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Part I

I N T R O D U C T I O N





1
M OT I VAT I O N

G L I O B L A S TO M A M U LT I F O R M E R E S E A R C H A N D T R E AT M E N T

Glioblastoma Multiforme (GBM), or simply glioblastoma, is a very ag-
gressive and invasive brain cancer. For most of the patients with this
disease the prognosis after diagnose is only one year, which makes
this disease one of the most frightening cancers. Additionally, because
of its origin in the white matter of the brain is difficult to perform any
type of intervention, analysis or treatment test without being disruptive
in the life of the patient.

Over the years histology has been used as the main tool to clas-
sify gliomas. But this capacity is reduced in anaplastic tumors, where Glioma: General

term for tumors in

the nervous

system that arrise

from glial cells

the cells are not differentiated. This is the case for GBM where its ad-
vance state of undifferentiation makes it difficult to analyze in a deeper
manner.

G E N E R A L P R O B L E M S W I T H I N T E G R AT I V E H I G H - T H R O U G H P U T

DATA A N A LY S I S I N C A N C E R

H I G H - T H R O U G H P U T M E T H O D O L O G I E S In the last decades
there has been a strong development in the denominated high-
throughput methodologies. These methodologies focus on the mea-
surement of biological molecular profiles in a fast and large scale.

Different techniques and platforms have been developed to study
and measure a plethora of molecular entities such as mRNA and mi-
croRNA expression, mutations and protein identification. This new set
of techniques have allowed researches to analyze not only a large
number of molecular elements in a fast manner, but also to study large
populations of individuals.

Thanks to these methodologies a new era in biological analysis has
begun, but with it, the number of issues have risen as well. These is-
sues go from the development and implementation of computational
methods used to process and store such amounts of data to the inte-
gration of these large sets of heterogeneous data.

The latter issue is the one this work focuses: the integration of highly
heterogeneous data. In particular, we want to integrate this data to find
information that is not possible to detect by analyzing the data in a
stand-alone manner.
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E F F E C T S I N C A N C E R R E S E A R C H The possibility to study larges
amounts of diverse data opens a new approach to the study and
treatment of complex diseases such as cancer. These diseases are
comprised of effects in a large number of different molecules and in-
termolecular interactions, such as genetic and epigenetic aberrations.
While it is possible to study these different molecular elements sepa-Hypothesis:

Cancer as a

system disease
rately, the results obtained won’t necessarily explain the state of the
disease as a system. This is a problem that can be solved by applying
an integrative strategy and by doing so, a wider and deeper under-
standing of cancer and its mechanics can be gained.

Additionally, thanks to this deeper understanding of the disease it
would be possible to move from a general understanding of the dis-
ease into a personalized analysis for each patients or group of them.
Which in turn could give rise to the development of personalized vac-
cines and other treatments.

The idea of a personalized understanding of the disease can be
applied to the case of complex diseases phenotypes, where even inHypothesis:

Patients with

complex diseases

can be grouped by

their molecular

interactions

the case of indistinguishable phenotypes under the microscope, their
molecular signatures and relationships are distinct between samples
or groups and they can be segregated into different subtypes.

C O M P L E X I T Y O F T H E A N A LY S I S The proposed analysis suffers
from a double complexity. On one side, the search for a statistical
model which allows the integration of heterogeneous biological data
and on the other, the capability of such a model to segregate the sam-
ples used into different groups with unique and distinctive characteris-
tics.

The heterogeneity of the molecular profiles makes it difficult to cre-
ate a framework were all these different kinds of data can be aggre-
gated and their particular effects analyzed, e. g. to compare the effect
of methylation beta values with the effect of the overexpression of a
microRNA.

Then, with the trained model and its results analyzed, the question
about how to use this complex statistical model to study not only the
relationships between the molecules, but how the patients are related
to each other remains.

P O S S I B L E I M P R OV E M E N T S I N C A N C E R R E S E A R C H The imple-
mentation and execution of this novel approach would benefit cancer
research tremendously from two different, but complementary angles:

The first one is the focus in the interaction between molecules be-
longing to different molecular layers, these inter-layer relationships canMolecular layers

such as: gene

expression, point

mutations,

methylation and

others

explain effects that are not present in the analysis of a singular molec-
ular profiles.
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The second angle is to use the discoveries of these new relation-
ships (multi-layer interactions) in the cancer samples to classify pa-
tients by them and to find new targets for drugs and future treatments.

Additionally, we hypothesized that only a fraction of elements and Hypothesis: Only

subsets of

molecular

elements are

relevant

relationships are necessarily to perform this classification and analysis.
This is based on the idea that only a subset of genetic elements trigger
these modifications or are affected by them and for the most elements
no aberration is detected.
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2
I N T R O D U C T I O N

In this chapter, the state of the art in integrative cancer and GBM re-
search will be presented. This comprises the use of different molec-
ular and clinical data to study cancer and the application of machine
learning algorithms to the analysis and classification of oncology data.

Then, the objectives of this project are presented and finally the
organization of this thesis is explain.

2.1 S TAT E O F T H E A RT I N G L I O B L A S TO M A M U LT I F O R M E R E -
S E A R C H A N D I N T E G R AT I V E A N A LY S I S

2.1.1 Traditional classification of gliomas

Cancer is a major health issue in many parts of the world and is consid-
ered one of the most frightening diseases in our time. During the year
2015 in the United States of America it is the second leading cause
of death with an expected number of deaths close to 600 000 (Siegel
et al., 2015). These statistics have made cancer one of the main re-
search targets, including new and stronger initiatives to deal with this
disease, such as the newly presented National Cancer Moonshot Ini-
tiative1 in the United States.

Even when malignant brain tumors represent a small portion of the
total yearly number of deaths by cancer (∼ 2,5%) (Siegel et al., 2015),
their prognosis, invasiveness and negative repercussions in the pa-
tients’ life made them a focus in cancer research. Around 80 % of
malignant brain tumors correspond to malignant gliomas. Gliomas re-
fer to a tumor that originated from the neoplastic glial cells located
anywhere in the central nervous system, most generally in the brain
(Q. T. Ostrom et al., 2014; Cloughesy et al., 2014).

Classification of gliomas has historically been a very difficult task, Histology: Study of

the anatomy of

cells and other

minute structures

in animals and

plants.

and it was not until 1920 when the so called histological period started
(Scherer, 1940). In this period, the analysis of the anatomy of the cells
using microscopy is used for the study and classification of gliomas.

Since this period, gliomas have been organized based on their re-
semblance to their presumed cells of origin, where their histological Immunohistochem-

ical: application of

histochemical and

immunologic

methods to

chemical analysis

of living cells and

tissues.

and immunohistochemical profiles are used for this task. Through this
methodology the World Health Organization has segmented malig-
nant gliomas into astrocytomas, oligodendrogliomas, mixed oligoastro-
cytomas and ependymomas (Goodenberger and Jenkins, 2012).

1 http://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
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In addition, the degree of aggressiveness, undifferentiation, anapla-
sia and necrosis of the malignant glioma is used for the grading of
the tumor. The grade goes from I to IV, with grade I being tumors with
low proliferative potential with the possibility of cure through surgical
resection to grade IV, being the highest grade, tumors associated to
fast evolution and fatal outcome, that show malignancy, an active re-
production and are necrosis-prone (Louis et al., 2007; Goodenberger
and Jenkins, 2012).

As an example, oligodendrogliomas can be classified into grades
II and III (low grade and anaplastic), while astrocytomas can be clas-
sified into grade II (low grade), III (anaplastic) and IV (primary and
secondary gliomastomas) (Goodenberger and Jenkins, 2012).

In this work we will focus in particular in GBM. This is due to their
already shown aggressiveness, but also because of their fast devel-
opment and the significant portion of the total number of malignant
gliomas that they represent. This and other characteristics are shown
in detail in the next section.

2.1.2 Glioblastoma multiforme profile and classification

In order to analyze GBM, it is necessarily to present the main charac-
teristics of these tumors. In particular, their development path, survival
rate, genetic profiles and patients profile are detailed in this section.

D E V E L O P M E N T PAT H : Glioblastoma Multiformes are classified as
grade IV astrocytomas, but the path of their development is not unique.
GBM development can follow two paths (Ohgaki, 2005; Goodenberger
and Jenkins, 2012):

The first one is a de novo development, where there is small (even
none) clinical or histological evidence of development from a lower
grade tumor, and a very fast development (< 6 months) which are
present at the time of diagnosis as full-blown tumors.

In the second path, GBMs can be developed in slow fashion from pre-
viously diagnosed lower grade astrocytomas (low grade and anaplas-
tic).

The former variety is called Primary Glioblastoma Multiforme, while
the latter is denominated Secondary Glioblastoma Multiforme. These
two types of GBMs are the main subdivision of GBM tumors and any
new classification method should be compared to them.

S U RV I VA L R AT E : Different types of gliomas have distinctive sur-
vival rates, which is related to their grade. This is possible to observe
in the 5-year survival rate for each astrocytoma, where for low grade
(diffusive) astrocytomas, anaplastic astrocytomas and GBMs (including
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primary and secundary GBMs) it is ∼ 48%, ∼ 28% and ∼ 5% respec-
tively (Quinn T Ostrom et al., 2015).

In addition, the median survival for secondary GBMs is 7,8 months,
which has been shown to be significant different compared to the me-
dian survival for primary GBMs which is 4,7 months (Ohgaki, 2005).

G E N E T I C A B E R R AT I O N S : During the last decades, the use of ge-
netic studies have allowed the analysis of the different GBMs by their
genetic profiles. Thanks to this analysis is it possible to see the con-
trast between primary and secondary GBMs, and the accumulation of
aberrations during the development of secondary GBMs.

For the comparison between primary and secondy GBMs several dif-
ferences between their genetic profiles have been discovered. The
most significant ones, considering difference in incidence ratio, are
shown here. In the first place, the LOH in chromosome 10 is the most LOH: Loss of

heterozygosity.

Loss of one of the

allele in

heterozygous

somatic cell.

frequent genetic aberration in GBMs. This alteration occurs in 60-80 %
of the cases and is found in both GBMs (Ohgaki, 2005). By analyz-
ing this LOH with more detail it is found that the LOH of the chromo-
somal arm 10q has a similar frequency of incidence in both primary
and secondary GBMs, but the LOH for 10p is found mostly in primary
GBMs. Additionally, mutations in the PTEN gene and amplifications of
EGFR have been found mostly exclusively in primary glioblastomas,
with rates of 25 % and 36 % respectively (Ohgaki, 2005; Ohgaki and
Kleihues, 2007).

On the other side, mutations in the gene TP53 are mostly found
in secondary GBMs (65 % versus 28 % (Ohgaki and Kleihues, 2007)).
Furthermore, this aberration is found in the precursor cells of sec-
ondary glioblastomas (low grade and anaplastic astrocytomas) in a
rate > 50% and are the first aberration detected in them. LOH in the
arm 19q also appears in a much larger rate in secondary GBMs (> 50%
) than in primary (< 5% ).

In a similar way, mutation in the gene IDH1 have been observed
in around 70 % of the grade II and III astrocytomas (low grade and
anaplastic) and other gliomas such as oligodendrogliomas. This high
incidence is also present in secondary glioblastomas (> 70%), but has
a smaller presence in patients with primary glioblastomas (∼ 5%), and
because of this, this aberration has the potential of being a very spe-
cific marker for secondary GBMs (Ohgaki and Kleihues, 2013; Agnihotri
et al., 2013).

In the top of Figure 1, the different development paths of GBMs are
shown. The 3 different paths and the main genetic difference between
them cam be seen.

