Skip to main content
Log in

Making Lipid Membranes Rough, Tough, and Ready to Hit the Road

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Solid-supported lipid bilayers hold strong promise as bioanalytical sensor platforms because they readily mimic the same multivalent ligand-receptor interactions that occur in real cells. Such devices might be used to monitor air and water quality under real-world conditions. At present, however, supported membranes are considered too fragile to survive the harsh environments typically required for non-laboratory use. Specifically, they lack the resiliency to withstand air exposure and the thermal and mechanical stresses associated with device transport, storage, and continuous use over long periods of time. Several successful strategies are now emerging to make supported membranes tougher. These strategies incorporate mimics of the cytoskeleton and glycocalyx of real cell membranes. The promise of these more robust lipid bilayer architectures indicates that future materials should be designed to more fully resemble the actual structure of cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Knobler, A.A.F. Mahoud, and L.A. Pray, Eds., Biological Threats and Terrorism: Assessing the Science and Response Capabilities: Workshop Summary (National Academy Press, Washington, DC, 2002).

  2. A recent review of the state of preparedness for influenza was discussed in a special issue of Science 312 (2006) p. 379. See also an editorial in the same issue that discusses the spread of avian flu and its transfer to humans, with ~50% lethality of infected humans.

  3. Please see Biological Threats and Terrorism: Assessing the Science and Response Capabilities: Workshop Summary (2002) p. 71, published by the National Academies Press and available online at www.nap.edu/openbook/0309082536/html/71.html; and K. Lowe, G.S. Pearson, and V. Utgoff, “Potential values of a simple biological warfare protective mask,” in Biological Weapons: The Limiting Threat, edited by J. Lederberg (MIT Press, Cambridge, MA, 1999) p. 263.

  4. For example, see H. Pearson, “Dying cell tolls warning bell. Collapsing membrane makes ‘canary on a chip,’” in news@nature.com, June 16, 2003, doi:10.1038/news030609–19 (accessed May 2006).

