34. Ackermann KR, Henkel T, Popp J. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem. 2007;8:2665–70.

    Article  CAS  Google Scholar 

  35. Vicario A, Sergo V, Toffoli G, Bonifacio A. Surface-enhanced Raman spectroscopy of the anti-cancer drug irinotecan in presence of human serum albumin. Coll Surf B. 2015;127:41–6.

    Article  CAS  Google Scholar 

  36. Sackmann M, Materny A. Surface enhanced Raman scattering (SERS)—a quantitative analytical tool? J Raman Spectrosc. 2006;37:305–10.

    Article  CAS  Google Scholar 

  37. Wolosiuk A, Tognalli NG, Martínez ED, Granada M, Fuertes MC, Troiani H, et al. Silver nanoparticle-mesoporous oxide nanocomposite thin films: a platform for spatially homogeneous SERS-active substrates with enhanced stability. ACS Appl Mater Interf. 2014;6:5263–72.

    Article  CAS  Google Scholar 

  38. Sinha G, Depero LE, Alessandri I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl Mater Interf. 2011;3:2557–63.

    Article  CAS  Google Scholar 

  39. Amendola V, Meneghetti M. Exploring how to increase the brightness of surface-enhanced Raman spectroscopy nanolabels: the effect of the Raman-active molecules and of the label size. Adv Funct Mater. 2012;22:353–60.

    Article  CAS  Google Scholar 

  40. Beljebbar A, Sockalingum G, Angiboust J, Manfait M. Comparative FT SERS, resonance Raman and SERRS studies of doxorubicin and its complex with DNA. Spectr Acta A Mol Biomol Spectr. 1995;51:2083–90.

    Article  Google Scholar 

  41. Gage R, Stopher DA. A rapid HPLC assay for voriconazole in human plasma. J Pharm Biomed Anal. 1998;17:1449–53.

    Article  CAS  Google Scholar 

  42. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK. Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev. 2006;106:2224–48.

    Article  CAS  Google Scholar 

  43. Li X, Wang F, Xu B, Yu X, Yang Y, Zhang L, et al. Determination of the free and total concentrations of vancomycin by two-dimensional liquid chromatography and its application in elderly patients. J Chromat B. 2014;969:181–9.

    Article  CAS  Google Scholar 

  44. Greening DW, Simpson RJ. A centrifugal ultrafiltration strategy for isolating the low-molecular weight (≤25K) component of human plasma proteome. J Proteom. 2010;73:637–48.

    Article  CAS  Google Scholar 

  45. Jourd’heuil D, Hallén K, Feelisch M, Grisham MB. Dynamic state of S-nitrosothiols in human plasma and whole blood. Free Rad Biol Med. 2000;28:409–17.

    Article  Google Scholar 

  46. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.

    Article  CAS  Google Scholar 

  47. Gercken B, Barnes RM. Determination of lead and other trace element species in blood by size exclusion chromatography and inductively coupled plasma/mass spectrometry. Anal Chem. 1991;63:283–7.

    Article  CAS  Google Scholar 

  48. Xie R, Johnson W, Rodriguez L, Gounder M, Hall GS, Buckley B. A study of the interactions between carboplatin and blood plasma proteins using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. Anal Bioanal Chem. 2007;387:2815–22.

    Article  CAS  Google Scholar 

  49. Espy RD, Manicke NE, Ouyang Z, Cooks RG. Rapid analysis of whole blood by paper spray mass spectrometry for point-of-care therapeutic drug monitoring. Analyst. 2012;137:2344–9.

    Article  CAS  Google Scholar 

  50. Shallan AI, Guijt RM, Breadmore MC. Electrokinetic size and mobility traps for on-site therapeutic drug monitoring. Angew Chem Int Ed. 2015;127:7467–70.

    Article  Google Scholar 

  51. Pagaduan JV, Sahore V, Woolley AT. Applications of microfluidics and microchip electrophoresis for potential clinical biomarker analysis. Anal Bioanal Chem. 2015;407:6922–2.

  52. Oedit A, Vulto P, Ramautar R, Lindenburg PW, Hankemeier T. Lab-on-a-Chip hyphenation with mass spectrometry: strategies for bioanalytical applications. Curr Opin Biotechnol. 2015;31:79–85.

    Article  CAS  Google Scholar 

  53. Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys. 2009;11:3805–21.

    Article  CAS  Google Scholar 

  54. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J, et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res. 2003;9:3246–53.