AG E D I S T R I B U T I O N : The age of the patients diagnosed with GBM

differs between the two types. For patients with primary GBMs the
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2.1.3 State of integrative analysis

The genetic alterations presented before were obtained from studies
that analyze one type of data at the time. The data can be gene ex-
pression signatures measured with microarrays, copy number varia-
tion measured with aCGH, networks such as pathways and others. aCGH: Array

Comparative

Genomic

Hybridization

In the last decade, an integrative approach has been applied to the
study of complex diseases. In this type of studies, several types of
data, also called ’omics’ or layers, are integrated into large-scale mul-
tidimensional dataset and analyzed altogether.

A novel and advance example of this approach is the PanCancer
initiative, where since 2013 it has analyzed cancer samples in a dou-
ble integrative approach. On one side, the integration of multiple data
layers and on the other, the use of samples from multiple cancer
types (The Cancer Genome Atlas Research Network et al., 2013), in
order to look for molecular signatures across different tissues.

Integrative analysis has the following three main objectives (Kris-
tensen et al., 2014). Each method can be focused to one or more of
these:

R E L AT I O N S H I P A N A LY S I S : Study of the mechanisms and relation-
ships between the different elements of a molecular dataset or
between elements of different sets, e. g. mRNA-mRNA or mRNA-
microRNA interactions.

PAT I E N T S S E G M E N TAT I O N : Use of the integration methods to sep-
arate the different samples into subtypes which are profiled by
their high-dimensional molecular signatures.

C L I N I C A L O U T C O M E : Application of the integrative methods to pre-
dict the clinical outcome (survival or efficacy of therapy) to pa-
tients.

Here, we present several kinds of methods for integration analysis.
We focus on the methodology and not on the biological results of these
implementations, which are going to be discussed in the following sec-
tion. These methods can be grouped into different categories, depend-
ing on the core methodology used to integrate the multidimensional
data (Kristensen et al., 2014):

S E Q U E N C I A L A N A LY S I S This type of studies takes several differ-
ent types of datasets and analyzed them in sequence. This means
that the statistical method used takes as input only one of the molecu-
lar sets and after the analysis the results are integrated.

One common type of sequential analysis is the integration of Copy-
number variations (CNV) and gene expression data. This is due to the
importance of somatic CNVs in the alteration of the expression of key
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genes, such as oncogenes and tumor suppressor genes (Huang et
al., 2012). Additionally, this methodology allows to separate possible
genes that have a fundamental role in the disease (driver genes) and
those that may not be involved but present some sort of alteration
(passenger genes) (Louhimo et al., 2012).

One step further in this kind of analysis can be seen in the study by
Sun et al. (Sun et al., 2011), where in addition to the gene expression
profiles and the CNV data, it has added methylation data to the analy-
sis. In this work, an extensive analysis of each molecular profile was
applied independently, which included clinical validation. After this ex-
tensive process, the correlation between the expression fold change
and the methylation was obtained. Using a similar approach, the rela-
tionship between expression and CNV was calculated.

G E N E S E T A N A LY S I S One integration scheme that is widely used
in genomic studies as complementary analysis is the gene set enrich-
ment analysis. Generally, this method is applied in the latter stages of
the analysis in order to obtain broader results from the initial study.

The general approach for this family of methods is to integrate a
set of genes with a calculated statistic (e. g. p-value) with a known
set of genes, such as biological pathways or gene ontologies. Then
the enrichment of the known gene set is obtained using the statistical
of the genes. This is performed using different methodologies, which
vary in the sophistication degree of the integration scheme. Here we
present the two most used methods (Abatangelo et al., 2009) and one
novel approach that integrates topological information:

• The simplest method is the use of a contingency table between
the studied genes against the known set of genes. A threshold is
defined for the calculated statistic to separate the set of studied
genes and fill the table with those in the known gene set and
those that are not. Finally, a Fisher’s exact test is applied to the
table to study the statistical significance of it (Abatangelo et al.,
2009).

• Instead of defining a threshold for the statistic, the GSEA algo-GSEA: Gene Set

Enrichment

Analysis
rithm (Subramanian et al., 2005) uses all the values to implement
a ranked list of the studied genes based on their statistic. This
rank is compared to the known gene set in order to see if the
genes belonging to the known set are at the beginning or end
of the ranked list. A score is calculated based on the position in
the list of genes of interest. Additional analyses are performed in
order to obtain a random distribution of the score, to test its sig-
nificance, and to take into account multiple hypothesis testing.

• The topological information of the gene set is used in algorithms
such as SPIA (Tarca et al., 2009) and PathOlogist (GreenblumSPIA: Signaling

Pathway Impact

Analysis
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et al., 2011), where the differential expression of genes are used
to calculate the enrichment of the pathway (perturbation and ac-
tivity for each respective tool) and considering the different re-
lationships in the structure. This analysis can be applied along
clinical and phenotypical information.

P E N A L I Z E D R E G R E S S I O N A N A LY S I S The integration of different
types of data is possible in a regression model, where the target vari-
able is an measured outcome (phenotypical (Zhu and Hastie, 2004;
Shen and Tan, 2005), genomic (Peng et al., 2010) or other) and the co-
variates of the model is a mixture of different molecular signatures. To
perform this analysis the variables must be standardized (Kristensen
et al., 2014), and due to the large number of element on each ‘omic’
layer there is a need to shrink the number of variables. This is possible
to achieve using penalization terms, such as lasso or elastic net. This Elastic net:

penalization

method that uses

two penalization

terms: L1 and L2

approach allows the model to select the set of covariates that explains
the target variable.

This method is used as a base in this work and a detailed description
is presented in the M E T H O D O L O G Y chapter.

N E T W O R K - B A S E D A N A LY S I S Studies based on networks utilize
graphs to model the interaction of the different elements of the multidi-
mensional dataset. In general, each node in the network is an element
and every edge is a link between elements. The different algorithms
varies greatly in how to model the network, calculate the connections
and analyze the resulting graph (Cho et al., 2012).

In Chuang et al. (Chuang et al., 2007), a network is constructed
based on Protein-protein interactions (PPIs) and gene expression pro-
files are used to compare possible subnetworks in the graph based on
the differential expression of the nodes. In this case, the edges and
nodes were given by previous knowledge (PPIs) but the methodology
to analyze the network was novel and allowed to find possible subnet-
works as biomarkers of breast cancer.

Instead of using differential data over a known structure, another ap-
proach is to calculate the correlation between nodes and use this value
to select those interactions that are more significant. Xue et al. (Xue
et al., 2007) used this approach to study the aging process, where
the correlation between the expression profiles of genes is calculated
and then used to select the edges of the PPI network that are most
significant. Finally utilizing hierarchical clustering it is able to select
subnetworks that are most related to aging.

Thanks to its ability to model multiple types of data the use of graphs
is widely used in integrative analyses and new approaches appear
constantly, presenting novel methods to model the data and to study
it.
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2.1.4 Integrative analysis in Glioblastoma multiforme research

The use of integrative schemes to analyze complex diseases and phe-
nomenas such as cancer or aging has allowed for the discovery of
putative treatment targets, which can be single genes or modules of
interacting elements.

As with other complex diseases, there has been an interest in ana-
lyzing the molecular complexity of GBM using integrative approaches.
The impact of these analyses have been very significant and have
changed the way GBMs are studied. The main projects and results are
going to be shown here, focusing on their methodology as well as in
their biological findings.

2.1.4.1 First large multi-omic study by The Cancer Genome Atlas

(TCGA)

The first integrative high-impact project was published in 2008 by the
The Cancer Genome Atlas Research Network (The Cancer Genome
Atlas Research Network, 2008). In this paper, the CNV, the DNA methy-
lation and the gene expression profiles for 206 primary GBM samples,
as well as Single Nucleotide Polymorphism (SNP) data for a subset of
91 samples, were integrated in a sequential manner. From the sam-
ples with SNP data, a subset of them presented hypermutated profiles,
which had a history of treatment for the disease.

With the combination of CNV, expression and SNP, it was found that
the NF1 gene presents an erratic profile, with a correlation between
genetic aberrations and the expression level of the gene, but this was
not consistent in all the samples.

Using the same data, genetic alterations and variation in their ex-
pression were found in two members of the ErbB family (EGFR and
ERBB2). While genetic aberrations in EGFR have been found previ-
ously in primary GBMs, according to this work mutations in ERBB2 had
been reported only in one previous case. Members of the PI3K fam-
ily were also found to have mutations: PIK3CA mutations have been
already been linked to GBM, and PIK3R1 mutations, which are not com-
mon particularly in GBM cases.

Additionally, the CpG islands methylation analysis showed a methy-
lation of the MGMT promoter, which codes for a DNA repair enzyme. A
positive correlation was found in samples with the hypermutated phe-
notype and this methylation pattern.

Finally, the validated CNVs and SNPs were mapped to biological path-
way, finding an enrichment in the p53 and RB tumor suppressor path-
way, and the RTK signaling. The number of core elements in the path-
ways with aberrations was over 59 % for CNV and over 78 % for muta-
tions in the all three pathways.
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2.1.4.2 Glioblastomas subtypes from Verhaak et al.

The second work to be shown is the study by Verhaak et al. (Verhaak
et al., 2010) in collaboration with the TCGA. This paper uses the profiles
of gene expression, CpG island methylation and genomic aberrations
(CNVs and SNPs) of 200 GBM samples and 2 normal brain samples, and
it follows a sequential analysis of the multidimensional information.

The main result of this work is the definition of 4 subtypes of GBM

patients, based on the gene expression profiles. These subtypes were
obtained using the hierarchical clustering algorithm over the expres-
sion data and through additional analyses 210 genes for each sub-
types were selected that were considered most representative.

The subtypes were named after their signature genes and resem-
blance to previous coined terms. In addition to the gene expression
analysis, a genomic aberration study was performed for each subtype:

C L A S S I C A L This subtype is characterized by amplifications in chro-
mosome 7 and loss in chromosome 10, which are common in
GBM samples, but it was found in all the classical samples. EGFR
showed a statistical significant amplification and over-expression
compared to the other subtypes, considering that these charac-
teristics are common in GBM. In addition, mutations in the TP53
gene were not found in this subtype. Finally, in samples of the
classical subtype there is a correlation between the amplification
of the EGFR gene and the deletion of CDKN2A, which is part of
the RB pathway.

M E S E N C H Y M A L Deletion and low expression of the NF1 gene are
hallmarks of this subtype. Additionally, 70 % of the samples with
mutations in the NF1 gene belong to this subtype. Comutations
of the NF1 and PTEN genes were observed in this subtype, af-
fecting the AKT pathway. This subtype is named after the expres-
sion of Mesenchymal markers (e. g. CHI3L1 and MET). Genes
in the necrosis factor super family pathway and NF-κB pathway
present over-expression.

P R O N E U R A L The alterations of the gene PDGFRA are one of the
major features of this subtype. Focal amplifications of this gene
in conjunction with the over-expression of it, were found almost
exclusively in this subtype. Another major feature is the muta-
tion of the IDH1 gene, where 11 of the 12 samples with these
mutations belong to this subtype. LOH and mutations of TP53
were frequent, but the common amplification of the chromosome
7 and loss of chromosome 10 were less prevalent in this subtype.
This subtype is named after the presence of genes related to the
process of development such as DCX, DLL3, ASCL1 and TCF4.
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N E U R A L This subtypes is typified by the expression of the genes
NEFL, GABRA1, SYT1 and SLC12A5, which are neuron mark-
ers. It was found that in the majority of samples belonging to this
subtype, normal cells were present.

In addition to these genetic characteristics, clinical correlations with
the subtypes were found. The majority of samples of secondary GBM

(3 of 4) were classified as Proneural. While recurrent tumors were allo-
cated in all subtypes, it was also found that the most consistent associ-
ation was between the patients’ age and the subtype, where younger
patients were allocated in the Proneural subtype.

