Skip to main content

Advertisement

Log in

Ligno-aliphatic complexes in soils revealed by an isolation procedure: implication for lignin fate

  • SPECIAL ISSUE
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

For the last decades, the fate of lignins in soil was analyzed mainly with cupric oxide (CuO) oxidation, which is traditionally used to quantify soil lignin content and characterize its state of degradation. This method presents limitations due to incomplete depolymerization of the lignin structure. In this study, we used a physicochemical soil lignin isolation procedure, which permits recovery of a milled wall enzymatic lignin (MWEL) fraction. Elemental composition and chemical structure of MWEL isolated from plants and soil were characterized. Its incorporation rate into an agricultural loamy soil was studied using stable isotope analyses of MWEL isolated from soils after 0 to 9 years of maize cultivation after wheat. Comparison of MWEL isolated from maize tissues and soil provided information on evolution of the lignin structure once incorporated into soil. We observed aromatic–aliphatic complex formation, which could lead to its sequestration in soil evidenced by increasing MWEL content after 9 years of maize cultivation. The 13C natural abundance of isolated MWEL showed faster incorporation of MWEL (17.4 % of renewed lignins after 9 years) compared to total soil organic matter (9 % of total soil organic carbon (SOC) was renewed). This faster incorporation rate of MWEL compared to bulk soil organic matter is in agreement with lignin turnover observed by CuO oxidation. Radiocarbon dating of MWEL suggested a mean age of around 50 years. We conclude that lignin isolation allows (1) access to a different fraction compared to CuO oxidation and (2) a detailed characterization of lignin transformation in soil. We suggest that interaction with aliphatic compounds could be one possible pathway of lignin preservation in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almendros G, Guadalix ME, Gonzalez-Vila FJ, Martin F (1987) Preservation of aliphatic macromolecules in soil humins. Org Geochem 24:651–659

    Article  Google Scholar 

  • Andreyev LV, Nemirovskaya IB, Nikitin DI, Tomashchuk YA, Khmel'nitskiy RA (1980) Lipid composition of humus. Pochvovedeniye 8:61–68

    Google Scholar 

  • Augris N, Balesdent J, Mariotti A, Derenne S, Largeau C (1998) Structure and origin of insoluble and non-hydrolyzable, aliphatic organic matter in a forest soil. Org Geochem 28:119–124

    Article  CAS  Google Scholar 

  • Bahri H, Dignac MF, Rumpel C, Rasse DP, ChenuC MA (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988

    Article  CAS  Google Scholar 

  • Bahri H, Rasse DP, Rumpel C, Dignac MF, Bardoux G, Mariotti A (2008) Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biol Biochem 40:1916–1922

    Article  CAS  Google Scholar 

  • Baldock JA, Oades JM, Vassallo AM, Wilson MA (1990) Solid-state CP/MAS 13C NMR analysis of bacterial and fungal cultures isolated from a soil incubated fith glucose. Aust J Soil Res 28:213–225

    Article  CAS  Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurement of soil organic matter turnover using 13C natural abundance. In: Yamasaki SI, Boutton TW (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 83–111

    Google Scholar 

  • Benner R, Fogel ML, Sprague EK, Hoson R (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708–710

    Article  CAS  Google Scholar 

  • Berg B, Hannus K, Popoff T, Theander O (1982) Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest. I. Can J Bot 60:1310–1319

    Article  CAS  Google Scholar 

  • Clifford DJ, Carson DM, McKinney DE, Bortiatynsky JM, Hatcher PG (1995) A new rapid technique for the characterization of lignin in vascular plants: thermochemolysis with tetramethylammonium hydroxide (TMAH). Org Geochem 23:169–175

    Article  CAS  Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York, p 154

    Google Scholar 

  • Dignac MF, Rumpel C (2006) Relative distributions of phenol dimers and hydroxyl acids in a cultivated soil and above ground maize tissue. Org Geochem 37:1634–1638

    Article  CAS  Google Scholar 

  • Dignac MF, Bahri H, Rumpel C, Rasse DP, Bardoux G, Balesdent J, Girardin C, Chenu C, Mariotti A (2005) Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France). Geoderma 128:3–17

    Article  CAS  Google Scholar 

  • Dignac MF, Pechot N, Thevenot M, Lapierre C, Bahri H, Bardoux G, Rumpel C (2009) Isolation of soil lignins by combination of ball-milling and cellulolysis: evaluation of purity and isolation efficiency with pyrolysis/GC/MS. J Anal Appl Pyrol 85:426–430