    CAS  Google Scholar 

  55. Gagne JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol. 2002;62:608–17.

    Article  CAS  Google Scholar 

  56. McNay G, Eustace D, Smith WE, Faulds K, Graham D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc. 2011;65:825–37.

    Article  CAS  Google Scholar 

  57. Producer datasheet.

  58. Sidoryk K, Malińska M, Bańkowski K, Kubiszewski M, Łaszcz M, Bodziachowska-Panfil M, et al. Physicochemical characteristics of sunitinib malate and its process-related impurities. J Pharm Sci. 2013;102:706–16.

    Article  CAS  Google Scholar 

  59. Hutchings J, Kendall C, Shepherd N, Barr H, Smith B, Stone N. Rapid Raman microscopic imaging for potential histological screening. Proc of SPIE. 2008;6853:685305-1–9.

    Google Scholar 

  60. Bohndiek SE, Wagadarikar A, Zavaleta CL, Van de Sompel D, Garai E, Jokerst JV, et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc Natl Acad Sci U S A. 2013;110:12408–13.

    Article  CAS  Google Scholar 

  61. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005;5:1569–74.

    Article  CAS  Google Scholar 

  62. Laurence TA, Braun G, Talley C, Schwartzberg A, Moskovits M, Reich N, et al. Rapid, solution-based characterization of optimized SERS nanoparticle substrates. J Am Chem Soc. 2008;131:162–9.

    Article  Google Scholar 

  63. Wustholz KL, Henry A, McMahon JM, Freeman RG, Valley N, Piotti ME, et al. Structure–activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc. 2010;132:10903–10.

    Article  CAS  Google Scholar 

  64. Song J, Chen Z, Jin J, Chen Y, Yu R. Quantitative surface-enhanced Raman spectroscopy based on the combination of magnetic nanoparticles with an advanced chemometric model. Chemometrics Intellig Lab Syst. 2014;135:31–6.

    Article  CAS  Google Scholar 

  65. Lorén A, Engelbrektsson J, Eliasson C, Josefson M, Abrahamsson J, Johansson M, et al. Internal standard in surface-enhanced Raman spectroscopy. Anal Chem. 2004;76:7391–5.

    Article  Google Scholar 

  66. Shen W, Lin X, Jiang C, Li C, Lin H, Huang J, et al. Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angew Chem Int Ed. 2015;54:7308–12.

    Article  CAS  Google Scholar 

  67. Zakel S, Rienitz O, Güttler B, Stosch R. Double isotope dilution surface-enhanced Raman scattering as a reference procedure for the quantification of biomarkers in human serum. Analyst. 2011;136:3956–61.

    Article  CAS  Google Scholar 

  68. Takimoto CH, Calvo E. Principles of oncologic pharmacotherapy. Philadelphia, Pa, USA: FA Davis; 2008.

    Google Scholar 

  69. Deshmukh R. Global oncology/cancer drugs market (therapeutic modalities, cancer types and geography)—size, share, trends, company profiles, demand, insights, analysis, research, report, opportunities, segmentation and forecast, 2013-2020. PH:15121; 2015.

  70. Agarwal N, Neri F, Trusso S, Lucotti A, Ossi P. Au nanoparticle arrays produced by pulsed laser deposition for surface enhanced Raman spectroscopy. Appl Surf Sci. 2012;258:9148–52.

    Article  CAS  Google Scholar 

  71. Dorpe P. 300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates. Nanoscale. 2014;6:12391–6.

    Article  Google Scholar 

  72. Zheng Y, Thai T, Reineck P, Qiu L, Guo Y, Bach U. DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor. Adv Funct Mater. 2013;23:1519–26.

    Article  CAS  Google Scholar 

  73. Agarwal N, Tommasini M, Fazio E, Neri F, Ponterio R, Trusso S, et al. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation. Applied Physics A. 2014:1-5

Download references

Acknowledgments

Dr. Elena Marangon is gratefully acknowledged for useful discussions. We acknowledge the AIRC 5x1000 grant “Application of Advanced Nanotechnology in the Development of Innovative Cancer Diagnostics Tools” and University of Padova grant (PRAT) no. CPDA114097/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Amendola.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Supporting information: additional experimental details and results, peak assignments, PCA results and factors of relevance for SERS assays

ESM 1

(PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litti, L., Amendola, V., Toffoli, G. et al. Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering. Anal Bioanal Chem 408, 2123–2131 (2016). https://doi.org/10.1007/s00216-016-9315-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9315-4

Keywords

Navigation