2.1.4.3 Methylatator phenotype in Gliomas

In 2010 a paper by Noushmehr et al. and the TCGA Research Net-
work focused in the CpG island methylation profile of 272 GBM sam-
ples (Noushmehr et al., 2010). By using clustering algorithms, a set
of 24 samples were found with a distinctive profile of methylation at
a subset of loci. Due to this profile, the phenotype was named CpG
island methylator phenotype (G-CIMP).

Due to the use of the same samples as in Verhaak et al., it was
possible to correlate the G-CIMP with the previously discovered sub-
types. Almost 90 % of the G-CIMP samples were found to belong to
the Proneural subtype and the G-CIMP samples represented 30 % of
the total samples allocated previously to this subtype. Finally, a rela-
tionship was found between the G-CIMP and the mutation of the IDH1
gene, considering not only secondary but all the tumors where IDH1
mutations are more common.

2.1.4.4 Increase in number of samples and data for GBM analysis

The fourth work by the TCGA Research Network for GBM analysis was
published by Brennan et al. in 2013 (Brennan et al., 2013). In this study
over 500 GBM samples were used for a sequential analysis. While the
same ’omics’ layers were used (gene expression, genomic variations
(CNV and SNP) and CpG sites methilation), this work had paired sam-
ples for all the different layers and used array-based and NGS plat-NGS:

Next-Generation

Sequencing
forms.

It must be noted that the TCGA selects mostly primary GBM and
due to that, genomic features that are present most commonly in sec-
ondary GBMs are not recurrent in this set of samples, such as IDH1
mutations. EGFR was found to be one of the most mutated genes
with most of the cases found along an genomic amplification, addition-
ally a plethora of altered transcripts were found for this gene. Mutual
exclusivity alterations affecting the p53, Rb and PI3K pathways were
confirmed.
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2.1.4.5 Additional analyses

The use of the subtypes has allowed the analysis of GBM from a new
angle. In Setty et al. (Setty et al., 2012), a linear model is trained for
each gene in a subtype using the CNV of the gene, the expression of
related microRNAs and the methylation of the promoter of that gene
as covariates. With this methodology, the gene expression can be pre-
dicted for genes inside a subtype and by analyzing the most significant
features of the linear models on each subtype, it was possible to select
certain feature as main regulators.

In Savage et al. (Savage et al., 2013), the combination of gene and
microRNA expression, CNV and methylation data were integrated us-
ing an extension of a Dirichlet Process mixture model.

Through this methodology it was possible to cluster each dataset of
’omic’ information and integrate them into a consensus cluster. Its main
result was the difficulty to integrate the different layers through consen-
sus, due to the small overlap between layer-wise clusters, which they
concluded was due to the complex nature of the disease and the rela-
tionship between the biological layers, which makes it difficult to define
the straightforward subtypes.

.

2.2 O B J E C T I V E S

This project has as its main objective the development of a novel frame-
work for the integration and analysis of heterogeneous molecular data
of cancer patients and the detection of subgroups of patients in the
data.

The main objective is based on the two main hypothesis of this work.
The first one is that the aggregation of diverse biological data allows
to study complex diseases as systems and the second one is that in
complex diseases, the patients can be grouped by their intermolecular
interactions, which is not possible by traditional histological methods.

Additionally, the integration of the multidimensional data must result
in a interpretable model and that the model used must be able to cope
with a dataset with a much larger number of variables than data points.

These requirements add several layers of complexity to our frame-
work, with particular objectives for each one them:

DATA O B TA I N M E N T A N D P R E P R O C E S S I N G A model as complex
as the one proposed here requires a large number of samples
and the capacity to integrate them into the model. This necessity
implies the selection of experimental platforms that maximized
the number of samples and data with the specific characteristics
(e. g. non sparse).
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M O D E L D E F I N I T I O N A N D I M P L E M E N TAT I O N A base model that
allows to implement the proposed framework must be found
and modified in order to integrate the heterogeneous and high-
dimensional biological data, along with the capability to cluster
the samples used.

M O D E L P E R F O R M A N C E O P T I M I Z AT I O N The complexity and size
of our data means that the time needed to apply our framework
can take very long periods of time, in the magnitude of months,
thus the performance optimization is critical in this work

C L U S T E R I N G O F PAT I E N T S After the application of the algorithm, a
methodology must be defined to use the resulting models to clus-
ter the patients.

B I O L O G I C A L I M P L I C AT I O N S The final particular objective is the
analysis of the groups of patients defined previously. The study
comprises the analysis of the patients in each cluster, and the
models and features that are significant in that cluster.

2.3 O R G A N I Z AT I O N A N D S T RU C T U R E O F T H I S T H E S I S

This document is structured in 3 Parts and 7 chapters, each one with
a specific goal.

Part i, entitled Introduction, contains the first two chapters M OT I VA -
T I O N and I N T R O D U C T I O N.

In the first chapter the main motivations for this work are presented
from a medical and statistical point of view, detailing the needs and
voids in the current state of research. In Chapter 2, we find the gen-
eral introduction to our work, presenting the state of the art in cancer
research and integrative analysis, the main and particular objectives
of this work and finally, the organization is located at the end of this
first chapter.

The second part, Methodology and Results, contains three chapters,
which can be considered the core of this project.

Chapter 3 refers to the methodology used and defined by this
project, which goes from the theoretical background and implemen-
tation of the algorithm to the method of analysis of its results. Fur-
thermore, Chapter 4 and Chapter 5 are comprised of the results
obtained in this work. In the first chapter, the results concerning the
implementation and execution of the algorithm, along with the general
characteristics of the models obtained are shown. The second chapter
groups the biological implication and analysis of the resulting models.

The last part, Discussion and Conclusion, is comprised by the dis-
cussions and conclusions of this work.

Finally, an Appendix is included. In this part, the data and images
not included in the main text are shown.
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Part II

M E T H O D O L O G Y A N D R E S U LT S





3
M E T H O D O L O G Y

In this chapter, the methodology developed and used in this project is
presented: firstly, a general representation of the different processes
involved in this work, and later, all the particular methods and their
implementation are described.

The main corpus of this chapter, the detailed description of the
methods, is divided into 3 different sections, one for each of the main
phases in the pipeline.

These steps comprise the whole process of the project and are in-
tended to be completely reproducible. Because of this, several ele-
ments can be found in open repositories under open licenses as ex-
plained in Section 3.2.

3.1 G E N E R A L M E T H O D O L O G Y

This project is divided into 3 distinctive but connected phases, these
are:

DATA O B TA I N M E N T A N D P R E P R O C E S S I N G : In this step GBM data
from the TCGA repository was downloaded and preprocessed in
order to ensure the correct application of the downstream pro-
cesses.

A P P L I C AT I O N O F T H E M I X T U R E R E G R E S S I O N M O D E L : The al-
gorithm is implemented and applied over the data previously pre-
processed.

R E S U LT S A N A LY S I S A N D B I O L O G I C A L I M P L I C AT I O N S : The re-
sulting models are analyzed and the results are put in a biologi-
cal context.

In Figure 2 the general process is presented where is possible to
observe the 3 main sections of the methodology and how they interact
to shape the project’s pipeline.

3.2 R E P R O D U C I B I L I T Y O F R E S U LT S

For this project, the main scripts and the C++ package developed are
available in the online repository for this project: Thesis repository.
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3.3 DATA O B TA I N M E N T A N D P R E P R O C E S S I N G

The first phase of this project is the obtainment of the data and its
preprocessing. Here a detailed account of the data and the methods
is presented.

3.3.1 Types of data used

Several directives were defined in order to choose the type of data
for this project. In the first place, GBM was selected from a number of
possible cancer types with publicly available datasets. This decision
was taken based on our experience from analyzing brain-related tu-
mor samples in previous projects (Eisenreich et al., 2013; Klink et al.,
2013), which allow us to discuss and compare any novel discovery
with our collaborators.

In the second place, for the molecular profiles, two critical condi-
tions should be met: a large number of available samples and a low
complexity in the integration of the data into a linear model. The first
condition refers to a critical point in the use of learning algorithms: a
high number of data points is needed to train successfully any com-
plex model. For example, transcriptomic sequencing data is available
for analysis, but the number of samples is still very low compared to
array-based data for this type of cancer 1. The second condition can
be seen in the integration of SNP data, where the high dimensionality
(e. g. one feature for each base in the genome/exome) and sparsity
(e. g. low number of somatic mutation in comparison with the whole
genome/exom (Guichard et al., 2012; Pleasance et al., 2010)) makes
it very costly to integrate into a linear model.

Because of these restrictions, the data used in our study is com-
prised by expression (genes and microRNA), methylation (CpG sites
methylation) and CNV, which are referred in this document as the
molecular layers of our models.

In addition, several datasets of additional information were used in
this project, such as human pathways, PPI, somatic mutations and mi-
croRNA interactions. These databases were used in the construction
of the models to connect the 4 molecular layers (gene and microRNA
expression, CpGs methylation and CNV) and to apply somatic mutation
analysis in our findings. The list of these databases can be seen in the
following section.

3.3.2 Data sources

The data used in this work comes from several sources, which are:

1 In February 2015 there were publicly available 170 RNA-seq and 558 microarray sam-
ples of GBM data in the TCGA repository.
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T C G A DATA P O RTA L : Repository from The Cancer Genome Atlas
which contains molecular profiles for a plethora of cancer types,
including GBM. The following datasets were obtained here: gene
expression, CNV, methylation and microRNA expression (The
Cancer Genome Atlas Research Network, 2014). Data down-
loaded in February 2015.

R E AC TO M E H U M A N PAT H WAY S : An open and curated human path-
way database (Croft et al., 2014; Milacic et al., 2012). Data down-
loaded in November 2014.

N C I PAT H WAY I N T E R AC T I O N DATA B A S E : Pathway database cu-
rated by the National Cancer Institute (Schaefer et al., 2009).
Data downloaded in November 2014.

B I O G R I D : Interaction database named as The Biological General
Repository for Interaction Datasets. Is a curated and public
database with over 800 000 interactions (Chatr-Aryamontri et al.,
2015). The data was downloaded in November 2014.

D I P : The Database of Interacting Proteins is an experimentally vali-
dated PPI database (Salwinski et al., 2004). The data was down-
loaded in October 2014.

I L L U M I N A H U M A N M E T H Y L AT I O N B E A D C H I P : Manifest file for the
Illumina HumanMethylation450K platform (Illumina Inc., 2014).
Contains genes related to the CpG sites in the chip. The data
was downloaded in October 2014.

M I RTA R B A S E : The miRNA target database is a experimentally vali-
dated database for microRNA interactions (Hsu et al., 2014). The
data was downloaded in October 2014.

M I R D B : Database for miRNA target prediction and functional annota-
tions, which uses the tool MirTarget to predict targets of miRNAs
(Wong and Wang, 2015). The data was downloaded in October
2014.

C O S M I C : The Catalogue of somatic mutations in cancer is a free and
public database of the mutations found in the TCGA and ICGCICGC:

International

Cancer Genome

Consortium.

projects (Forbes et al., 2015). The data was downloaded in Jan-
uary 2016.

In Table 1 detailed information about the datasets obtained from
the TCGA repository are presented. For the interaction databases, the
original raw values are presented in Table 2.
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Table 1: Details on the data obtained from the TCGA data repository.

Data type Platform Number of Samples Number of Features

gene expression Affymetrix GeneChip Human
Genome HT U133A Array

558 12 000

microRNA expression Human miRNA Microarray 8x15K 584 1 500

CpG sites Methylation Infinium HumanMethylation27 & Hu-
manMethylation450 BeadChip Kit

289 & 144 27 000 & 450 000

CNV Affymetrix Genome-Wide Human
SNP Array 6.0

279 Depends on processing
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Table 2: Size of the raw interaction datasets.

