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Abstract 15 

 

The onset and expansion of agriculture has accelerated soil erosion by rainfall and runoff substantially, mobilizing 

vast quantities of soil organic carbon (SOC) globally.  Studies show that at timescales of decennia to millennia this 

mobilized SOC can significantly alter previously estimated carbon emissions from land use change (LUC). 

However, a full understanding of the impact of erosion on land-atmosphere carbon exchange is still missing. The 20 

aim of our study is to better constrain the terrestrial carbon fluxes by developing methods compatible with Earth 

System Models (ESMs) in order to explicitly represent the links between soil erosion by rainfall and runoff and 

carbon dynamics. For this we use an emulator that represents the carbon cycle of a land surface model, in 

combination with the Revised Universal Soil Loss Equation model. We applied this modeling framework at the 

global scale to evaluate the effects of potential soil erosion (soil removal only) in the presence of other perturbations 25 

of the carbon cycle: elevated atmospheric CO2, climate variability, and LUC. We found that over the period 1850-

2005 AD acceleration of soil erosion leads to a total potential SOC removal flux of 100 Pg C of which 80% occurs 

on agricultural, pasture and natural grass lands. Including soil erosion in the SOC-dynamics scheme results in a 

doubling of the cumulative loss of SOC over 1850 – 2005 due to the combined effects of climate variability, 

increasing atmospheric CO2 and LUC. This additional erosional loss decreases the cumulative global carbon sink on 30 

land by 5 Pg for this specific period, with the largest effects found for the tropics, where deforestation and 

agricultural expansion increased soil erosion rates significantly. We also show that the potential effects of soil 

erosion on the global SOC stocks cannot be ignored when compared to the effects of climate change or land use 

change on the carbon cycle. We conclude that it is necessary to include soil erosion in assessments of LUC and 

evaluations of the terrestrial carbon cycle.  35 
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1 Introduction 

 

Carbon emissions from land use change (LUC), recently estimated as 1.0±0.5 Pg C yr
-1

,  form the second largest 

anthropogenic source of atmospheric CO2 (Le Quéré et al., 2016). However, their uncertainty range is large, making 40 

it difficult to constrain the net land-atmosphere carbon fluxes and reduce the biases in the global carbon budget 

(Goll et al., 2017; Houghton and Nassikas, 2017; Le Quéré et al., 2016). The absence of soil erosion in assessments 

of LUC is an important part of this uncertainty, as soil erosion is strongly connected to LUC (Van Oost et al., 2012; 

Wang et al., 2017).   

The expansion of agriculture has accelerated soil erosion by rainfall and runoff significantly, mobilizing around 783 45 

± 243 Pg of soil organic carbon (SOC) globally over the past 8000 years (Wang et al., 2017). Most of the mobilized 

SOC is redeposited in alluvial and colluvial soils, where it is stabilized and buried for decades to millennia 

(Hoffmann et al., 2013a; Hoffmann et al., 2013b; Wang et al., 2017). Together with dynamic replacement of 

removed SOC by new litter input at the eroding sites, and the progressive exposure of carbon-poor deep soils, this 

translocated and buried SOC can lead to a net carbon sink at the catchment scale, potentially offsetting a large part 50 

of the carbon emissions from LUC (Berhe et al., 2007; Bouchoms et al., 2017; Harden et al., 1999; Hoffmann et al., 

2013a; Lal, 2003; Stallard, 1998; Wang et al., 2017). 

On eroding sites, soil erosion keeps the SOC stocks below a steady-state (Van Oost et al., 2012) and can lead to 

substantial CO2 emissions in certain regions (Billings et al., 2010; Worrall et al., 2016; Lal, 2003).  CO2 emission 

from soil erosion can take place during the breakdown of soil aggregates by erosion and during the transport of the 55 

eroded SOC by runoff and later also by streams and rivers.  

LUC emissions are usually quantified using bookkeeping models and land surface models (LSMs) that represent the 

impacts of LUC activities on the terrestrial carbon cycle (Le Quere et al., 2016) only through processes leading to a 

local imbalance between NPP and heterotrophic respiration, ignoring lateral displacement. Currently, LSMs 

consider only the carbon fluxes following LUC resulting from changes in vegetation, soil carbon and sometimes 60 

wood products (Van Oost et al., 2012; Stocker et al., 2014). The additional carbon fluxes associated with the human 

action of LUC from the removal and lateral transport of SOC by erosion are largely ignored.  

In addition, the absence of lateral SOC transport by erosion in LSMs complicates the quantification of the human 

perturbation of the carbon flux from land to inland waters (Regnier et al., 2013). Recent studies have been 

investigating the Dissolved Organic Carbon (DOC) transfers along the terrestrial-aquatic continuum in order to 65 

better quantify CO2 evasion from inland waters and to constrain the lateral carbon flux from the land to the ocean 

(Lauerwald et al., 2017; Regnier et al., 2013). They point out that an explicit representation of soil erosion and 

sediment transport – in addition to DOC leaching and transport - in future LSMs is essential to be able to better 

constrain the flux from land to ocean. This is true, since the transfer of particulate organic carbon from eroded SOC 

also matters for estimating carbon inputs to rivers.  70 

The slow pace of carbon sequestration by soil erosion and deposition (Van Oost et al., 2012; Wang et al., 2017) and 

the slowly decomposing SOC pools require the simulation of soil erosion at timescales longer than a few decades to 
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fully quantify its impacts on the SOC dynamics. This, and the high spatial resolution that soil erosion models 

typically require, complicates the introduction of soil erosion and related processes in LSMs.  

Previous approaches used to explicitly couple soil erosion and SOC turnover have been applying different erosion 75 

and carbon dynamic models at different spatial and temporal scales. Some studies coupled process-oriented soil 

erosion models with C turnover models calibrated for specific micro-catchments on timescales of a few decades to a 

millennium, (Billings et al., 2010; Van Oost et al., 2012; Nadeu et al., 2015; Wang et al., 2015a; Zhao et al., 2015; 

Bouchoms et al., 2017). While other studies focused on the application of parsimonious erosion-SOC dynamics 

models using the RUSLE approach together with sediment transport methods at regional or continental spatial scales 80 

(Chappell et al., 2015; Lugato et al., 2016; Yue et al., 2016; Zhang et al., 2014). However, the modeling approaches 

used in these studies apply erosion models that still require many variables and data input that is often not available 

at the global scale or for the past or the future time period. These models also run on a much higher spatial 

resolution than LSMs, making it difficult to integrate them with LSMs. The study of Ito (2007) was one of the first 

studies to couple water erosion to the carbon cycle at the global scale, using a simple modelling approach that 85 

combined the RUSLE model with a global ecosystem carbon cycle model. However, there are several unaddressed 

uncertainties related to his modelling approach, such as the application of the RUSLE at the global scale without 

adjusting its parameters.  

Despite all the differences between the studies that coupled soil erosion to the carbon cycle, they all agree that soil 

erosion by rainfall and runoff is an essential component of the carbon cycle. Therefore, to better constrain the land-90 

atmosphere and the land-ocean carbon fluxes, it is necessary to develop new LSM-compatible methods that 

explicitly represent the link between soil erosion and carbon dynamics at regional to global scales and over long 

timescales. Based on this, our study introduces a 4D modeling approach that consists of 1) an emulator that 

simulates the carbon dynamics like in the ORCHIDEE LSM (Krinner et al., 2005), 2) the Revised Universal Soil 

Loss (Adj.RUSLE) model that has been adjusted to simulate global soil removal rates based on coarse resolution 95 

data input from climate models (Naipal et al., 2015), and 3) a spatially explicit representation for LUC. This 

approach represents explicitly and consistently the links between the perturbation of the terrestrial carbon cycle by 

elevated atmospheric CO2 and variability (temperature and precipitation change), the perturbation of the carbon 

cycle by LUC and the effect of soil erosion at the global scale.  