    Article  CAS  Google Scholar 

  • Dümig A, Rumpel C, Dignac MF, Schad P, Kögel-Knabner I (2013) The role of lignin for the δ13C signature in C4 grassland and C3 forest soils. Soil Biol Biochem 57:1–13

    Article  Google Scholar 

  • FAO (1998) World reference base for soil resources. ISSS-ISRIC-FAO, FAO, Rome, Italy, World soil resources reports 84, pp 109

  • Faravelli T, Frassoldati A, Migliavacca G, Ranzi E (2010) Detailed kinetic modelling of the thermal degradation of lignins. Biomass Bioenergy 34:290–301

    Article  CAS  Google Scholar 

  • Girardin C, Mariotti A (1991) Analyse isotopique du 13C en abondance naturelle dans le carbone organique: un système automatique avec robot préparateur. Cah Orstom sér Pédol XXVI:371–380

    Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  • Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos S (2006) Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem 54:5939–5947

    Article  PubMed  CAS  Google Scholar 

  • Guerra A, Lucia LA, Argyropoulos DS (2008) Isolation and characterization of lignins from Eucalyptus grandis Hill ex Maiden and Eucalyptus globulus Labill. By enzymatic mild acidolysis (EMAL). Holzforstung 62:24–30

    CAS  Google Scholar 

  • Haider K (1986) Changes in substrate composition during the incubation of plant residues in soil. In: Jensen V, Koehler A, Soerensen LH (eds) Microbial communities in soil. Elsevier, London, pp 133–147

    Google Scholar 

  • Hedges JI (1990) In: Perdue EM, Gjessing ET (eds) Organic acids in aquatic ecosystems. Wiley, New York, pp 43–63

    Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178

    Article  CAS  Google Scholar 

  • Heim A, Schmidt MWI (2007) Lignin turnover in arable soil and grassland analysed with two different labelling approaches. Eur J Soil Sci 58:599–608

    Article  CAS  Google Scholar 

  • Hofmann A, Heim A, Christensen BT, Miltner A, Gehre M, Schmidt MWI (2009) Lignin dynamics in two 13C-labelled arable soils during 18 years. Eur J Soil Sci 60:250–257

    Article  CAS  Google Scholar 

  • Jakab E, Faix O, Till F (1997) Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrol 40–41:171–186

    Article  Google Scholar 

  • Jones JG (1969) Studies on lipids of soil micro-organisms with particular reference to hydrocarbons. J Gen Microbiol 59:145–152

    Article  PubMed  CAS  Google Scholar 

  • Jull AJT, Burr GS, Beck JW, Donahue DJ, Biddulph D, Hatheway AL, Lange TE, McHargue LR (2003) Accelerator mass spectrometry at Arizona: geochronology of the climate record and connections with the ocean. J Environ Radioact 69:3–19

    Article  PubMed  CAS  Google Scholar 

  • Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118

    Article  CAS  Google Scholar 

  • Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass-spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75:5336–5344

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kleber M, Johnson MG (2010) Chapter 3—advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agron 106:77–142

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kögel-Knabner I, de Leeuw JW, Hatcher PG (1992) Nature and distribution of alkyl carbon in forest soil profiles: implications for the origin and humification of aliphatic biomacromolecules. Sci Total Environ 117–118:175–185

    Article  Google Scholar 

  • Kujawinski EB, Longnecker K, Blough NV, Del Vecchio R, Finlay L, Kitner JB, Giovannoni SJ (2009) Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry. Geochim Cosmochim Ac 73:4384–4399

    Article  CAS  Google Scholar 

  • Lapierre C, Monties B (1986) Preparative thioacidolysis of spruce lignin: isolation and identification of main monomeric products. Holzforschung 40:47–50

    Article  CAS  Google Scholar 

  • Lapierre C, Gaudillere JP, Monties B, Guittet E, Rolando C, Lallemand JY (1983) Enrichissement photosynthètique en carbone 13 de lignines de peuplier: Caractérisation préliminaire par acidolyse et RMN13C. Holzforschung 37:217–224

    Article  CAS  Google Scholar 

  • Lichtfouse E, Leblond C, DaSilva M, Behar F (1998) Occurrence of biomarkers and straight-chain biopolymers in humin: implication for the origin of soil organic matter. Naturwissenschaften 85:497–501