Dataset Number of Interac-

tion

Type of database

Reactome 152 266 Pathways

NCI 8 420 Pathways

Biogrid 245 355 Protein-protein inter-
actions

DIP 6 294 Protein-protein inter-
actions

Illumina Human
Methylation Bead-
Chip

485 461 Gene-CpG sites

miRTarBase 39 110 Gene-microRNA

miRDB 3 855 248 Gene-microRNA

COSMICa 24 293 SNPs

a Number of SNPs found in our samples only. Original file was discarded due to size.

3.3.3 Data Preprocessing

The preprocessing of the data is a crucial step in the correct perfor-
mance of learning algorithms (Kotsiantis et al., 2006). For this work,
the focus is set on the normalization and preparation of the heteroge-
neous data for its integration and not in the preprocessing of the raw
data.

For the data allocated in the TCGA data repository there are different
preprocessing levels, which indicate the stage in the preprocessing
pipeline. A short summary of these levels for array-based experiments
is:

L E V E L 1 : Raw data, as it comes from the platform software.

L E V E L 2 : Background corrected data at the probe level, sometimes
normalized.

L E V E L 3 : Background corrected data at the gene level, most com-
monly normalized.

The method for normalization and mapping differs greatly on the data
type and the institution behind the process. Below is shown a descrip-
tion of this process for each type of data used.
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3.3.3.1 Gene expression data

Gene expression data was obtained as Level 3 from the TCGA por-
tal, which means that the data had been quantile normalized and the
probes had been mapped to their respective genes. The first step was
to aggregate duplicated samples, on this level 29 of the 558 samples
were duplicates. The duplicates shown a high correlation (ρ > 0.92) for
all the samples. Because of this the duplicated samples were mean-
aggregated and 539 final patient-level samples were obtained.

Next, the data was log-transformed and the features were centered.
This process allowed us to get centered and normal-distributed values,
which are necessary to integrate and compare the different expression
profiles and find subsets of patients with particular expression values.

Because of issues in the integration of the heterogeneous data in
a linear model the expression data was quantile normalized and min-
max scaled to ensure a common range with the other data types, and
to eliminate the possibility that outliers would take the whole range. For
further discussion see Section 3.4.5.

3.3.3.2 CpG sites methylation data

The methylation data was obtained from two different platforms in its
Level 3 form, where the probes had been mapped to Illumina’s CpG
sites id. The platforms were: Infinium HumanMethylation27 & Human-
Methylation450 BeadChip Array.

The HumanMethylation450 array can be considered an upgrade of
the HumanMethylation27, where additional probes have been added.
Because of this characteristic it is possible to merge the information
of this two platforms into one dataset, where only the shared probes
(and CpG sites in Level 3) between platforms are conserved. Between
these platforms over 26 000 CpG sites were shared. For some probes
there was a high number of missing data points (> 50%) in one of the
platform. These probes were eliminated from both platform, leaving a
final number of 21 000 CpG sites.

In the case of patient sample duplications it was found that only
one sample appeared in both platforms, while 4 had duplicates in one
of the platforms. In a similar fashion, as in the gene expression data
process, the correlation between the duplicates was found to be high
(ρ > 0.95) and the same mean-aggregation was applied. For the pa-
tient in both platform the correlation was even higher in the shared
CpG sites (ρ ∼ 0.97) and the aggregation was applied to it as well.

In this case the reported values for the CpG sites are the beta-
values, which are define as fractions so their natural range is between
0 and 1 and no scaling was necessary.
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3.3.3.3 miRNA expression data

In the case of microRNA expression, samples of Level 1 data were ob-
tained and preprocessed. This difference with the other data types is
due to several inconsistencies found in the Level 3 data. These incon-
sistencies appeared when comparing the number of samples between
the raw data and the preprocessed data. Furthermore, difficulties were
found to replicate the methodology used to create the Level 3 data.

The Bioconductor package AgiMicroRNA (Lopez-Romero, 2016)
was used for the preprocessing, which allows a simple processing
for Agilent array-based experiments and additional probes and genes
filtering.

In a similar way to other datasets, the data was mapped to microR-
NAs, log-transformed, centered, quantile-normalized and finally min-
max scaled. The control probes were filtered out, as well as genes
with less than 75 % of non-NA values, which left us with 244 features.

Eight samples with duplicates were found, all of them showing a
high correlation (ρ > 0.80). A mean-aggregation was applied leaving
576 unique samples.

3.3.3.4 Copy-Number Variation data

A different approach was used in the preprocessing of the CNV data.
In this instance the Level 3 data obtained only showed copy num-
ber variations in genomic segments. In order to map these segments
into genes and process the files the package org.Hs.eg.db (Carlson,
2016) was used to retrieve all human genes and non-coding elements,
and their position. Additionally, the package CNTools (J Zhang, 2016)
was used to map the genomic segments to these genomic elements
(genes and non-coding elements) and created a matrix object from the
data, obtaining around 22 000 features.

After this procedure, it was necessary to aggregate 28 duplicated
samples using the mean, the majority shown a high correlation (ρ >

0.85), but for some of them the correlation was low (ρ < 0.30). It was
decided to apply the aggregation nevertheless because there are no
technical reasons to choose one replicate over the other and having
multiple replicates would forbid us to apply the mixture of linear mod-
els.

One particularity of these samples is the presence of the CNV for nor-
mal tissue. This was used to normalized the CNV of the tumor samples,
following the relationship:

CNVFinal = log2

(

CNVTumor

CNVNormal

)
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Additionally, a filter was applied to the features, where genes and
other genomic elements were eliminated if their variance was under a
certain threshold for all the samples(MAD 6 0.1). MAD: Median

absolute deviationFinally, the features were centered and the min-max scale was ap-
plied in order to ensure a range between [−1, 1].

3.3.3.5 Interaction datasets

Several interaction databases were processed, these interactions al-
lowed us to find relationships between the elements of each layer or
between elements in different layers. This information was used to re-
strict possible covariants in our model, as explained in Section 3.4.3.1.

The databases were downloaded and separated into 2 groups: PPI

databases and inter-molecular interaction databases. The first one
refers to databases with binary interaction between 2 proteins, this
includes the databases Reactome, NCI, Biogrid and DIP. The second
group contains binary interactions between molecules of different kind,
e. g. gene-microRNA interaction, these databases are Illumina Human
Methylation BeadChip, miRDB and MTI.

The processing consisted of sorting the binary interactions, for ex-
ample, the interaction B −→ A becomes A −→ B, followed by an elim-
ination of self and duplicated interactions, therefore removing directed
interactions and leaving only undirected ones.

The PPI databases were merged into one unique binary interaction
set without duplicates. This procedure was also done for the 2 gene-
microRNA databases (miRDB and MTI), with the particularity that for
the miRDB set contains only those putative interactions with over 80 %
confidence were used.

3.3.3.6 Final dataset

After the preprocessing step, the number of samples and features for
each dataset have been modified, as well as some of the values of
the sets due to the normalization and aggregation. Similar variation
can be seen in the interaction sets. In Table 3, the final dimensions
and data profiles for each dataset are shown, and in Table 4, the size
of the binary interaction sets are presented. After the preprocessing
step, the patients shared by all the datasets were selected summing
up a total of 324 paired samples.

The general methodology for each one of the data types is displayed
in Figure 3.
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Table 3: Datasets after processing.

Data type Number of

Samples

Number of

Features

Type of

Distribu-

tion

Range of

Data

Gene
expression

539 12 042 Normal [-1,1]

miRNA ex-
pression

576 244 Normal [-1,1]

CpG sites
Methyla-
tion

289 & 144a 21 048 Bimodal [0,1]

CNV 503 2 559 Normal [-1,1]

a For the 27K and 450K HumanMethylation Platforms respectively

Table 4: Interaction datasets after processing.

Dataset Number of Interac-

tion

Type of Interaction

Merged PPI 413 212 Protein-protein

Illumina Human
Methylation Bead-
Chip

31 375 Gene-CpG site

microRNA
databases

4 921 Gene-microRNA
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3.4 A P P L I C AT I O N O F A M I X T U R E O F L I N E A R R E G R E S S I O N

M O D E L S O N H E T E R O G E N E O U S C A N C E R DATA

The main model used in this work corresponds to a penalized mix-
ture of finite linear regression models. Because of its complexity, it has
been decided to present this model in an agglomerative way. The sim-
ple core of the model, the linear regression model, is explained first
and layers of complexity are added into it in the following sections.

3.4.1 Linear regression with cancer data

3.4.1.1 Definition of linear regression model

Given a dataset comprised of N samples with P+ 1 variables:

{yn, xn,1, . . . , xn,p}n∈[1,N]

For one sample, n, a linear regression model is defined as linear re-
lationship between a response or output variable, yn, and the other
P variables, called explanatory variables or covariates, plus an error
term ǫn:

yn = βn,0 +βn,1xn,1 + . . .+βn,pxn,p + ǫn

Where the β values represent the effect or coefficients of each covari-
ate over the output variable and βn,0 is defined as the intercept, a
constant effect independent of the covariates.

In a linear regression model it is assumed that all these coefficients
are shared between the samples, i. e. βn,0 = β0 ∀n ∈ [1,N]. These
coefficients are also unknown and their learning is the main objective
of fitting a regression model.

This set of models can be written in matrix form, which is preferred in
this document. The different elements for the matrix form are defined
below; in first place, the vector of output variables y:

y :=









y1

...

yn









In second place the design matrix X, which comprises the covariates
of the system:

X :=















x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p
...

...
. . .

...

xn,1 xn,2 · · · xn,p














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Here, each row represents a sample and each column an explanatory
variable.

Finally two additional vectors are defined: β and ǫ:

β :=









β1

...

βp









ǫ :=









ǫ1
...

ǫn









The first vector groups the p different coefficients, one for each co-
variate, while ǫ is comprised by the n random errors.

An additional step is performed to include the intercept coefficient
into the matrix form. For this, the intercept term is added to the β

vector:

β :=















β0

β1

...

βp















And an extra column is added to the design matrix:

X :=















1 x1,1 x1,2 · · · x1,p

1 x2,1 x2,2 · · · x2,p

1
...

...
. . .

...

1 xn,1 xn,2 · · · xn,p















This column allow us to represent the intercept while maintaining its
independence from the covariates.

Finally, putting all together we get the matrix form of the linear re-
gression model:

y = X ·β + ǫ

3.4.1.2 Application of linear regression model with biological data

In order to apply the linear regression model to biological data, the
datasets were created and the different elements of the model (covari-
ates, output variable and random error) defined.

The datasets obtained from the TCGA repository were comprised by
4 different molecular profiles or layers: gene and microRNA expres-
sion, CpG island methylation and CNV. This data was paired, which
means that for each patient there was information available at all lay-
ers. This characteristic came from the design of the experiments by
the TCGA consortium, where a plethora of analysis were performed to
each patient.

Due to this characteristic, the datasets could sorted by patient and
the different layers combined.
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The different datasets were:

Gene Expression =









gene exp1,1 · · · gene exp1,p_gene
...

. . .
...

gene expn,1 · · · gene expn,p_gene









miRNA Expression =









miRNA exp1,1 · · · miRNA exp1,p_miRNA
...

. . .
...

miRNA expn,1 · · · miRNA expn,p_miRNA









CpG Methylation =









CpG meth1,1 · · · CpG meth1,p_meth
...

. . .
...

CpG methn,1 · · · CpG methn,p_meth









CNV =









CNV1,1 · · · CNV1,p_cnv

...
. . .

...