The main goal of our study is to use this new modeling approach to determine the potential effects of long-term soil 100 

erosion by rainfall and runoff without deposition or transport on the global SOC stocks under LUC, climate 

variability and increasing atmospheric CO2 levels. In order to be able to determine if global soil erosion is a net 

carbon source or sink, it is essential to study first how soil erosion, without deposition or transport, interacts with the 

terrestrial carbon cycle. Therefore, we also aim to understand the links between the different perturbations to the 

carbon cycle in the presence of soil erosion and to identify relevant changes in the spatial variability of SOC stocks 105 

under erosion.  

 

2 Materials and methods  
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2.1 Modeling framework concept 110 

 

We used the LSM ORCHIDEE-MICT (Guimberteau et al., 2017; Zhu et al., 2016) (in the following simply referred 

to as ORCHIDEE) to construct a carbon emulator that describes the carbon pools and fluxes exactly as in 

ORCHIDEE. MICT stands for aMeliorated Interactions between Carbon and Temperature, and this version of 

ORCHIDEE has several major modifications and improvements for especially the high-latitudes.  115 

ORCHIDEE has 8 biomass pools, 4 litter pools, of which 2 are above-ground and 2 are below-ground and 3 SOC 

pools for each land cover type (Fig. 1A). It has been extensively validated using observations on energy, water and 

carbon fluxes at various eddy-covariance sites, and with measurements of atmospheric CO2 concentration (Piao et 

al., 2009).  The land cover types are represented by 12 plant functional types (PFT’s) and an additional type for bare 

soil. 10 PFT’s represent natural vegetation and 2 represent agricultural land (C3 and C4 crop). 120 

The turnover times for each of the PFT-specific litter and SOC pools depend on their residence time modified by 

local soil texture, humidity, and temperature conditions (Krinner et al., 2005). Land use change is not taken into 

account in the simulations with the full ORCHIDEE model, but is represented offline by a LUC scheme in the 

emulator as described in the next section. This makes it possible to switch on or off the LUC module in the emulator 

or to change LUC scenarios when needed without having to re-run the full ORCHIDEE model. The loss of biomass 125 

and litter carbon by fire is represented by the parameterization of the Spitfire model from Thonicke et al. (2011) in 

the full ORCHIDEE model, and currently cannot be modified in our version of the emulator. Carbon losses by fire 

here are considered to contribute directly to the CO2 emissions from land.  

This emulator, which imitates the behavior of the carbon cycle of ORCHIDEE, reduces the computation time of the 

complex ORCHIDEE model significantly, because the computation of hydrological processes and other 130 

computationally expensive processes are not included in the emulator. At the same time the emulator preserves the 

structure of the carbon cycle of ORCHIDEE and is able to reproduce the outputs exactly as by the full ORCHIDEE 

model. Using the emulator allowed us to add and study erosion-related processes affecting the carbon dynamics of 

the soil without having to include an erosion module in the full ORCHIDEE model (Fig. 1A). At face value, the 

emulator merely copies the ORCHIDEE carbon pool dynamics, and for each new atmospheric CO2- and climate-135 

scenario a new run of the original LSM is required.  

The change in carbon over time for each pool of the original model is represented in the emulator by the following 

general mass-balance approach: 

     
𝑑𝐶

𝑑𝑡
= 𝐼(𝑡) − 𝑘 ∗ 𝐶(𝑡)           (1) 

Here, 
𝑑𝐶

𝑑𝑡
 represents the change in carbon stock of a certain pool over time, calculated by the difference between the 140 

incoming flux (I(t)), and the outgoing flux (k*C(t)) to the respective pool, where k is the turnover rate. Although 

originally calculated by complex equations, the dynamic evolution of each pool can be described using the first-

order model of Eq. 1. For each carbon pool the carbon stock and all the incoming and outgoing fluxes are derived at 

a daily time step from a simulation performed with the full ORCHIDEE model. Based on the output stock and 

fluxes, the values of the turnover rates are calculated and archived together with the input fluxes. They are then used 145 
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to perform simulations of the dynamics of all pools with the emulator without having to re-compute the carbon 

fluxes at each time-step.   

ORCHIDEE also includes crop harvest, defined as the harvest of above-ground biomass of agricultural PFTs, and 

calculated based on the concept of the harvest index (Krinner et al., 2005). The harvest index is defined as the yield 

of crop expressed as a fraction of the total above-ground dry matter production (Hay, 1995). ORCHIDEE uses a 150 

fixed harvest index for crop of 0.45. However, Hay (1995) showed that the harvest index has increased significantly 

since 1900 for C3 crop such as wheat. In the emulator, and also in the full ORCHIDEE model, the carbon balance of  

agricultural lands is sensitive to crop harvest. Based on this we use the findings of Hay (1995) to change the harvest 

index of C3 crops to be temporally variable over the period 1850 – 2005 in the emulator, with values ranging 

between 0.26 and 0.46. This means that more crop biomass is harvested against what becomes litter. We only 155 

changed the HI of C3 plants, because Hay (1995) mentioned that C4 plants, such as maize, had already a high HI at 

the start of the last century.  It should be noted that the harvest index does not vary spatially in our emulator, and 

harvesting is then done constantly at each time step.  

 

2.2 Net land use change 160 

 

To account for the effects of LUC, a net-land use change routine is implemented in the emulator that includes past 

agricultural and grassland expansion over natural PFTs (Fig. 1B). Fractions of PFT’s in each grid cell are updated 

every year given prescribed annual maps of agricultural and natural PFTs (Peng et al., 2017). The carbon stocks of 

the litter and SOC pools of all the shrinking PFT’s are then summed and allocated proportionally to the expanding or 165 

new PFT’s, maintaining the mass-balance (Houghton and Nassikas, 2017; Piao et al., 2009). When natural 

vegetation is reduced by LUC, the heartwood and sapwood biomass pools are harvested and transformed to 3 wood 

products with turnover times of 1 year, 10 years and 100 years. The other biomass pools (leafs, roots, sapwood 

below-ground, fruits, heartwood belowground) are transformed to metabolic or structural litter and allocated to the 

respective litter pools of the expanding PFTs (Piao et al., 2009).   170 

 

2.3 Soil carbon dynamics 

 

The change in the carbon content of the PFT-specific SOC pools in the emulator without soil erosion can be 

described with the following differential equations: 175 

𝑑𝑆𝑂𝐶𝑎(𝑡)

𝑑𝑡
= 𝑙𝑖𝑡𝑎(𝑡) + 𝑘𝑝𝑎 ∗ 𝑆𝑂𝐶𝑝(𝑡) + 𝑘𝑠𝑎 ∗ 𝑆𝑂𝐶𝑠(𝑡) − (𝑘𝑎𝑝 + 𝑘𝑎𝑠 + 𝑘0𝑎) ∗ 𝑆𝑂𝐶𝑎(𝑡)      (2) 

                      
𝑑𝑆𝑂𝐶𝑠(𝑡)

𝑑𝑡
= 𝑙𝑖𝑡𝑠(𝑡) + 𝑘𝑎𝑠 ∗ 𝑆𝑂𝐶𝑎(𝑡) − (𝑘𝑠𝑎 + 𝑘𝑠𝑝 + 𝑘0𝑠) ∗ 𝑆𝑂𝐶𝑎(𝑡)                    (3) 