  5. H.M. McConnell, T.H. Watts, R.M. Weis, and A.A. Brian, Biochim. Biophys. Acta 864 (1986) p. 95.

    Google Scholar 

  6. E. Sackmann, Science 271 (1996) p. 43.

    Google Scholar 

  7. J.T. Groves and S.G. Boxer, Acc. Chem. Res. 35 (2002) p. 149.

    Google Scholar 

  8. P.S. Cremer and T.L. Yang, J. Am. Chem. Soc. 121 (1999) p. 8130.

    Google Scholar 

  9. M.L. Pisarchick, D. Gesty, and N.L. Thompson, Biophys. J. 63 (1992) p. 215.

    Google Scholar 

  10. J.T. Groves and S.G. Boxer, Biophys. J. 69 (1995) p. 1972.

    Google Scholar 

  11. J.T. Groves, C. Wuelfing, and S.G. Boxer, Biophys. J. 71 (1996) p. 2716.

    Google Scholar 

  12. P.S. Cremer, J.T. Groves, L.A. Kung, and S.G. Boxer, Langmuir 15 (1999) p. 3893.

    Google Scholar 

  13. A.M. Leito, R.C. Cush, and N.L. Thompson, Biophys. J. 85 (2003) p. 3294.

    Google Scholar 

  14. L.L. Kiessling and N.L. Pohl, Chem. Biol. 3 (1996) p. 71.

    Google Scholar 

  15. M. Mammen, S.-K. Choi, and G.M. Whitesides, Angew. Chem. Int. Ed. 37 (1998) p. 2754.

    Google Scholar 

  16. J.T. Groves, N. Ulman, and S.G. Boxer, Science 275 (1997) p. 651.

    Google Scholar 

  17. J.T. Groves, L.K. Mahal, and C.R. Bertozzi, Langmuir 17 (2001) p. 5129.

    Google Scholar 

  18. J.T. Groves, N. Ulman, P.S. Cremer, and S.G. Boxer, Langmuir 14 (1998) p. 3347.

    Google Scholar 

  19. R. Mouradian, C. Womersley, L.M. Crowe, and J.H. Crowe, Biochim. Biophys. Acta 778 (1984) p. 615.

    Google Scholar 

  20. J.H. Crowe, L.M. Crowe, and D. Chapman, Science 223 (1984) p. 701.

    Google Scholar 

  21. T. Yang, O.K. Baryshnikova, H. Mao, M.A. Holden, and P.S. Cremer, J. Am. Chem. Soc. 125 (2003) p. 4779.

    Google Scholar 

  22. T. Yang, E.E. Simanek, and P.S. Cremer, Anal. Chem. 72 (2000) p. 2587.

    Google Scholar 

  23. T.L. Yang, S.Y. Jung, H.B. Mao, and P.S. Cremer, Anal. Chem. 73 (2001) p. 165.

    Google Scholar 

  24. P.S. Cremer and S.G. Boxer, J. Phys. Chem. B 103 (1999) p. 2554.

    Google Scholar 

  25. K. Morigaki, K. Kiyosue, and T. Taguchi, Langmuir 20 (2004) p. 7729.

    Google Scholar 

  26. E. Ross, B. Bondurant, T. Spratt, J.C. Conboy, D.F. O’Brien, and S.S. Saavedra, Langmuir 17 (2001) p. 2305.

    Google Scholar 

  27. J.C. Conboy, S. Liu, D.F. O’Brien, and S.S. Saavedra, Biomacromolecules 4 (2003) p. 841.

    Google Scholar 

  28. K. Morigaki, H. Schonherr, C.W. Frank, and W. Knoll, Langmuir 19 (2003) p. 6994.

    Google Scholar 

  29. K. Morigaki, T. Baumgart, U. Jonas, A. Offenhäusser, and W. Knoll, Langmuir 18 (2002) p. 4082.

    Google Scholar 

  30. T. Petralli-Mallow, K.A. Brigmann, L.J. Richter, J.C. Stephenson, and A.L. Plant, Proc. SPIE 3858 (1999) p. 25.

    Google Scholar 

  31. S.K. Phillips, Y. Dong, D. Carter, and Q. Cheng, Anal. Chem. 77 (2005) p. 2960.

    Google Scholar 

  32. A.L. Plant, Langmuir 15 (1999) p. 5128.

    Google Scholar 

  33. J.C. Munro and C.W. Frank, Langmuir 20 (2004) p. 3339.

    Google Scholar 

  34. J.C. Munro and C.W. Frank, Langmuir 20 (2004) p. 10567.

    Google Scholar 

  35. M. Halter, Y. Nogata, O. Dannenberger, T. Sasaki, and V. Vogel, Langmuir 20 (2004) p. 2416.

    Google Scholar 

  36. K. Kim, K. Shin, H. Kim, C. Kim, and Y. Byun, Langmuir 20 (2004) p. 5396.

    Google Scholar 

  37. E. Ross, L. Rozanski, T. Spratt, S. Liu, D.F. O’Brien, and S.S. Saavedra, Langmuir 19 (2003) p. 1752.

    Google Scholar 

  38. M.A. Holden, S.-Y. Jung, T. Yang, E.T. Castellana, and P.S. Cremer, J. Am. Chem. Soc. 126 (2004) p. 6512.

    Google Scholar 

  39. F. Albertorio, A.J. Diaz, T. Yang, V.A. Chapa, S. Kataoka, E.T. Castellana, and P.S. Cremer, Langmuir 21 (2005) p. 7476.

    Google Scholar 

  40. E. Sackmann, FEBS Lett. 346 (1994) p. 3.

    Google Scholar 

  41. E. Evans and W. Rawicz, Phys. Rev. Lett. 79 (1997) p. 2379.

    Google Scholar 

  42. N.M. Hooper, Curr. Biol. 8 (1998) p. R114.

    Google Scholar 

  43. S.V. Evans and C.R. MacKenzie, J. Mol. Rec. 12 (1999) p. 155.

    Google Scholar 

  44. A. Albersdorfer, A.T. Feder, and E. Sackmann, Biophys. J. 73 (1997) p. 245.

    Google Scholar 

  45. P.G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).

    Google Scholar 

  46. P.G. De Gennes, Macromolecules 13 (1980) p. 1069.

    Google Scholar 

  47. P.G. De Gennes, Adv. Colloid Interface Sci. 27 (1987) p. 189.

    Google Scholar 

  48. D. Needham, T.J. McIntosh, and D. Lasic, Biochim. Biophys. Acta 1108 (1992) p. 40.

    Google Scholar 

  49. D. Marsh, R. Bartucci, and L. Sportelli, Biochim. Biophys. Acta 1615 (2003) p. 33.

    Google Scholar 

  50. O. Tirosh, Y. Barenholz, J. Katzhendler, and A. Priev, Biophys. J. 74 (1998) p. 1371.

    Google Scholar 

  51. I. Bivas, M. Winterhalter, P. Meleard, and P. Bothorel, Europhys. Lett. 41 (1998) p. 261.

    Google Scholar 

  52. P.L. Hansen, J.A. Cohen, R. Podgomik, and A.V. Parsegian, Biophys. J. 84 (2003) p. 350.

    Google Scholar 

  53. D. Marsh, Biochim. Biophys. Acta 1286 (1996) p. 183.

    Google Scholar 

  54. D. Marsh, Biophys. J. 81 (2001) p. 2154.

    Google Scholar 

  55. P. Harder, M. Grunze, G.M. Whitesides, P.E. Laibinis, and R. Dahint, J. Phys. Chem. B 102 (1998) p. 426.

    Google Scholar 

  56. D. Schwendel, R. Dahint, S. Herrwerth, M. Schloerholz, W. Eck, and M. Grunze, Langmuir 17 (2001) p. 5717.

    Google Scholar 

  57. K.L. Prime and G.M. Whitesides, J. Am. Chem. Soc. 115 (1993) p. 10714.

    Google Scholar 

  58. M.L. Wagner and L.K. Tamm, Biophys. J. 79 (2000) p. 1400.

    Google Scholar 

  59. M. Tanaka and E. Sackmann, Nature 437 (2005) p. 656.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, S., Albertorio, F. & Cremer, P.S. Making Lipid Membranes Rough, Tough, and Ready to Hit the Road. MRS Bulletin 31, 536–540 (2006). https://doi.org/10.1557/mrs2006.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.139

Keywords

Navigation