CNVn,1 · · · CNVn,p_cnv









Where p_gene,p_miRNA,p_meth,p_cnv are the number of differ-
ent elements (features) for each set and we defined p as the total
number of the elements. Giving that, the complete dataset used in this
project was:

Complete Dataset =
[

Gene Exp miRNA Exp CpG Methylation CNV
]

For this project, each element of the Gene Expression Dataset was
considered as a possible output variable (y). This implied that there
were p_gene models (or gene-models) with p− 1 covariates. For the
error element it was considered to be an independent variable follow-
ing a centered normal distribution, i. e. ǫ ∼ N(0,σ2). Which gave us
the following linear regression model for a particular gene:

yj =X
gene exp
∀gene6=j ·β

gene exp +Xmethylation ·βmethylation+

XmiRNA exp ·βmiRNA exp +XCNV ·βCNV + ǫn

This type of model assumed a lack of correlation between the inde-
pendent variables, which cannot be sustained in a co-regulated biolog-
ical system. The use of a penalization term (see Section 3.4.3) allowed
the system to eliminate interactive variables. The implications of this
procedure in our results are examined in the discussion chapter.
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3.4.1.3 Integration of multiple CpG sites methylation plastforms in

the linear model

The preprocessing of the methylation datasets presented an unique
characteristic: the use of multiple platforms for its measurement (In-
finium HumanMethylation27 and HumanMethylation450 BeadChip Ar-
rays). This opened an issue in the integration of these datasets in a
mixture regression model, where the effect from the different platforms
could create platform-driven subpopulations.

A method to eliminate this kind of bias is the use of dummy variables
(Faraway, 2014). Where a dummy variable is a binary variable that
separates the samples based on a categorical effect. In general:

y = β0 +β1x1 +αδ

Here we have δ as our dummy variable, which for some samples will
be 0, and thus the model will be a normal linear regression model: y =

β0 +β1x1. While for some other samples it will take the value of 1 and
the linear model will become: y = (β0+α)+β1x1. Any difference that
comes from the categorical effect will be taken by the extra intercept
α. In our model, δ will differentiate the patients’ platform.

A problem with this approach occurs when it is used in conjunction
with other data types. For example, considering a CpG site methylation
Meth1 and a gene expression Gene exp1 our model becomes:

y = β0 +β1Meth1 +β2Gene exp1 +αδ

For the samples where δ = 1 we have:

y = (β0 +α) +β1Meth1 +β2Gene exp1

and thus the parameter α will explain not only the categorical effect
on Meth1, but also a possible biological effect from Gene exp1. To
solve this issue an interaction dummy variable was used instead of
an additive dummy variable:

y = β0 +β1Meth1 +β2Gene exp1 +αδMeth1

So when we have δ = 1 the model becomes:

y = β0 +β2Gene exp1 + (β1 +α)Meth1

With this method only the categorical effect is taken by α and instead
of modifying the intercept it modifies the slope of the variable.

This approach can be extended to the case with pmeth different
CpG sites.
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y = β0 + (β1 +α1δ)Meth1 + (β2 +α2δ)Meth2 + · · ·

+(βp_meth +αp_methδ)Methp_meth

+βp_meth+1Gene exp1

In that case for δ = 1:

y = β0 + (β1 +α1)Meth1 + (β2 +α2)Meth2 + · · ·

+(βp_meth +αp_meth)Methp_meth

+βp_meth+1Gene exp1

We want to set all the α with the same value, i. e. same effect for
each CpG site:

y = β0 +β1Meth1 +β2Meth2 + · · ·

+βp_methMethp_meth +α

p_meth∑

i=1

Methi

+βp_meth+1Gene exp1

Which means we can add an extra covariant that will be 0 for all the
samples from platform 1 (δ = 0) and will be

∑p_meth
i=1 Methij for each

sample j from platform 2 (δ = 1), and an extra coefficient α which will
take the categorical effect of the platforms.

3.4.2 Mixture of finite regression models and EM algorithm

The main hypothesis of this work is that in different patients subgroups
there are, for certain genes, different linear models that explain the
data. This hypothesis is motivated by the biological assumption that
complex diseases, such as cancer, have multiple molecular subpopu-
lations even when the disease phenotype is the same. In other words,
under the microscope the samples of tissue cannot be differentiated,
but based on the molecular signatures the samples correspond to dif-
ferent subtypes of the same disease.

To study this, an extension of regression models can be use, which
consists of a probabilistic model comprised by a mixture of a finite
number of linear regression models by which the data will be explained.
These linear models are called submodels or subpopulations, because
they define a model for each possible subpopulation in the data.

For the basic regression model it is possible to present it from a
probabilistic perspective (Bishop, 2006):
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yn = βTxn + ǫ

⇐⇒

p(yn|xn,β,σ2) = N(yn|β
Txn,σ2)

Now we define the mixture of regression models using the proba-
bilistic perspective:

p(yn|xn,θ) =
K∑

k=1

πkN(yn|β
T
kxn,σ2)

θ = {π,β,σ2}

Where K independent linear models are considered, each one with
its own set of coefficients βk and same noise variance σ2. This model
is a mixture of the K subpopulations, where each one of them is
weighted by a mixing coefficients πk. With:

K∑

k=1

πk = 1

Giving all the data points {y, X} the log likelihood of this density is:

lnp(y|X,θ) =
N∑

n=1

ln

(

K∑

k=1

πkN(yn|β
T
kxn,σ2)

)

Normally, after obtaining the log likelihood framework, it is possible
to find the parameters of the model that maximize the likelihood given
the data. In this case, due to the presence of the summation inside
the logarithm, it is not possible to apply the logarithm function over the
Gaussian as in the single Gaussian method, and so, the derivative of
the log likelihood function no longer allows us to obtain a close form
solution (Bishop, 2006). To solve this problem a common approach is
to use the EM algorithm.

3.4.2.1 EM algorithm

The EM algorithm (Expectation-Maximization algorithm) is a method
that finds the maximum likelihood estimates of parameters in a sta-
tistical model which contains unobserved variables (latent variables)
(Bishop, 2006).

The latent variables for the mixture of regression models are the
variables that determine the subpopulation from which a data point
originates.
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The EM algorithm is a 2-steps iterative method, comprised by the
Expectation step (E-step) and the Maximization step (M-step).

In the E-step, the expectation of the likelihood function of the com-
plete dataset (with the latent variables) is calculated. For this, the initial
values of the parameters are necessary. This step calculates the pos-
terior probability of the latent variables.

For the M-step, the expectation of the complete dataset likelihood is
maximized by choosing a new set of parameters. These new parame-
ters are used as initial values in the new iteration.

Through this iterative process, the optimal values for the parameters
of the models are chosen.

For a detail description of the algorithm and its application in mixture
of regression models, please see Chapter 14 in (Bishop, 2006)

3.4.3 Penalization and biological prior knowledge

A recurrent problem in regression models is the presence of a large
number of features, P, when compared to the number of samples, N.
This characteristic can affect in multiple ways our methodology. The
main one is denominated the curse of dimensionality, where in a space
with a very large number of dimensions (P ≫ N) the distance between
points loses its significance, due to the sparsity of the points. And thus,
many models will fit the data in a similar fashion, making them indistin-
guishable.

Additionally, the execution time needed to learn the models grows
with the number of features, making it unfeasible to train this models
when there are thousands of features.

For this project two approaches were used to deal with this issue:
biological prior knowledge and lasso penalization. The first one is ap-
plied before the execution of the Mixture of Finite Linear Regression
Models with Penalization (MFLRMP) and modifies the design matrix
used as input, while the second method is applied during the fitting
of the mixture model.

3.4.3.1 Biological prior knowledge

The biological knowledge that has been gatherer by previous experi-
ments can by used to reduce the number of covariants of a model. The
objective of this procedure is not to find the space of true interactions,
but to shrink the space by eliminating interactions not supported by
the prior knowledge.

The methodology used to filter features is the following:

• Binary interactions obtained from multiple sources, see Sec-
tion 3.3.2, were sorted and filtered, to eliminate duplicates and
self interactions.

38



• The interactions are expanded to all the molecular profiles. For
example, ProteinA ←→ ProteinB, a binary protein-protein inter-
action was expanded to GeneA ←→ GeneB and GeneA ←→

CpGs related to GeneB.

• The covariants in the models are filtered by the expanded inter-
actions, i. e. if a gene, CpG or microRNA does not appear in the
expanded interactions, it is eliminated from the model.

With this filtering the possible number of covariants for each gene
with expression data is reduced from the possible p− 1 covariants to
a smaller set and thus, the design matrix of each model was reduce
before the fitting of the mixture model.

3.4.3.2 Lasso penalization

The lasso or L1 penalization adds a regularization term to an error or
likelihood function2, where the regularization term is the L1 norm of
the model coefficients. The lasso penalization term is defined as:

λ ‖β‖1

with:
‖β‖1 =

∑

j

∣

∣βj

∣

∣

When this term is added to the negative log-likelihood function it
will try to shrink the summation of coefficients during the minimization
process. A particular characteristic of the lasso penalization is that the
coefficients will be driven to 0 and not to small non-zero values as with
other norms (Tibshirani, 1996). The number of non-zero coefficients is
governed by the hyperparameter λ, where a larger value results in a
stronger penalization.

An additional term was added following the implementation of a
penalized mixture regression model by Städlet et al. (Städler et al.,
2010):

λ

K∑

k=1

π
γ
k ‖βk‖1

where the penalization term considers all the models and each norm
is weighted by the mixing coefficient of that subpopulation. This ap-
proach allowed us to relate the penalty to the relative size of the sub-
population, which is a common practice as stated in Khalili and Chen
(Khalili and Chen, 2007). The γ coefficient can take values [0, 1] and
controls the weighting of the mixing coefficient. In this implementation
a γ = 1 is used.

2 In the case of linear regression these are equivalent.
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The lasso component gives the term penalization in the name of
our main algorithm: Mixture of Finite Linear Regression Models with
Penalization.

Finally, the lasso behaves in a particular way in cases where highly
correlated covariates are present: it selects one of the variables
from the group randomly and gives a zero-coefficient to the others
(Bühlmann et al., 2013). This behavior permits the use of biological
variables, with a possible co-regulated interactions, in a regression
framework, but with the cost of selecting only one of the variables.
The effect of this action in our results are discussed in the discussion
chapter.

3.4.4 Fitting of the model hyperparameters K and λ

Two parameters have been presented in different equations over this
chapter, but their fitting has not been discussed yet. These parameters
are : K and λ, which govern two different characteristics of the mixture
model.

The total number of subpopulations in the mixture, K, is not known
a priori, and in a similar way with other clustering algorithms (e. g. K-
means), it must be selected by an iteration over different possible val-
ues.

The penalization parameter λ governs the portion of the total co-
efficients that will be driven to zero, where with a larger lambda the
penalization is stronger, therefore a larger portion of the coefficients
will become zero. On the contrary, when lambda is small the penal-
ization term will be negligible and fewer coefficients will be driven to
zero.

The method to fit these two parameters and find the optimal value for
them (K∗ and λ∗) follows the implementation by Städlet et al. (Städler
et al., 2010). In the first place, a grid of possible values for K and λ is
defined: K := {K0, . . . , Kl} and Λ := {λ0, . . . , λm}. With l, m and the
sets defined in Section 4.3.1.

Then an iterative process is applied to select the optimal parameters:
for each K ∈ K the log-likelihood loss is calculated for each λ ∈ Λ fol-
lowing a cross-validation approach. With these cross-validation errors
calculated, the different λs are compared and the one with the smallest
error is selected for each K, denominated λK, with K ∈ {K0, . . . , Kl}.

Finally, for each K ∈ K and the paired λK a model is fitted. To com-
pared these models the Bayesian information criterion (BIC) is calcu-BIC: Criterion to

compare and

select models.