         
𝑑𝑆𝑂𝐶𝑝(𝑡)

𝑑𝑡
= 𝑘𝑎𝑝 ∗ 𝑆𝑂𝐶𝑎(𝑡) + 𝑘𝑠𝑝 ∗ 𝑆𝑂𝐶𝑠(𝑡) − (𝑘𝑝𝑎 + 𝑘0𝑝) ∗ 𝑆𝑂𝐶𝑝(𝑡)                            (4) 

where SOCa, SOCs, and SOCp (g C m
-2

) are the active (unprotected), slow (physically or chemically protected) and 

passive (biochemically recalcitrant) SOC, respectively. The active SOC pool has the lowest residence time and the 180 

passive the highest. lita and lits  (g C m
-2

 day
-1

) are the litter input rates to the active and slow SOC pools, 
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respectively; k0a, k0s and k0p (day
-1

) are the respiration rates of the active, slow and passive pools, respectively; kas, 

kap , kpa, ksa, ksp are the coefficients determining the flux from the active to the slow pool, from the active to the 

passive pool, from the passive to the active pool, from the slow to the active pool and from the slow to the passive 

pool, respectively (Fig. 1A). 185 

The SOC pools are not vertically discretized in this model version of ORCHIDEE, so we implemented a simple 

vertical discretization scheme for the SOC pools in the emulator based on the concept of Wang et al. (2015a,b).  In 

this scheme the carbon dynamics of each soil layer are calculated separately, based on layer dependent input and 

respiration rates (Fig. 1A). We apply the same vertical discretization scheme for all three SOC pools, assuming that 

the different SOC pools are distributed across all layers of the soil profile. Also, we do not include processes such as 190 

bioturbation or leaching of litter or SOC. 

In the emulator, the soil profile is divided into layers of 1 cm thickness down to a depth of 2 m, which is the soil 

depth used by ORCHIDEE to calculate SOC. The first 10 cm of the soil profile are referred to as the “topsoil”, 

where we assume that the SOC content is homogeneously distributed. The rest of the soil profile is referred to as the 

subsoil. The topsoil receives carbon from above- and below-ground litter, and each of the soil layers in the topsoil 195 

receives an equal fraction of both litter types. The SOC respiration rates for the topsoil layers are equal to those from 

ORCHIDEE and are determined by average soil temperature, moisture and texture. For the rest of the soil profile the 

respiration rates of all three SOC pools decrease exponentially with depth: 

                     𝑘𝑖(𝑧) = 𝑘0 𝑖 ∗ 𝑒−𝑟𝑒𝑧                                                  (5) 

Here 𝑘0 𝑖 is the SOC respiration rate at the surface layer for each SOC pool (i = a, s, p) as derived by the emulator 200 

based on the original ORCHIDEE rates. re (m
-1

) is an exponential decreasing coefficient representing the impact of 

external factors, such as oxygen availability, reducing SOC mineralization rate with depth (z). After performing 

sensitivity simulations where the values of re differ per PFT, we found no significant difference in the resulting SOC 

stocks. The value of re was then set to 1.2 m
-1

, so that the respiration rate decreases with a factor of 2-3 from the 

surface to 1 m depth consistent with SOC profile observations (Bouchoms et al., 2017; Van Oost et al., 2005; Wang 205 

et al., 2015a). This vertical discretization in the emulator leads to a total global SOC stock that is approximately 

44% larger than that from the original ORCHIDEE model, because it affects the mean value of the decomposition 

rates.  

The below-ground litter input for the active SOC pool is the sum of a fraction of the below-ground structural and 

metabolic litter pools from ORCHIDEE, while the below-ground litter input for slow SOC pool is equal to a fraction 210 

of the below-ground structural litter pool only. This setting is consistent with the structure of the SOC module of 

ORCHIDEE. We assume that the subsoil receives carbon only from below-ground litter, and that this input 

decreases exponentially with depth following the root profile of ORCHIDEE. This discretization of the total below-

ground litter input (𝑙𝑖𝑡𝑏𝑒) is the same for both SOC pools and can then be represented as:  

                                                     𝑙𝑖𝑡𝑏𝑒 = ∫ 𝐼0𝑏𝑒 ∗ 𝑒−𝑟∗𝑧𝑧=𝑧𝑚𝑎𝑥

𝑧=0
𝑑𝑧                                          (6) 215 

where 𝐼0𝑏𝑒  is the below-ground litter input to the surface layer, and is equal to: 

                                                           𝐼0𝑏𝑒 = 𝑙𝑖𝑡𝑏𝑒 ∗
𝑟

1−𝑒−𝑟∗𝑧𝑚𝑎𝑥                                                     (7) 

The homogeneously distributed below-ground litter input (𝐼𝑏𝑒) to the layers of the topsoil is equal to: 
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∑ 𝐼𝑏𝑒0∗𝑒−𝑟∗𝑧𝑧=10

𝑧=0

0.1
                                                                   (8a) 

The below-ground litter input to the layers of the subsoil is equal to: 220 

                                                          𝐼𝑏𝑒(𝑧) = 𝐼𝑏𝑒0 ∗ 𝑒−𝑟∗𝑧                                                           (8b) 

where zmax is the maximum soil depth equal to 2 m, and dz is the soil layer discretization (1 cm); r is the PFT-

specific vertical root-density attenuation coefficient as used in ORCHIDEE (Table S2).  

 

The annual average soil erosion rate (E, t ha
-1

 year
-1

) is calculated by the Adj.RUSLE (Naipal et al., 2015; Naipal et 225 

al., 2016) according to: 

                                                             𝐸 = 𝑆 ∗ 𝑅 ∗ 𝐾 ∗ 𝐶                                                             (9) 

where R is the rainfall erosivity factor (MJ mm ha
-1

 h
-1

 year
-1

), K is the soil erodibility factor (t ha h ha
-1

 MJ
-1

 mm
-1

), 

C is the land cover factor (dimensionless), S is the slope steepness factor (dimensionless). The S-factor is calculated 

using the slope from a 1km resolution digital elevation model (DEM) that has been scaled using the fractal method 230 

to a resolution of 150m (Naipal et al., 2015). In this way the spatial variability of a high-resolution slope dataset can 

be captured. The computation of the R factor has been adjusted to use coarse resolution input data on precipitation 

and to provide reasonable global erosivity values. For this Naipal et al. (2015) derived regression equations for 

different climate zones of the Köppen–Geiger climate classification (Peel et al., 2007). The results from the 

Adj.RUSLE model have been tested against empirical large-scale assessments of soil erosion and rainfall erosivity 235 

(Naipal et al., 2015, 2016). The original RUSLE model as described by Renard et al. (1997) also includes the slope-

length (L) and support-practice (P) factors. Although these factors can strongly affect soil erosion in certain regions, 

the Adj.RUSLE does not include these factors due to several reasons. Firstly, (Doetterl et al., 2012) showed that 

these factors do not significantly contribute to the variation in soil erosion at the continental to global scales, in 

comparison to the other RUSLE factors. Secondly, data on the L and P factors and methods to estimate them at the 240 

global scale are very limited. Thus, including them in global soil erosion estimations would result in large 

uncertainties. Finally, the focus of this study is to show the effects of potential soil erosion on the terrestrial carbon 

cycle, without the explicit effect of management practices such as covered by the P-factor. For more information on 

the validation of our erosivity values and a more detailed description of the calculation of each of the RUSLE factors 

see S1. 245 

The Adj. RUSLE model is not imbedded in the C emulator but is run separately on a 5arcmin spatial resolution and 

at a yearly timestep. The resulting soil erosion rates are then read by the C emulator at each time step and used to 

calculate the daily SOC erosion rate of a certain SOC pool i (Cei in g C m
-2

 day
-1

) at the surface layer by: 

                                                             𝐶𝑒𝑖 = 𝑆𝑂𝐶𝑖 ∗
𝐸

365
∗100

𝐵𝐷𝑡𝑜𝑝∗𝑑𝑧∗106                                              (10) 

where BDtop is the bulk density of the surface layer (g cm
-3

). We assume that the enrichment ratio, i.e. the volume 250 

ratio of the carbon content in the eroded soil to that of the source soil material, is equal to 1 here, which implies that 

our estimates of SOC mobilization are likely conservative (Chappell et al., 2015; Nadeu et al., 2015).  