    Article  CAS  Google Scholar 

  • Liitiä T, Maunu SL, Sipilä J, Hortling B (2002) Application of solid-state 13C NMR spectroscopy and dipolar dephasing technique to determine the extent of condensation in technical lignins. Solid State Nucl Magn 21:171–186

    Article  Google Scholar 

  • Lobe I, Du Preez CC, Amelung W (2002) Influence of prolonged arable cropping on lignin compounds in sandy soils of the South African Highveld. Eur J Soil Sci 53:553–562

    Article  CAS  Google Scholar 

  • Marseille F, Disnar JR, Guillet B, Noack Y (1999) n-Alkanes and free fatty acids in humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central (Mont-Lozère), France. Eur J Soil Sci 50:433–441

    Article  CAS  Google Scholar 

  • Martin JP, Haider K, Kassim G (1980) Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Soil Sci Soc Am J 44:1250–1255

    Article  CAS  Google Scholar 

  • Mendez-Millan M, Dignac MF, Rumpel C, Rasse DP, Bardoux G, Derenne S (2012) Contribution of maize root derived C to soil organic carbon throughout an agricultural soil profile assessed by compound specific 13C analysis. Org Geochem 42:1502–1511

    Article  Google Scholar 

  • Miltner A, Zech W (1998) Beech leaf litter lignin degradation and transformation as influenced by mineral phases. Org Geochem 28:457–463

    Article  CAS  Google Scholar 

  • Quénéa K, Derenne S, Largeau C, Rumpel C, Mariotti A (2005) Spectroscopic and pyrolytic features and abundance of the macromolecular refractory fraction in a sandy acid forest soil (Landes de Gascogne, France). Org Geochem 36:349–362

    Article  Google Scholar 

  • Rasse DP, Dignac MF, Bahri H, Rumpel C, Mariotti A, Chenu C (2006) Lignin turnover in an agricultural field: from plant residues to soil-protected fractions. Eur J Soil Sci 57:530–538

    Article  CAS  Google Scholar 

  • Reimer PJ, Reimer RW (2012) CALIBomb radiocarbon calibration: accessed July 29, 2012, at http://calib.qub.ac.uk/CALIBomb/

  • Reimer PJ, Brown TA, Reimer RW (2004) Discussion; reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304

    CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn M, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Schweizer M, Fear J, Cadisch G (1999) Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Commun Mass Spectrom 13:1284–1290

    Article  PubMed  CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Tareq SM, Noriyuki T, Ohta K (2004) Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment. Sci Total Environ 324:91–103

    Article  PubMed  CAS  Google Scholar 

  • van Krevelen DW (1950) Graphical–statistical method for the study of structure and reaction processes of coal. Fuel 29:269–284

    Google Scholar 

  • Wald WJ, Ritchie PF, Purves CB (1947) The elementary composition of lignin in northern pine and black spruce woods, and of the isolated Klason and periodate lignins. J Am Chem Soc 69:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA (1990) Application of nuclear magnetic resonance spectroscopy to organic matter in whole soils. In: Selected readings, American Society of Agronomy and Soil Science Society of America (Eds), Humic substances in soil and crop sciences, Amer Society of Agronomy, Madison, pp. 221–260

  • Winkler A, Haumaier L, Zech W (2005) Insoluble alkyl carbon components in soils derive mainly from cutin and suberin. Org Geochem 36:519–529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Institut National de Recherche Agronomique (INRA) and the ANR-DynaMOS project (ANR-07-BLANC-0222). The authors thank Pr. C. Lapierre and B. Pollet from the Institut Jean-Pierre Bourgin in Versailles for their generous and really appreciated help in performing extractions of the MWEL. J.P. Pétraud is acknowledged for the excellent technical management of the Closeaux experiment since 1993 and for the careful soil sampling and preparation. The Unité de Science du Sol of INRA in Versailles is also acknowledged for supporting this experiment since 1993. Thanks also go to the reviewers and to the editor for their useful comments, improving the quality of this paper. This is LSCE contribution 4590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Thevenot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thevenot, M., Dignac, MF., Mendez-Millan, M. et al. Ligno-aliphatic complexes in soils revealed by an isolation procedure: implication for lignin fate. Biol Fertil Soils 49, 517–526 (2013). https://doi.org/10.1007/s00374-013-0795-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0795-5

Keywords

Navigation