Defined as a

penalized

likelihood function,

which takes into

account the

number of

parameters in the

model

lated and the model with the lowest BIC is selected. Thus, the optimal
parameters are those that minimize the BIC.
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3.4.5 Issues in data integration

In statistical algorithms, the problem of feature dominance can arise
when one of the features, or a set of them, have a much larger variance
than the rest. This can be seen in algorithms such as PCA and other PCA: Principal

component

analisis
learning algorithms, where the variance plays a main role (Berg et al.,
2006; Borgognone et al., 2001).

With the implementation of the mixture regression model with penal-
ization in this study, an issue arose when covariates with very different
variances were used. In this case, the feature with the highest variance
dominated the model, even in the case when all the features have the
same mean (results not shown).

This means that the lasso penalization will give the covariates with
larger variances most of the non-zero coefficients and it will heavily
penalized those with smaller variances. This happens due to the mini-
mization scheme, where it is “cheaper” (smaller L1 norm) to minimize
the coefficients of the features with small variance, than it is to mini-
mize those with large variance.

In order to avoid this, a min-max scaling approach was applied, Min-Max scaling:

procedure to

ensure that the

range of a variable

is fixed between a

minimum and

maximum value

which aims to define a common range for all the data types.
Another problem triggered by the min-max scaling is the dominance

of outliers. A min-max scale in a sample with outliers will scale-down
all the non-outliers, therefore eliminating this information. Because of
this issue, a quantile normalization was applied previous to the min-

Quantile

normalization:

technique to force

variables to follow

the same

distribution

max scaling, where the package preprocessCore (Bolstad, 2015) was
used for the quantile normalization.

3.5 C L U S T E R I N G O F G L I O B L A S TO M A PAT I E N T S

One of the objectives of this project is to cluster the samples (patients)
into distinct groups, and to analyze and profile the resulting groups.

In this section, the methodology for the first part of this objective is
presented. In particular, the definition and use of the co-occurrence
value is shown. This value is the central element that allows us to use
the resulting gene-models for the clustering of the samples.

3.5.1 Co-occurrence Probability

The first step to perform the clustering was the definition of the co-
occurrence probability (PCoO) for a pair of samples. The co-occurrence
represents the chance that 2 patients are in the same subpopulations
for a single gene-model.

In Figure 4, the case of 3 samples in 3 gene-models can be seen.
Considering only the first gene-model (A) the red and blue samples
are in the same subpopulation, while the green sample is by itself.
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Finally, the total co-occurrence probability, also denominated co-
occurrence value, considering all the gene-models trained, can be
calculated by the mean over all of them:

PTotal
CoO(i, j) =

1

L

L∑

l

Pl
CoO(i, j)

where L is the total number of gene-models used in the analysis.
As an example of the total co-occurrence value, in Figure 4 3 gene-

models are shown (A, B and C) with 3 samples (red, blue and green).
Each gene-model presents 2 subpopulations, named 1 and 2 for each
one of them. It can be seen that the red and blue samples are present
in the same subpopulations for the models A and C, while the pair
red-green of samples appears together only in subpopulation B2.

In this example, the co-occurrence of samples red and blue is 2/3,
while for red and green is 1/3.

3.5.2 Gene-models selection

For the co-occurrence analysis, the gene-models were filtered based
on two criteria: Firstly, the necessity to have at least 2 subpopulations,
which comes as an obvious requirement considering that this is an
analysis aiming to calculate the co-occurrence in multiple subpopula-
tions.

Secondly, a maximum threshold was defined for the posterior prob-
ability of each subpopulation. This means that the total posterior prob-
ability of a subpopulation (mean of all the individual probabilities) can
not be over 0,75. This threshold was defined to eliminate the chance
use of gene-models where a subpopulation dominates over the others.
For those cases, it was found that the results were non-informative and
in practice, are considered as gene-models with 1 subpopulation.

For the data presented in this work, the number of gene-models
with more than 1 subpopulation comprises about 3 200 gene-models
(~32 % of the total). While the number of gene-models without a domi-
nating subpopulation is around 2 400 models (~23 % of the total).

3.5.3 Definition of the co-occurrence probability matrix

With the calculation of the PTotal
CoO for each pair of patients, the co-

occurrence probability matrix (CoM) was created. This matrix has di-
mensions N ×N and its cell composition is such that the cell (i, j) N: total number of

samplesrepresents the total co-occurrence value for the pair of patients i and j.
This matrix is symmetrical, but one critical characteristic is that the di-
agonal of the matrix is not necessarily 1, which is expected of distance
matrices.
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Figure 5: Curve of the co-occurence probability for the case of self-
occurrence.

This happens due to the definition of the co-occurrence probability,
where in the case of co-occurrence of the patient with itself it becomes:

PCoO(i, i) = Pmodel 1
post (i)Pmodel 1

post (i) + Pmodel 2
post (i)Pmodel 2

post (i)

= Pmodel 1
post (i)2 + Pmodel 2

post (i)2

Considering: Pmodel 2
post (x) = 1− Pmodel 1

post (x) we get:

PCoO(i, i) = 1− 2Pmodel 2
post (i) + 2Pmodel 2

post (i)2

The profile of the co-occurrence probability for this case is shown
in Figure 5. An inspection of the curve reveals that the only possibility
to have PCoO(i, i) = 1 is when the posterior probability is either 0 or
1, which explains why it is common to find values other than 1 in the
diagonal of the CoM. In addition, due to the parabolic profile of the
curve the probabilities are skewed towards 0,5, making values close
to 1 uncommon.
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3.5.4 Co-occurrence probability matrix as a distance matrix

It is possible to use the CoM as a distance matrix in order to analyze
the clustering of the patients based on their co-occurrence probabili-
ties. This process was performed by converting to values of the matrix
so that a high co-occurrence became a value close to 0 and a low
co-occurrence was close to 1. This was done with the following linear
transformation:

DTotal
CoO(i, j) = 1− PTotal

CoO(i, j)

It is important to notice that DTotal
CoO(i, j) is not an actual distance,

in particular the coincidence axiom is not respected as shown in the Coincidence

axiom:

The distance of an

object with itself is

zero

d(x, x) = 0

previous section.
One approach that can be use to overcome this issue is to normal-

ize the matrix, making every element to the diagonal equal to 1. This
procedure was tried but the cost of normalizing the matrix, e. g. min-
max row-wise normalization, is the loss of the symmetry. Because of
this drawback, this solution was not implemented and only a min-max
normalization was applied to the whole matrix in order to make the
values further sparse from each other.

3.5.5 Clustering of patients

The pseudo-distance matrix defined using the co-occurrence values is
used as input for the hierarchical clustering algorithm. This method is
used with our data to find subgroups of patients from the fitted gene-
models. These subgroups are denominated in this work as clusters of
patients.

The algorithm is run using complete agglomeration and the resulting
dendrogram is cut based on visual inspection as well as silhouette
analysis, which are shown in the results.

3.6 PAT I E N T S - W I S E A N A LY S I S O F T H E C L U S T E R S

The methods used to analyze the samples on each cluster are pre-
sented here, they comprise the clinical analysis, the comparison to
previous presented clusters and the samples’ mutations enrichment.

3.6.1 Clinical analysis of the samples

The impact of each clinical variable over each cluster of patients was
analyzed.

The clinical data was obtained from the TCGA database. For 3 pa-
tients there was no clinical data available.
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From the TCGA database, the following sets were used to perform
the clinical analysis: age, gender, tumor type, Karnofsky performance
scores, treatment history and survival. In general, the utilization of
these sets was straightforward and in some cases, the datasets were
incomplete. The information for each set is shown in the Section 5.2.2.

The particularities of the processing step for each set are:

AG E : The age of the patients at the time of diagnosis was segmented
by the clusters found previously. To compare if the age in the
groups originated from the same population a Kruskal-Wallis
rank sum test was performed over the groups. This test is
a non-parametric version of the one-way ANOVA test and it
was selected due to the non-normal distribution of the age
found through visual inspection. It was calculated using the
kruskal.test function with default options in R.

G E N D E R : In the same fashion as with the age analysis, the gender
of the patients was analyzed cluster-wise. To study any possi-
ble significant relationship between gender and clusters, a Pear-
son’s Chi-squared test was apply to the data. The test was ap-
plied using the chisq.test function in R with default parameters
for a contingency table.

T U M O R T Y P E : The samples in the TCGA data were annotated with
the histological types of the tumors found. The possible classes
are: Glioblastoma Multiforme (GBM), Treated primary GBM and
Untreated primary (de novo) GBM.

A comparison with the supplementary files in Verhaak et al. (Ver-
haak et al., 2010) showed that the first two classes could rep-
resent secondary GBMs or recurrent tumors, and because there
was no additional information regarding the histological type of
the tumor, those classes were aggregated as non-de novo tu-
mors and its distribution compared to the de novo patients.

K A R N O F S K Y P E R F O R M A N C E S C O R E S : In a similar fashion as the
gender analysis, a Pearson’s Chi-squared test was applied to
analyze the discrete and qualitative Karnofsky scores.

T R E AT M E N T H I S TO RY: The history of neoadjuvant treatment wasNeoadjuvant

treatment:

Treatment

performed before

surgery, e. g.

chemo or

hormonal therapy.

analyzed between cluster using a contingency table in a similar
way as in the Tumor Type analysis.

S U RV I VA L : For the survival analysis, the vital status and days to
death were obtained from the clinical dataset. With this data the
survival was modeled using Cox proportional-hazards regres-
sion with the R package surv. A log-rank test was performed
over the survival curves in order to compare them altogether.
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3.6.2 Comparison of the clusters to Verhaak’s subtypes

The clusters obtained in this project were compared to the subtypes
reported by Verhaak et al. (Verhaak et al., 2010). This was possible
due to the use of the same database for the samples. The obtainment
of additional files from the TCGA portal3 allowed us to annotate the
samples with the subtype found in Verhaak et al.

From the original 202 samples used in the Verhaak et al., only 50
are used in this project as well. The rest of the samples appear in the
early stages of the data preprocessing, but were eliminated due to the
lack of information in the 4 molecular layers (no-paired data).

The analysis is carried out by a direct comparison of the distribution
of the shared samples in a contingency table.

3.6.3 Genetic signatures in the clusters

The somatic mutations used in this analysis were obtained from the
COSMIC database and it contained information for 220 of the samples
used in this study. The samples without this information were not taken
into account and the impact of the missing information can be seen in
the result section.

Following the analysis performed in Verhaak et al. (Verhaak et al.,
2010), the mutations were aggregated by patients and genes, allowing
us to analyze the number of patients on each cluster with at least one
mutation in a particular gene locus.

Then a contingency table was created for each case considering
the patients in a cluster and the number of them with a mutation in a
gene locus. This procedure allowed us to test the significance of the
relationship between a cluster and the presence of a high number of
mutated samples for a particular gene. To test this relationship, the
Fisher’s exact test was chosen over the Pearson’s Chi-squared test
due to the small number of samples in some cases.

The test was run only for the cases were at least 6 samples pre-
sented a mutation for a particular gene and the p-values obtained from
the test were adjusted using the Benjamini and Hochberg method.

3.7 G E N E - M O D E L S A N D F E AT U R E S A N A LY S I S O F T H E C L U S -
T E R S O F PAT I E N T S

After the definition of the clusters of patients in Section 3.5.5, the next
step was to study the gene-models that enrich each cluster and its
features.

3 https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
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3.7.1 Gene-models selection on each cluster of patients

The aim of the first method of this section was to select a subset of
significant gene-models for each cluster. By significant models we re-
ferred to the gene-models where the patients of a cluster had the high-
est co-occurrence and thus are the ones that defined that cluster.

There were different ways to do this. One method to select those
defining gene-models was to calculate the mean co-occurrence prob-
ability for each gene-model over all the pairs of patients in a cluster and
selected those models that had a mean value over a certain threshold.
This method was similar to the one used to find the patients’ clusters,
but instead of calculating the mean values for each pair of patients
over all the gene-models, in this case, the value was calculated over
all the pairs of patients for each model.