When erosion takes place, the surface layer is truncated by the erosion height, and at the same time an amount of 

SOC corresponding to this erosion height is removed. As we assume that the soil layer thickness does not change, 
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part of the SOC of the next soil layer is allocated to the surface layer proportional to the erosion height and the SOC 255 

concentration (per volume) of the next layer. In this way, the SOC from all the following soil layers move upward 

and become exposed to erosion in the surface layer at some point in time (Fig. 1A). To preserve mass balance, we 

assume that there is no SOC below the 2 m soil profile represented in the emulator and new substrate replacing the 

material of the last soil layer is SOC free, so that SOC in the bottom layer will decrease towards zero after erosion 

has started. 260 

 

2.4 Input datasets  

 

2.4.1 for ORCHIDEE 

 265 

We used 6-hourly climate data supplied by CRU-NCEP (version 5.3.2) global database 

(https://crudata.uea.ac.uk/cru/data/ncep/) available at 0.5 degree resolution to perform simulations with the full 

ORCHIDEE model for constructing the emulator. CRU-NCEP climate data was only available for the period 1901-

2012. To be able to run ORCHIDEE for the period 1850-1900, we randomly projected the climate forcing after 1900 

to the years before 1900. 270 

The PFT fractions were derived from the historical annual PFT maps developed by Peng et al. (2017). These PFT 

maps were available at a resolution of 0.25 degrees (Fig. 2), and were re-gridded to the resolution of the 

ORCHIDEE emulator, which is 2.5 x 3.75 degrees, using the nearest neighbor approach. 

 

2.4.2 for the Adj.RUSLE 275 

 

Due to the the resolution of the Adj.RUSLE, which is 5 arcmin (~0.0833 degree), all the RUSLE factors had to be 

regridded or calculated at this specific resolution before calculating the soil erosion rates. 

The land cover fractions from the historical 0.25 degree PFT maps were used in combination with the LAI values 

from ORCHIDEE at the resolution of 2.5° x 3.75° to derive the values for the C-factor of the RUSLE model. We 280 

first regridded the yearly average LAI to the resolution of the PFT maps before calculating the land cover factor of 

RUSLE (C-factor) at the resolution of 0.25 degree. The C values were then regridded using the nearest neighbor 

method to the resolution of the Adj.RUSLE model. We used the nearest neighbor approach here, because the C-

factor is strongly dependent on the land cover class.   

Daily precipitation data for the period 1850-2005 to calculate soil erosion rates is derived from the Inter-Sectoral 285 

Impact Model Intercomparison Project (ISIMIP), product ISIMIP2b (Frieler et al., 2017). This data is based on 

model output of the Coupled Model Intercomparison Project Phase 5 (CMIP5 output of IPSL-CM5A-LR (Taylor et 

al., 2012), which are bias corrected using observational datasets and the method of Hempel et al. (2013), and made 

available at a resolution of 0.5 degrees (Fig. 2). We chose this data as input to the Adj.RUSLE model, because the 

dataset extended to 1850, in contrast to the CRU-NCEP data. Also, this dataset being bias-corrected, provides a 290 

better distribution of extreme events and frequencies of dry and wet days (Frieler et al., 2017), which is important 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-527
Manuscript under review for journal Biogeosciences
Discussion started: 23 January 2018
c© Author(s) 2018. CC BY 4.0 License.



9 
 

for the calculation of rainfall erosivity (R factor). The ISIMIP precipitation data was regridded using the bilinear 

interpolation method to the resolution of the Adj.RUSLE model, before being used to calculate the R-factor. This 

was necessary because the erosivity equations from the Adj.RUSLE model are calibrated at this specific resolution 

(Naipal et al., 2015).  295 

Data on soil bulk density and other soil parameters to calculate the soil erodibility factor (K), available at the 

resolution of 1 km, have been taken from the Global Soil Dataset for use in Earth System Models (GSDE) 

(Shangguan et al, 2014). The K factor has been calculated at the resolution of 1 km before being regridded to 5 

arcmin using the bilinear interpolation method. We also used the SOC concentration in the soil from GSDE, which 

was derived using the “aggregating first” approach, to compare to our SOC stocks from simulations with the 300 

emulator. Finally, the slope steepness factor (S), which was originally estimated at the resolution of 1 km, was also 

regridded to the resolution of 5 arcmin using the bilinear interpolation method. 

Using the above-mentioned data, soil erosion rates were first calculated at the resolution of 5 arcmin, and afterwards 

aggregated to the coarse resolution of the emulator (2.5° x 3.75° ) to calculate daily SOC erosion rates. 

 305 

2.5 Model simulations 

 

To be able to understand and estimate the different direct and indirect effects of soil erosion on the SOC dynamics, 

we propose a factorial simulation framework (Fig. 3). This framework allows isolating or combining the main 

processes that link soil erosion to the SOC pool, namely the influence from climate variability, LUC, and 310 

atmospheric CO2 increase. The different model simulations described in this section will be based on this 

framework. 

We performed two different simulations with the full ORCHIDEE model to produce the required data input for the 

emulator for the period 1850-2005. For this we first performed a spinup with ORCHIDEE to get stead-state carbon 

pools for the year 1850. We chose the period 1850-2005 based on the ISIMIP2b precipitation data availability and 315 

the fact that this period underwent a significant intensification in agriculture globally and a substantial rise in 

atmospheric CO2 concentrations. In the first simulation of ORCHIDEE the global atmospheric CO2 concentration 

was fixed to the year 1850 to calculate time-varying NPP not impacted by CO2 fertilization and subsequent carbon 

pools, while in the second simulation the atmospheric CO2 concentration was made variable. In both simulations, 

climate is variable from CRU-NCEP (Fig. 3).  320 

Furthermore, we performed three simulations with the Adj.RUSLE model to pre-calculate the soil erosion rates that 

will be used as input to the ORCHIDEE emulator. In the first simulation we kept the climate and land cover variable 

through time (the “CC+LUC” simulation). In the second simulation we only varied the climate through time and 

kept land cover fractions fixed to 1850 (the “CC” simulation, Fig. 3). In the third simulation we only varied the land 

cover through time and kept the climate constant to the average cyclic variability of the period 1850-1859 (the 325 

“LUC” simulation, Fig. 3).  

From the two simulations of ORCHIDEE (with variable and constant CO2) and the soil erosion simulations of the 

Adj.RUSLE, we constructed 4 versions of the emulator to perform 8 simulations. The different simulations and their 
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description are given in table 1 and figure 3. In the simulations without LUC (S2, S4, S6 and S8), the PFT fractions 

and the harvest index are constant and equal to those in the year 1850. In the simulations with LUC (S1, S3, S5 and 330 

S7) the harvest index increases and the PFT fraction change with time during 1850 - 2005. In each emulator-

simulation we first calculated the equilibrium carbon stocks analytically before calculating the change of the carbon 

stocks in time depending on the perturbations during the transient period (1851-2005). In simulations with erosion, 

the equilibrium state of the SOC pools has been calculated using the average erosion rates of the period 1850-1859, 

assuming erosion to be constant before 1850 and a steady state condition where erosion fluxes are equal to new 335 

input from litter.  

 

3 Results 

 

3.1 Erosion versus no erosion 340 

 

After including soil erosion in the ORCHIDEE emulator we obtain a total global soil loss flux of 47.6 Pg y
-1

 for the 

year 2005 of which 29% is attributed to agricultural land and 54% to grassland (natural grass and pasture). This 

global soil loss flux (here ‘loss’ meaning horizontal removal by erosion) leads to a total SOC loss flux of 0.67 Pg C 

y
-1

 of which 31% are attributed to agricultural land and 60% to grassland (CTR, Fig 4). Grassland and agricultural 345 

land thus have much larger annual average soil and SOC erosion rates compared to forest (Table 2).  

The total soil and SOC losses in the year 2005 are an increase of 14% and 26.5%, respectively, compared to 1850 

(CTR, Fig. 4) with the largest increases found in the tropics (Fig. 5B, D). The largest increase in soil and SOC 

erosion during 1850 – 2005 is found in South-America (Table 3) despite of the significant decreases in simulated 

precipitation leading to less intense erosion rates in this region. One should keep in mind that due to uncertainties in 350 

the simulated LUC and climate variability for certain regions and the assumptions made in our modeling framework, 

these trends in soil and SOC erosion rates are linked to some uncertainty. However, it is difficult to assess this 

uncertainty, mainly due to the lack of observations for the past in regions such as the tropics and the lack of model-

testing in these regions.  

We found that the total soil erosion flux on agricultural land almost doubled by the year 2005 compared to 1850, 355 

while the SOC erosion flux increased by 62% (Fig. 4) and led to a cumulative SOC removal of 27 Pg on agricultural 

land since 1850 (CTR). On pasture land and grassland, the soil erosion flux increased by only 8.5%, while the SOC 

erosion flux increased by 34% (Fig. 4) and led to a cumulative SOC mobilization of 52 Pg since 1850. It is evident 

that on agricultural land SOC erosion increases less strongly during 1850 – 2005 compared to soil erosion, while on 

grassland the opposite effect is true. This is because in our model, LUC (without erosion) leads to a significant 360 

increase in SOC on grassland, which amplifies the increasing trend in SOC erosion for grassland. This simulated 

increase for SOC stocks on grasslands after LUC takes place is not unrealistic, as it is observed from paired 

chronosequences worldwide that grasslands have higher SOC densities than forests for instance (Li et al., 2017). 

In total 7183 Pg of soil and 100 Pg of SOC is mobilized across all PFTs by erosion during the period 1850 - 2005, 

which is equal to approximately 80% of the total net flux of carbon lost as CO2 to the atmosphere due to LUC (net 365 
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LUC flux) over the same period estimated by our study (S1-S2). In this study, we do not address the fate of this 

large amount of eroded SOC, be it partly sequestered (Wang et al., 2017) or released to the atmosphere as CO2. 

To estimate the net effect of soil erosion on the global SOC stocks under all perturbations we compare the 

cumulative SOC stock change from simulation S3 (no erosion; see Table 1) with that of the CTR simulation. When 

assuming that the SOC mobilized by soil erosion in the CTR simulation is all respired (this is certainly an extreme 370 

and unrealistic assumption, as case in reality a fraction of mobilized SOC will remain stored on land, but we take 

this assumption as an extreme scenario) we find that the overall global SOC stock decrease would almost double 

during the period 1850 – 2005 compared to a world without soil erosion (Fig. 6A). The largest impact of including 

erosion in the SOC modeling scheme is observed for Asia, where the decrease in the total SOC stock is 9 times 

larger when the effects of soil erosion are taken into account (Table 4, Fig. 8A). Some regions, such as West-Europe 375 

show instead a smaller SOC loss when erosion is taken into account. This is because we assume a steady state in 

1850, where carbon losses by erosion are equal to the carbon input by litter. And as soil erosion decreased during 

1850 - 2005 for Western Europe, mainly due to a decreasing trend in precipitation since 1965 and less intense 

expansion of agricultural- and grasslands (Fig. 5B), it partly offsets the decrease of SOC by LUC (Fig. 8).    

 380 

3.2 Validation of model results 

 

We calculated a total global SOC stock for 2005  in the absence of soil erosion (S3) of 2589 Pg, which is a factor of 

1.48 higher than the total SOC stock from GSCE (Shangguan et al., 2014) for a soil depth of 2m (Table 5). SOC 

stocks of forest in our model contribute the most to this overestimation. We find that SOC stocks of agricultural land 385 

show the best comparison to the stocks of the GSDE dataset (Table S3). Including soil erosion (S1) leads to a total 

SOC stock of 1936 Pg for the year 2005 (Table 5). We also find that including soil erosion in the SOC-dynamics 

scheme slightly improves the root mean square error (RMSE) between the simulated SOC stocks and those from 

GSDE, especially for the top 30cm of the soil profile. This improvement in the RMSE occurs especially in highly 

erosive areas. However, there are still large differences between our simulated SOC stocks and those from GSDE 390 

due to large uncertainties in the simulation of underlying processes that govern the SOC dynamics (Todd-Brown et 

al., 2014) and missing SOC transport and deposition after erosion. Furthermore, the total SOC stock of agricultural 

land is significantly lower than of the GSDE, because we assume a steady-state landscape at 1850, where soil 

erosion losses are equal to the carbon input to the soil.   

Using the Adj.RUSLE model to estimate agricultural soil loss by water erosion for the year 2005 resulted in a global 395 

soil loss flux of 14 Pg y
-1 

(Fig. 4). This flux is paralleled by a SOC loss flux of 0.19 Pg C y
-1 

after including soil 

erosion in the CTR simulation (Fig. 4). This soil loss flux is in the same order of magnitude as earlier high-

resolution assessments of this flux, while the SOC removal flux is slightly lower compared to previously published 

high-resolution estimates, but within the uncertainty (Table 6). We also find a fair agreement between our model 

estimates of recent agricultural soil and SOC erosion fluxes per continent and the high-resolution estimates 400 

(excluding tillage erosion) from the study of Doetterl et al. (2012) (Table 7). However, the continental SOC erosion 

fluxes from our study are generally lower, because of the lower SOC stocks on agricultural land. Only South-
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America shows a higher SOC flux for present-day compared to the high-resolution estimates of Doetterl et al. 

(2012), which is the result of the simulated high productivity of crops in the tropics.  

Furthermore, we find a cumulative soil loss of 1888 Pg and cumulative SOC removal flux of 27 Pg from agricultural 405 

land over the entire time period (CTR simulation). This soil loss flux lies in the range of 2480±720 Pg found by 

Wang et al. (2017) for the same time period, while the SOC removal flux is significantly lower than the 63 ± 19 Pg 

C found by Wang et al. (2017) . Wang et al. (2017) used only recent climate data in his study while we explicitly 

include the effects of changes in precipitation and temperature on global soil erosion rates and the SOC stocks in our 

study, which may explain this difference. 410 

 

4 Discussions 

 

4.1 Significance of including soil erosion in the ORCHIDEE emulator 

 415 

The significantly smaller increase in SOC stocks on agricultural land and grassland when soil erosion is taken into 

account (Fig. 7) explains the much higher decrease in the global SOC stock during 1850 – 2005 compared to a world 

without soil erosion (Fig. 6A). Due to the slow response of the global SOC stocks to perturbations, this impact of 

soil erosion can be even larger at longer timescales. The effect of soil erosion on the SOC stocks is also influenced 

by the mechanism where removal of SOC causes a sink in soils that tend to return to equilibrium.  420 

Furthermore, we find that the variability in the temporal trend of global SOC erosion is mainly determined by the 

variability in soil erosion rates and less by climate and rising atmospheric CO2 that are affecting SOC stocks (Fig. 4). 