A second methodology was to apply a hierarchical clustering over
the co-occurrence distances (1 - co-occurrence value), calculating the
distance between the gene-models over all the pairs on each cluster
and to use visual inspection to separate the gene-models.

The former method was tested, but the definition of the cut-off value
was not easily found and a method that utilized the distance between
the models was preferred.

The results of the clustering of the gene-models are shown in Sec-
tion 5.3 and the heatmaps for each cluster is shown in Section B.2
of the Appendix. The number of selected groups was determined by
visual inspection due to the agglomeration of gene-models with high
co-occurrence values in a small and well defined cluster.

3.7.2 Selected gene-models analysis

After the definition of the subsets of gene-models for each cluster the
analysis over the gene-models was performed, we aimed to compare
the distribution of these models between the clusters and to analyze
their significance.

The first study was centered in the shared gene-models, in partic-
ular, gene-models that are present in several clusters. This analysis
was performed in a straightforward manner: by analyzing the number
of shared gene-models and their distribution.

In addition, an enrichment analysis was performed over the target
genes of the shared gene-models with more than 4 appearances, in
order to study if the target genes of these models belong to a specific
pathway or other set. The enrichment was performed through the Con-
sensusPathDB website4 (Kamburov et al., 2012). This allowed us to
perform gene set enrichment analysis with an updated database (Re-
lease 31 - September 2015). The enrichment analysis was performed

4 http://cpdb.molgen.mpg.de/
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using the KEGG5 and Reactome pathway databases and the Gene KEGG: Kyoto

Encyclopedia of

Genes and

Genomes

Ontology sets6.
After the analysis of the shared gene-models, a study considering

the different subpopulations of each cluster was performed. This ad-
ditional characteristic in the analysis is vital considering that for each
gene-model a cluster of patients is located in one of its subpopulations.
This means that in the case of a gene-model that is shared by 2 clus-
ters, if the samples of each cluster are not in the same subpopulation
then the gene-model is actually not shared. This was done for gene-
models with a presence in 4 or more clusters and for the gene-models
shared in every pair of clusters.

3.7.3 Gene-models’ features selection and analysis

Another approach to analyze the selected gene-models for each clus-
ter of patients was to study the features that comprised these models
for each cluster.

The analysis was performed over the features with non-zero coef-
ficients for each selected gene-model subpopulation, taking into ac-
count that the patients of each cluster are located in one specific sub-
population.

Three different methodologies were proposed for the enrichment
analysis of the features:

• An intra-cluster analysis, where shared features between the dif-
ferent gene-models on each cluster are studied.

• Ranked coefficients of each feature based on a significance test
for linear regression and application of a ranked gene set enrich-
ment analysis.

• Gene-set enrichment analysis of the features with non-zero co-
efficients.

The results for the first and third methods are presented in Sec-
tion 5.3.3. The second method was not implemented and the discus-
sion for this decision is presented in D I S C U S S I O N.

3.7.3.1 Intra-cluster feature aggregation

In this approach, for each layer, the features with non-zero coefficients
were aggregated for all the selected gene-models’ subpopulations in
a cluster. The analysis focused on the number of appearances of fea-
tures over all the significant subpopulations, and included the 4 layers
in the initial approximation. However, the study of the distribution of

5 http://www.genome.jp/kegg/

6 http://geneontology.org/
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appearances of the features for each layer showed that the microRNA
layers appeared with a much larger frequency than the other layers.
Considering the small set of elements in that layer it was difficult to
analyze and discriminate them.

After the exclusion of the microRNA layer, a coefficient denominated
appearance ratio was defined. This value represents the total number
of appearances of a covariant in the selected gene-models and sub-
populations in a cluster divided by the total number of selected gene-
models.

For a feature i, the appearance ratio (AR) is defined as:

ARi =
Number of Apperancesi
Number of Gene-models

× 100

This value was defined in order to compare the number of appear-
ances between clusters, considering that the number of selected gene-
models for each cluster is different and thus, a feature in a cluster with
a large number of selected gene-models could appear more often than
one in a cluster with small number of selected gene-models.

The features considered in the analysis must have at least 2 appear-
ances and an appearance ratio equal or over 2 %. These values were
considered as minimum thresholds and allowed us to discriminate fea-
tures that might have a high appearance ratio in clusters with a small
number of selected gene-models.

To study the significant features, a contingency table was used to
compare their distribution by layer and cluster. Then, an analysis of the
features was performed by cluster, based on the literature presented
in the introduction.

Finally, for the case of significant features that appear in several
clusters, an analysis of their subpopulation was performed, in order
to study if not only the features, but also their subpopulations were
shared between clusters.

3.7.3.2 Gene-set enrichtment analysis

The second methodology for the feature analysis of the selected gene-
models was the use of gene-set enrichment. As presented in Sec-
tion 2.1.3, the enrichment analysis is based on the comparison of
two sets, one obtained from our results and the other from biologi-
cal prior knowledge databases, such as pathways. In our project this
was performed by taking into account all the features on a cluster with
non-zero coefficients and computing with a previously known set (e. g.
gene ontology, biological pathway) the statistical significance whether
those features are overrepresented in that set.

A problem faced by this method was the composition of the gene
sets to test, which, as the name suggest, are comprised by genes,
which makes the use of the additional layers difficult.
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Because of this characteristic, the CpG sites methylation layer was
mapped into the gene layer using the manifest file for the Illumina Hu-
man Methylation Beadchip. On the other side, the microRNA layer
was not taken into account given the previous results where several
features of this layer are present in most models making it difficult to
discriminate significant appearances.

After the mapping of the methylation features, we proceeded to ap-
ply the enrichment analysis and as in Section 3.7.2, the Consensus-
PathDB interaction database was used. However, in this case, only the
KEGG pathway database was used, and all the genes in the design
matrix were defined as the background set.

The decision to work exclusively with the KEGG pathways database
was done based on preliminary results, where the inclusion of addi-
tional databases delivered an extremely large number of significant
enriched sets, making the discrimination of interesting sets difficult.

The obtained significant pathways were grouped based on their
function and analyzed by their presence in the different clusters.
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4
M I X T U R E O F R E G R E S S I O N M O D E L S :
I M P L E M E N TAT I O N A N D R E S U LT S

The results obtained by this work have been separated into those con-
cerning the technicalities of the implementation and execution of the
algorithm of mixture of regression models, and the implication of the
results obtained from it in the biological context of cancer research.

In particular, this chapter contains the analysis of the preprocessed
data obtained from the TCGA data portal, the definition of the gene-
models and their characteristics. Then it shows the implementation
and run of the MFLRMP, and finally the results concerning the execution
and performance of the algorithm.

4.1 T C G A DATA A N A LY S I S A N D C O N S T RU C T I O N O F T H E G E N E -
M O D E L S

The data obtained from the TCGA repository was preprocessed to cre-
ate the datasets needed for this project as shown in the M E T H O D O L -
O G Y. Preprocessing was not only done for aggregation and normal-
ization of the samples, but also to ensure a common range between
the different data types, also called layers (Section 3.4.5).

One critical characteristic of the samples to be used in this work
is that they have paired data for all the ‘omic’ layers. This subset of
patients is referred to as the shared patients set and consists in 324
patients. The patients’ id can be found in Section A.1.

4.1.1 Number of models and covariates

One we had the preprocessed datasets comprised of paired samples,
the next step was the creation of the models. These models would
follow this linear relationship for each genej:

yj =X
gene exp
∀gene6=j ·β

gene exp + Xmethylation ·βmethylation+

XmiRNA exp ·βmiRNA exp +XCNV ·βCNV + ǫn

Where yj is the expression of the genej, X are the covariates, com-
posed by the different layers, β are the coefficients of the covariates in
the linear model and ǫ is the error term. The model is also called ’gene-
model’ in this study due to its definition from a gene with expression
data.
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Figure 6: Main plot: Histogram of the number of covariates for the gene-
models after the application of the biological prior knowledge. Mod-
els with zero covariates not shown and values over 2 000 are ag-
gregated to 2 000.
Top plot: Grouped number of covariates by range of values.

Initially the number of models was equal to the total amount of genes
with expression data and all the features in the sets were considered
as covariates. This gave an initial value of 12 042 models, each one
with ∼ 35 000 covariates. This would mean that the MFLRMP algorithm
would be run over 12 000 times for models with thousands of covari-
ates.

As explained in Section 3.4.3.1, the number of covariates was re-
duced through the use of biological prior knowledge. This resulted in
gene-models with different numbers of covariates. In Figure 6, the dis-
tribution of the number of covariates for each gene-model, as well as
the fraction of models with different number of covariates, are shown.

The distribution of the number of covariates follows an exponential
distribution, with most values between 1 and 500. This can be easily
seen in the fraction plot, where the portion of gene-models with more
than 2 000 features is almost non-existent and the fraction of models
with zero covariates is around 15 %. Excluding the models with zero
or over 2 000 covariates the total number of models to train is 10 247.

The exclusion of gene-models with over 2 000 features was due to
their low number and high cost. Models with a high number of co-
variates are difficult to train and time consuming, and because of the
curse of dimensionality the trained models can be meaningless (see
Section 3.4.3).
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The threshold of 2 000 covariates was selected arbitrarily. This value
was chosen to minimize the number of lost models (∼ 50 models) and
it was found by trial and error that the time expended in the last 50
models was similar to the time used to train all the gene-models with
less than 2 001 covariates. Because of this characteristic 2 000 was
selected as threshold.

Finally, the number of gene-models to run was reduced to over
10 000 but the most important element is that the number of covari-
ates are mostly under 500. This is crucial considering that every gene-
model is trained independently with the MFLRMP algorithm.

4.1.2 Source of the covariates

Another statistic considered was the source of the covariates of the
gene-models after the application of the prior biological knowledge.
In Figure 7, the 4 sources (biological layers) of the covariates for the
models are shown. For each one, the distribution of the fraction of
covariates that comes from that source is shown for every model.
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Figure 7: Distribution of the covariates sources of the gene-models. Consid-
ering biological prior knowledge and before the application of the
penalization.

We can see that there is a significant difference in the distribution
for each layer. On once side over 50 % of the gene-models’ covariates
come from the CpG sites methylation layer, while on the other side the
CNV layer has a median fraction of 5 %. This difference is explained
by a combination of the number of elements on each dataset and the
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number of interactions between that layer and the gene set. In the
case of CpG sites methylation layer there are over 20 000 elements
and 30 000 interactions, while for CNV there are around 2 500 features
and 400 000 interactions. With such a small number of elements in the
CNV set, the high number of interactions are not significant and this
explains the low presence of the CNV in the design matrix. Something
similar happens with the microRNA variables, where there is around
244 elements and 5 000 interactions.

4.2 I M P L E M E N TAT I O N O F T H E M F L R M P A L G O R I T H M A N D P E R -
F O R M A N C E

The original implementation of the MFLRMP algorithm can be found
in Städler et al. (Städler et al., 2010). As part of this project, a new
implementation of this algorithm was performed, aiming to produce a
faster implementation. To accomplish this, the code was ported to C++

and a wrapping R package was created for it. To link the C++ code
to the R package the libraries Rcpp (Eddelbuettel and François, 2011;
Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel and Sanderson,
2014) were used. RcppArmadillo was especially useful to code the
linear algebra needed for this algorithm.

The new implementation was compared to the original one, which
was written in pure R code. This comparison was performed using the
microbenchmark package1 with 100 iterations for each comparison. A
ratio was calculated from these results, which reflects how many times

faster the new implementation is compared to the original one.

Ratio =
Median Time original

Median Time new

The comparison was run over 3 model parameters, modifying on each
comparison 1 parameter and leaving the other 2 constant. The param-
eters are: K, number of submodels; N, number of samples; P, number
of features. The value of the parameters when not considered as vari-
ables are: K = 3, N = 200 and P = 100.