Also the spatial variability in SOC erosion rates for the year 2005 and the spatial variability in the change of SOC 

erosion during 1850 – 2005 follow closely the spatial variability of soil erosion rates (Fig. 5B, D). This can be 

explained by the slow response of the SOC pools to changes in NPP and decomposition caused by CO2 and climate 425 

in contrast to the fast response of soil erosion to changes in land cover and climate.  

 

4.2 LUC versus precipitation and temperature change 

 

Although the variability in the temporal trends of soil and SOC erosion is dominated by the variability in 430 

precipitation changes, the overall trend follows the increase in agricultural land and grassland. 

If we separate the effects of LUC and climate variability co-varying with soil erosion we find that in the “LUC” 

erosion scenario with constant climate (see section 2.5), the total global soil loss from erosion increases by a factor 

of 1.27 since 1850, while in the “CC” erosion scenario with constant LUC the soil loss flux from erosion decreases 

by a factor of 1.12 (Fig 4). Analyzing the effects of LUC and climate variability separately on SOC erosion we find 435 

that in the LUC-only scenario (S2-S1) the total global SOC loss increases by a factor of 1.35 since 1850, while in 

the climate-change-only scenario (S2) SOC loss decreases by a factor of 1.12 (Fig 4). This shows that LUC slightly 

dominates the trend in both soil and SOC erosion fluxes on the global scale during 1850 - 2005. 
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For soil erosion, however, LUC dominates the temporal trend less than for SOC erosion. This effect is especially 

clear for grasslands, where we find that climate variability offsets a large part of the increase in soil erosion rates by 440 

LUC, but not in the case of SOC erosion. This is the due to the fact that LUC has a much stronger effect on the 

carbon content in the soil than the effect of climate and CO2 change on the timescale of the last 200 years. Also, 

intense soil erosion is typically found in mountainous areas where climate variability has significant impacts, while 

at the same time these regions are usually poor in SOC.  

Regionally, there are significant differences in the relative contributions of LUC versus climate variability to the 445 

total soil erosion flux (Fig. 2 & 5). In the tropics in South-America, Africa and Asia, where intense LUC 

(deforestation and expansion of agricultural areas) took place during 1850 - 2005, a clear increase in soil erosion 

rates is found even in areas with a significant decrease in precipitation due to a higher agricultural area being 

exposed to erosion. However, in regions where agriculture is already established and has a long history, precipitation 

changes seem to have more impact than LUC on soil erosion rates. A combination of our assumption that erosion 450 

rates are in steady state with carbon input to the soil at 1850, and minimal agricultural expansion during the last 200 

years may be the reasons for this observation. 

We also find that summing up the changes in soil erosion rates due to LUC alone and the changes in soil erosion due 

to climate variability alone do not exactly match the results in the changes in soil erosion obtained when LUC and 

climate variability are combined (Fig. 4). The non-linear differences between soil erosion rates calculated with 455 

changing land cover fractions in combination with a constant climate (“LUC”), and soil erosion rates calculated by 

subtracting the erosion simulation “CC” from “CC+LUC” are significant for agricultural land but much smaller for 

other PFTs and at the global scale. It implies that the LUC effect on erosion depends on the background climate. 

This is important to keep in mind when evaluating the LUC effect on SOC stocks in the presence of soil erosion. 

The decrease in global SOC stocks in simulation S3 are due to the various effects of LUC (without erosion) (Fig. 460 

6A). During 1850 – 2005 LUC has led to a decrease in natural vegetation and an increase in agricultural land. At the 

global scale, the replacement of natural PFTs by crop results in increased SOC decomposition and decreased carbon 

input to the soil by litter-fall due to harvest and a lower productivity. Regionally this effect of LUC may be different, 

depending for example on the natural PFTs that are replaced. Furthermore, the increase in carbon input into the soil 

after LUC due to increased litter fall when natural vegetation is removed may play a role, but this effect is only 465 

temporary. In addition, wood harvest after deforestation and crop harvest contribute to the decreased carbon input to 

the soils.  

We find that globally the SOC stocks decrease by 34 Pg due to LUC only during 1850 – 2005 (Fig. 6A, S3-S4). The 

overall change in carbon over this period summed up over all biomass, litter, SOC, and wood-product pools due to 

LUC without erosion is a loss of 118 Pg C, which lies in the range of cumulative carbon emissions by LUC from 470 

estimates of previous studies (Houghton and Nassikas, 2017; Li et al., 2017; Piao et al., 2009). The increase in soil 

erosion by expanding agricultural- and grasslands (S1-S2) amplifies the decrease of SOC stocks implied by LUC in 

absence of erosion (S3-S4) by 7 Pg or a factor of 1.2 (Fig. 6A). This leads to a total change in the overall carbon 

stock on land of -125 Pg. Regionally the amplification of the LUC effect on SOC stocks by the increase in soil 

erosion ranges between factor of 0.9 and 1.6 (Table 4).  475 
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Regionally, changes in precipitation can amplify or offset a large part of the increase in soil erosion due to LUC 

(Fig. 2 & 5E). Globally we find that the decrease in global total precipitation, especially in the Amazon after 

1960AD, partly offsets the increase in soil loss due to land use change (Fig. 4). It should be noted that the 

uncertainty in precipitation from global climate models for the Amazon is significant making this result uncertain 

(Mehran et al., 2014). Furthermore, we find that precipitation and temperature changes lead to a small net decrease 480 

in SOC stocks at the global scale since 1950 (Fig. 9, S8). This is likely related to the decreased productivity under 

drought stress (Piao et al., 2009). However, soil erosion offsets this decrease by a small net increase of 2 Pg in SOC 

stocks, mostly due to the decreasing trend in precipitation globally after 1950 AD.  

 

4.3 Effects of atmospheric CO2 increase  485 

 

In the ORCHIDEE model, increasing CO2 leads to a fertilization effect as it increases the NPP, and results in a 

significant increase in biomass production on land for most PFTs, depending on the temperature and moisture 

conditions (Arneth et al., 2017; Piao et al., 2009). Figure 9 shows the contribution of this fertilization effect to the 

cumulative SOC stock change during 1850 – 2005 (S4-S8), which is in the same order of magnitude as the effect of 490 

LUC excluding soil erosion. Together with climate variability the atmospheric CO2 increase offsets all the carbon 

losses by LUC in our model, and leads even to a net cumulative sink of carbon on land over this period of about 28 

Pg C (S3). This value is calculated by summing up the changes in all the biomass, litter and SOC pools, and is in 

line with other assessments that found a net carbon balance that is close to neutral over 1850 - 2005 (Arora et al., 

2011; Ciais et al., 2013; Khatiwala et al., 2009).  495 

In the presence of soil erosion, climate variability and the atmospheric CO2 increase lead to a slightly smaller net 

cumulative sink of carbon over land of 23 Pg C (S1), still within the uncertainty of assessed estimates (Arora et al., 

2011; Ciais et al., 2013; Khatiwala et al., 2009). 

When the CO2 fertilization effect is absent (S5, S7), we find that the temporal trend in the cumulative change of 

global SOC stocks is largely determined by the effect of LUC (Fig. 6B), and leads to a cumulative source of carbon 500 

on land of 92 Pg C. LUC alone leads to a cumulative decrease in SOC stocks of -29 Pg (S7-S8), which is 5 Pg less 

than the decrease in SOC stocks due to LUC in the presence of increasing atmospheric CO2 concentrations (S3-S4). 

The overall change in carbon over 1850-2005 summed up over all biomass, litter and SOC pools due to LUC alone 

is -99 Pg C in absence of increasing CO2 (S7-S8), which is 19 Pg less than the LUC effect on carbon stocks under 

variable atmospheric CO2 (S3-S4). LUC has indeed a smaller effect on carbon stocks in the absence of increasing 505 

CO2 concentrations as expected, because the productivity of the vegetation is lower (lower NPP) resulting in less 

biomass that can be removed by deforestation. 

The previously calculated global total soil erosion flux of 47.6 Pg y
-1 

leads to an annual SOC erosion flux of 0.65 Pg 

C y
-1

 in the year 2005 in the absence of increasing atmospheric CO2 (S5), which is 0.02 Pg C y
-1 

less than the SOC 

erosion flux under increasing CO2 (S1). The global cumulative SOC loss over the entire time period in the absence 510 

of increasing atmospheric CO2 is 2 Pg C less (S5). Although these changes in SOC are small, the effect of LUC on 

the SOC stocks is amplified by erosion with a factor of 1.27 in absence of increasing CO2 (S5-S6), which is 
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significantly larger than the effect of LUC with increasing CO2 (S1-S2). This means that the LUC effect in 

combination with soil erosion has a stronger effect on SOC stocks losses under constant atmospheric CO2 

conditions, because the CO2 fertilization effect does not replenish SOC in agricultural lands everywhere.  515 

 

4.4 Model limitations and next steps 

 

One of the uncertainties related to our modeling approach is the aggregation of the high-resolution soil erosion rates 

from the Adj.RUSLE model to the resolution of the emulator, which is needed because of the coarse resolution of 520 

ORCHIDEE and the limited computational power. In this way, we might not capture correctly the hotspots of 

carbon erosion and their effects on the local SOC dynamics in these regions.  

In addition, our soil erosion model is limited to water erosion only. This might result in biases for regions where 

other types of soil erosion are dominant such as, tillage erosion (Van Oost et al., 2007), gully erosion and landslides 

(Hilton et al., 2008; Hilton et al., 2011; Valentin et al., 2005).  525 

Although our erosion model runs on a daily time step, the soil erosion rates are calculated on a yearly time step, and 

thus we might miss extreme climate events triggering large soil losses. In addition, the Adj.RUSLE is not trained for 

extreme events. The effect of precipitation and temperature change on the SOC stocks under soil erosion might thus 

be larger than in our model simulations.  

Concerning the reconstructed PFT maps, only expansion and abandonment of agriculture is taken into account, but 530 

not soil conservation measures as implemented in Australia and the US to prevent erosion (Chappell et al., 2012; 

Houghton et al., 1999).  Regarding the land use change method that we applied, we only account for net land use 

change and do not account for shifting cultivation or distinguish between areas that have already seen LUC. Forest 

regrowth and forest age are also not considered, which could bring uncertainties in our estimates of LUC emissions 

(Yue et al., 2017).  535 

Finally, the ORCHIDEE model  lacks processes such as nitrogen and phosphorus limitations and priming, which 

affect the productivity and SOC decomposition (Goll et al., 2017; Guenet et al., 2016).  

 

5 Conclusions 

 540 

In this study we introduced a 4D modeling approach where we coupled soil erosion to the C-cycle of ORCHIDEE 

and analyzed the potential effects of soil erosion, without sediment deposition or transport, on the global SOC stocks 

over the period 1850 – 2005. To calculate global potential soil erosion rates we used the Adj.RUSLE model that 

includes scaling approaches to calculate soil erosion rates at a coarse spatial and temporal resolution. The SOC 

dynamics are represented by an emulator that imitates the behavior of the carbon cycle of the ORCHIDEE LSM and 545 

enables us to easily couple our soil erosion model to the C-cycle and calculate the effects of soil erosion under 

different climatic and land use conditions. Although our modeling approach is rather coarse and fairly simple, we 

found a fair agreement of our soil loss and SOC loss fluxes for the year 2005 with high-resolution estimates from 

other studies.   
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When applying the model on the time period 1850-2005 we found a total soil loss flux of 7183, where soil erosion 550 

rates increased strongest on agricultural land. This potential soil loss flux mobilized 100 Pg of SOC across all PFTs, 

which compares to 80% of the total net flux of carbon lost as CO2 to the atmosphere due to LUC estimated by our 

study for the same time period. When assuming that all this SOC mobilized is respired we find that the overall SOC 

change over the period 1850-2005 would double. The effect of soil erosion on the cumulative SOC change between 

1850 - 2005 differs significantly between regions, where the largest decrease in SOC due to soil erosion is found in 555 

Asia. The expansion of agricultural and grassland is the main driver behind the decreasing SOC stocks by soil 

erosion. Including soil erosion in the SOC dynamics amplifies the decrease in SOC stocks due to LUC by a factor of 

1.2. Overall, the potential effects of soil erosion on the global SOC stocks show that soil erosion needs to be 

included in future assessments of the terrestrial C-cycle and especially LUC.  

 560 
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Table 1: Description of simulations used in this study. The S1 simulation is also the control simulation (CTR) 

Simulation Climate 

change 

CO2 change Land use 

change 

Erosion 

S1 Yes Yes Yes Yes 

S2 Yes Yes No Yes 

S1-S2 No Yes Yes Yes 

S3 Yes Yes Yes No 

S4 Yes Yes No No 

S3-S4 No Yes Yes No 

S5 Yes No Yes Yes 

S6 Yes No No Yes 

S5-S6 No No Yes Yes 

S7 Yes No Yes No 

S8 Yes No No No 

S7-S8 No No Yes No 

 

Table 2: Area weighted average and standard deviation of soil and SOC erosion rates per PFT for the year 2005AD; 

the low standard deviation for SOC erosion is due to the coarse resolution of the emulator 

PFT Mean soil erosion 

(t ha
-1

 y
-1

) 

Standard  

deviation 

soil erosion 

(t ha
-1

 y
-1

) 

Mean SOC 

erosion  

(kg C ha
-1

 y
-1

) 

Standard  

deviation 

SOC erosion 

(kg C ha
-1

 y
-1

) 

Crop 
1.71 24.95 14 0.99 

Grass 
1.88 32.67 29 3.7 

Forest 
0.26 2.31 6.7 0.7 

 

Table 3: Model estimates per continent of area-weighted average annual soil erosion and SOC erosion rates for the 760 

year 2005, their spatial standard deviations, and the changes in average soil and SOC erosion rates since 1851; the 

low standard deviation for SOC erosion is due to the coarse resolution of the emulator.  

Region Mean soil 

erosion rate 

 

Standard 

deviation 

soil erosion 

rate 

 

Change in 

mean soil 

erosion rate 

Mean SOC 

erosion rate 

 

Standard 

deviation 

SOC erosion 

rate 

 

Change in 

mean SOC 

erosion rate 

 2005 2005 2005 -1851 2005 2005 2005-1851 

 (t ha
-1

 y
-1

) (t ha
-1

 y
-1

) (t ha
-1

 y
-1

) (kg C ha
-1

 y
-1

) (kg C ha
-1

 y
-

1
) 

(kg C ha
-1

 y
-1

) 
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Africa 2.69 68.47 0.69 21 2 7.3 

Asia 6.03 167.83 0.23 75 12 5 

Europe 2.45 73.70 0.48 21 5 2.1 

Australia 1.46 16.98 -0.50 5 0.2 -0.6 

South-

America 

4.69 117.58 1.35 86 18 38.4 

North-

America 

2.83 63.68 0.15 45 9 4.4 

Global 3.92 104.48 0.50 50 9.5 10.6 

 

Table 4: Model estimates per continent of changes in SOC stocks since 1851 from simulations S1, S2, S1-S2, S3, 

S4, S3-S4  

 

 

Region 

Change 

SOC stocks 

S1 

Change 

SOC stocks 

S2 

Change 

SOC stocks 

S1-S2 

Change SOC  

stocks 

S3 

Change 

SOC stocks 

S4 

Change 

SOC stocks 

S3-S4 

 Pg C Pg C Pg C Pg C Pg C Pg C 

Africa 0.91 3.11 -2.2 1.35 2.79 -1.44 

Asia -2.53 12.74 -15.27 -0.29 11.08 -11.37 

Europe -2.68 2.98 -5.66 -3.38 3.08 -6.46 

Australia 0.09 0.66 -0.57 0.24 0.66 -0.42 

South-

America -0.91 5.9 -6.81 0.48 4.86 -4.38 

North-

America -4.84 5.11 -9.95 -4.18 5.1 -9.28 

Global -9.96 30.5 -40.46 -5.78 27.57 -33.35 

 

Table 5: Statistics of a grid cell by grid cell comparison of global SOC stocks between GSDE soil database and 765 

simulations S1 (with erosion) and S3 (without erosion). RMSE is the root mean square error and r-value is the 

correlation coefficient of the linear regression between GSDE and S1 of S3. 

 

Soil 

depth 

(m) 

GSDE 

SOC total  

 (Pg) 

S1  

SOC total 

 (Pg) 

S3  

SOC total  

 (Pg) 

RMSE 

S1 

RMSE 

S3 

r –value 

S1 

r – value 

S3 

0.3 670 742 1058 78.07 101.62 0.53 0.57 

1 1356 1247 1677 126.39 155.63 0.59 0.58 

2 1748 1936 2589 211.76 267.45 0.58 0.57 

 

Table 6: Comparison of our model estimates of agricultural soil and SOC loss fluxes for the year 2005 with high-

resolution model/observation estimates. *Quinton et al. (2010) included also pasture land in their study. 
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Study Soil loss 

Pg y
-1

 

SOC loss 

Pg C y
-1

 

Van Oost et al. (2007) 17 0.25 

Doetterl et al. (2012) 13 0.24 

*Quinton et al. (2010)  28 0.5±0.15 

Chappell et al. (2015) 17- 65 0.37 – 1.27 

Wang et al. (2017) 17.7±1.70 0.44±0.06 

This study 14 0.19 

 

Table 7: Comparison of our model estimates of agricultural soil erosion and SOC erosion rates for the year 2005 770 

with model/observation estimates from Doetterl et al. (2012) per continent 

               Our Study Doetterl et al. (2012) 

Region Sediment flux 

2005 

Pg y
-1

 

SOC flux 

2005 

Tg C y
-1

 

Sediment flux 

2000 

Pg y
-1

 

 

SOC flux 

2000 

Tg C y
-1

 

Africa 2.6 29.0 2.4 39.5 

 Asia 5.4 71.0 4.9 90.0 

Europe 2.1 36.5 1.9 39.5 

Australia 0.2 1.3 0.3 4.3 

South-

America 

1.6 37.5 1.4 26.7 

North-

America 

0.7 17.0 1.6 31.5 

Total 12.6 192.2 12.5 231.5 

 

 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-527
Manuscript under review for journal Biogeosciences
Discussion started: 23 January 2018
c© Author(s) 2018. CC BY 4.0 License.



25 
 

 

Figure 1(A): The structure of the C emulator (see variable names in the text, paragraph 2.3). The C erosion fluxes 

are represented by the red arrows and calculated using the soil erosion rates from the Adj.RUSLE model  

 

 

 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-527
Manuscript under review for journal Biogeosciences
Discussion started: 23 January 2018
c© Author(s) 2018. CC BY 4.0 License.



26 
 

 

Figure 1(B): The land use change module of the emulator 
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Figure 2: Spatial patterns of the difference in forest, crop and grassland area between 1851 and 2005 represented as 775 

a fraction of a grid cell. And spatial patterns of the change in average annual precipitation between 1851 and 2005 in 

mm y
-1

, calculated as the total change in precipitation over the period 1851 – 2005 and divided by the number of 

years in this period. 
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Figure 3: Conceptual diagram of SOC affected by erosion in presence of other perturbations of the carbon cycle, 

namely climate variability, increasing atmospheric CO2 concentrations and land use change. A separation of these 780 

components and of the role of erosion is obtained with the factorial simulations (S1-S8), presented in Table 1 
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Figure 4: (A) Global annual soil erosion rates, (B) global annual SOC erosion rates, (C) agricultural annual soil 

erosion rates, (D) agricultural annual SOC erosion rates, (E) grassland annual soil erosion rates, (F) grassland annual 785 

SOC erosion rates, (G) forest annual soil erosion rates and (H) forest annual SOC erosion rates over the period 

1850-2005 for scenario’s with only LUC (green lines), scenario with only climate and CO2 change (blue line) and 

scenario with LUC, climate and CO2 change (red line). In figures A, C, E, and G the dashed green line is the 

difference between the CTR and S2 simulations, while the straight green line is the LUC-only simulation with the 

Adj.RUSLE model.  790 
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Fig 5: (A) Average annual soil erosion rates at a 5 arcmin resolution in the year 2005, (B) change in average annual 

soil erosion rates over the period 2005-1850, (C) average annual SOC erosion rates at a resolution of 2.5x3.75 

degrees in 2005, (D) change in average annual SOC erosion rates over the period 2005-1850, and ( E ) difference in 

SOC stocks at a resolution of 2.5x3.75 degrees between the year 2005 and 1850 (CTR simulation). For the SOC 795 

stocks positive values (green color) indicate a gain, while negative values (red color) indicating a loss. For the 

erosion rates positive values (red color) indicate an increase over 1850 - 2005, while negative values (green color) 

indicate a decrease over 1850 - 2005 

 

 

 

Figure 6: Cumulative SOC stock changes during 1850 – 2005 for (A) simulations with variable atmospheric  CO2 

concentration,  and (B) for simulations with a constant CO2 concentration, implied by variable land cover alone 800 

(dash-dotted lines), by variable climate (dashed lines), and variable land cover and climate (straight lines), without 

erosion (black lines) and with erosion (red lines). 
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Figure 7: Cumulative SOC stock changes per PFT during 1850 – 2005 implied by variable land cover, climate and 

CO2, without erosion (grey colors) and with erosion (red colors).  

 805 

 

Figure 8: A) Difference between the changes of SOC stocks over the period 1850-2005 under all perturbations 

including soil erosion and the changes in SOC stocks excluding soil erosion, S1-S3, B) Difference between the 

changes of SOC stocks under LUC including soil erosion and the changes in SOC stocks excluding soil erosion (S1-

S2)-(S3-S4), C) Difference between the changes of SOC stocks under a variable climate and CO2 increase including 

soil erosion and the changes in SOC stocks excluding soil erosion, S2-S4.  810 
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Figure 9: Contribution to the cumulative global SOC stock change over 1850-2005 by CO2 fertilization (red), effect 

of precipitation and temperature change on the carbon cycle (dark blue), effect of precipitation change on soil 

erosion ( aqua), LUC effect on the carbon cycle (dark green), and LUC effect on soil erosion (light green) 
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