It can be seen in Figure 8 that there is always a gain in running
speed when using the new implementation - for all the conditions the
ratio is over 1. This gain diminishes for more complex models, this
characteristic is valid for all three parameters, but the difference is
more drastic with the variation of the total number of samples.

For conditions with simple models (i. e. N 6 100 & P 6 50), the
gain was over 10 times (results not shown). These results point out an
overhead in the implementation, possible due to memory movement
between the R data structures and C++. Additionally, larger models
were considered and tested to study the possible convergence of the

1 https://cran.r-project.org/web/packages/microbenchmark/index.html
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Figure 8: Performance comparison between the R and the C++ implemen-
tations of the FMLR algorithm. The ratio is defined between the
median run time of the R version and the the C++ version. The com-
parison is performed over K: number of submodels, N: number of
samples and P: number of features.

ratios (results not shown) for high values of the parameters. Firstly,
the number of submodels were tested with values between 50 and
100. It was found that the ratio stays stable at 2,00. In the case of the
number of samples, sample sizes of 800 and 1 000 were tested and
for both cases the ratio was > 1,2. Finally, the number of features were
tested for several values between 200 and 4 000. This was done due
to significant differences for each tested case. A stable ratio value was
found for P > 1 000 which is around 1,00. Suggested solutions and
discussion can be found in the D I S C U S S I O N.

Our implementation can be found in the project’s GitHub repository
(Campos-Valenzuela, 2015). Which is open and publicly available and
any improvement to the code is welcome.

4.3 M F L R M P A P P L I C AT I O N , G E N E R A L R E S U LT S A N D A N A LY-
S I S

The MFLRMP algorithm was applied over all the models of the genes
with expression data, as explained in Section 3.4.1.2. In total 10 247
different gene-models were trained independently, which comprises
around of 85 % of the total number of gene-models.
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4.3.1 Set up and execution of the MFLRMP algorithm

For each of the models to train a set of parameters must be set be-
forehand. In particular, for mixture models the hyperparameter K is un-K: number of

subpopulations or

submodels
known and several values are used and compared. In a similar fashion
the hyperparameter λ, which governs the strength of the penalization
term, is also unknown and must be selected over a set of possible
values through a comparison of cross-validation errors. Other param-
eters must be set as initialization values for the EM algorithm. These
parameters are: the initial posterior probabilities for each data point on
each model (also known as responsibilities) and, the variance of the
error for each one of the K subpopulations.

The values chosen for the parameters are:

K : The values range from 1 to 5, considering previous results in the
literature (Verhaak et al., 2010).

λ : Six values were considered and they range from 1 to 20 following
an exponential profile. The values are: 1,00, 1,82, 3,31, 6,02,
10,96 and 19,95.

I N I T I A L P O S T E R I O R P R O B A B I L I T I E S : The heuristic method pre-
sented in Städler et al. (Städler et al., 2010) was followed, where
for each sample one of the K submodels was randomly given
high probability (∼ 80%).

VA R I A N C E O F E R R O R : The variance was set as 0,5 for all the mod-
els, following Städler et al. (Städler et al., 2010) as well.

4.3.2 General results obtained by the execution of the MFLRMP al-

gorithm

In this section, the results obtained from the application of the MFLRMP

algorithm over the gene-models are shown. This section focuses on
the results of the algorithm and not on their biological implications.
The latter are shown and analyzed in the following chapter.

The algorithm was executed 10 427 times, once for each model. The
selection of the hyperparameters K, number of subpopulations, and λ,
strength of the penalization term, was performed for each run.

4.3.2.1 Number of subpopulations for each gene-model

The number of optimal subpopulations was found following the me-
thodology presented in Section 3.4.4. The distribution of the number
of subpopulations against the number of covariates is presented in Fig-
ure 9. The main hypothesis, which is based on the curse of dimension-
ality, is that for models with a large number of covariates the number
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of subpopulations is going to be one. This hypothesis is due to the fact
that in high dimensions any model can explain the data with a similar
error, because with this configuration distances and errors lose their
significance.
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Figure 9: Distribution of the number of gene-models’ covariates grouped by
the number of subpopulations. Number of covariates obtained from
the biological prior knowledge.

Most of the models present no subpopulations, which is concordant
with one of our main biological hypothesis, where only a subset of
genes present aberration in their regulation and other interactions, but
for the most of them a single subpopulation close to their normal inter-
actions should be found.

From the histograms, can be seen a negative correlation between
the number of covariates and the number of subpopulations. This ef-
fect can be observed in the gene-models with 2 or more subpopu-
lations, where the number of covariates decreases for gene-models
with larger number of subpopulations.

The most frequent case of multiple subpopulations are the models
with 2 subpopulations, which corresponds to ∼ 25% of the total number
of models trained and over 80 % of them have less than 100 covariates.
This confirms that the models with multiple subpopulations are heavily
skewed to the lower range of their number of covariates.

4.3.2.2 λ and penalization strength

Following the iterative processes defined to find the optimal λ for each
possible number of subpopulations (Section 3.4.3), several values of
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λ were used. Here the optimal λs found are analyzed and the most
significant result presented.

C OVA R I AT E S D I S T R I B U T I O N F O R λ VA L U E S The distribution of
the number of covariates for the selected λs is shown in Figure 10.
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Figure 10: Distribution of gene-models’ covariates segmentated by the se-
lected λ. Number of covariates obtained from the biological prior
knowledge.

Two results stand out from their distribution: the first one is the range
of features with the smallest λ, this range is short in comparison with
the other distributions and is concentrated under the 200 covariates.
The second one is the preference for models with a large number of
features for λs over 3.

These two results cannot be analyzed by themselves, because we
are not applying a penalization to a simple linear model, we are apply-
ing it to a mixture of regression models. Due to that characteristic, the
number of subpopulations are critical in the analysis, as shown in the
following section.

One important element to highlight is the frequency of the highest
λ term, which had a small preference overall, and how the number of
models with a large number of covariates decreases after λ = 6,03 for
larger λs.

These results suggest that the set of possible λs is adequate and
there is no need of larger λs to consider.
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D I S T R I B U T I O N O F λS F O R D I F F E R E N T N U M B E R O F S U B P O P U -
L AT I O N S The frequency of the selected λ for the number of subpop-
ulations (K) is shown in Figure 11.
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Figure 11: Mosaic plot of the distribution of the selected λs for each number
of subpopulations (K) after the application of the MFLRMP algo-
rithm to the gene-models.

The main results arise from the comparison of the distribution at
the highest possible λ and the lowest. For K = 1, the smallest λ is
selected with the highest frequency, which is the opposite for K = 5,
where the highest λ is selected. The rest of the λ values follow a similar
distribution, small λs appear more frequently for models with smaller
number of subpopulations and the reverse is observed for the models
with many subpopulations.

A larger λ is related to a higher penalization and thus a smaller
set of non-zero coefficients. Models with many subpopulations could
have a smaller cross-validation error with larger penalizations due to
the unique profiles of the subpopulations, which would be drastically
different between each other by the features with non-zero coefficients.
In the case of models with a single population, the selection of the
smallest λ can be interpreted as a small variation in the error due to
the number of features selected, and thus, an stable unique population
model.

I N T E G R AT I O N O F T H E D I S T R I B U T I O N A N A LY S E S Considering
all the previous results one could see a strange disagreement be-
tween them. On one hand, the gene-models with many covariants
tend to have one subpopulation, but at the same time most of the
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gene-models with a large number of covariates have a large λ se-
lected. Which is not in concordance with the mosaic plot just pre-
sented. Where for gene-models with small number of subpopulations,
the strength of penalization is low.

This disagreement is due to how we analyze the distribution, we
tend to focus in the small but interesting results, such as the distribu-
tion of the subpopulations for gene-models with high number of covari-
ates. While our general analysis is correct and large gene-models tend
to have small subpopulations, we must not forget that gene-models
with less than 250 covariates are the most common by a large mar-
gin, and are highly present in the distribution of gene-models with one
subpopulation.

Thus, an analysis focused in the distribution of gene-models with
a large number of covariates can be unclear by itself due to the im-
portant presence of gene-models with few covariates, and the study
taking into account only the number of subpopulation and penalty
strength should be favored.

P E N A L I Z AT I O N S T R E N G H T A N A LY S I S An interesting set of re-
sults is the relationship between the selected λs and the impact of
them in the models.

As a first approach to this analysis, the number of features (covari-
ates) with non-zero coefficients (not penalized) for the gene-models
segmented by the selected λ is shown in Figure 12.
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Figure 12: Distribution of the fraction of covariates with non-zero coefficients
for all gene-models against the penalization term λ.
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The immediately observable result is the shift to lower values of the
fraction of features with non-zero coefficients when the selected value
of λ grows, which can be taken as a proof of concept of the impact of
the penalization term in our model.

One interesting case is the distribution of fractions of non-zero co-
efficients for the smallest λ, where their mean is around 0,5 and the
distribution is symmetrical. This means that with a small penalization
term we are able to eliminate 50 % of the features for most models,
and can be interpreted as half of the covariates have a minimal signifi-
cance in the definition of the subpopulations.

An additional analysis of the penalization is the study of the impact
in the biological layers.

Previously, in Figure 7, the source of the covariates in the design
matrix was shown. One approach to study the penalization is to see
how it impacted the different sources (biological layers) of the design
matrix and to compare the fraction of covariates from a source before
and after the penalization. In Figure 13, the source of the covariates
after the penalization is shown.
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Figure 13: Distribution of the covariates sources for the gene-models. Con-
sidering biological prior knowledge and after the application of the
penalization. Only features with non-zero coefficients are shown.

The most drastic change is seen with the CpG sites methylation
layer, where it changes from being the most important source of covari-
ates for most gene-models (over 50 %) to the second most important
source of covariates, tied with the microRNA expression layer. This ef-
fect could have been induced by the binary profile of the methylation or
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the high correlation of the CpG sites, and thus, the elimination through
the lasso method.

For the other layers the change was less noticeable. For the expres-
sion layers, genes and microRNA, an increase in the proportion of
covariates was found, which could be induced by the diminishing num-
ber of features from the methylation layer. A particular result, which
was presented previously but with less impact, was the microRNA
layer as a source of covariates. The number of covariates from the
microRNA layer after the penalization is smaller, but comparable to
the one from the gene expression layer even though the number of
possible covariates is much smaller. The reason for this result is theGenes: 12 000

covariates

microRNA: 244

covariates

number of interactions between the small microRNA set and the gene
set. With almost 5 000 microRNA-gene interactions each element of
the microRNA has a high chance to appear in the design matrix of any
gene-model. The CNV layer shows no large variation, its proportion is
still small, but it has been benefited by the hard penalization of the
methylation layer.

Finally, in Figure 14, another angle to study the penalization is pre-
sented. Here the fraction of features with non-zero coefficientes in a
gene-model for each layer is shown. A fraction close to 0 shows that
most of the features of a layer in a gene-model have a zero coefficient,
while a fraction close to 1 means that most of the features of that layer
have a non-zero coefficient. This is applied over all the gene-models
and grouped by layer. The goal of this plot is to connect Figure 7 and
Figure 13.
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Figure 14: Fraction of the features with non-zero coefficients for each layer
after the penalization considering all the gene-models.
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scribed. Along with this variable its linear coefficient (α), which would
represent the difference in the slope between samples measured with
different platforms was presented. In Figure 16, the distribution of the
α values is shown. It can be seen that the distribution is highly concen-
trated around 0, the 10 % and 90 % quantiles are −0,022 and 0,015
respectively. These values show that for most of the models there is
no major difference between the platforms.

There are 25 outliers with an absolute value over 1, which rep-
resents a minimal proportion of the total number of coefficients α

(10 2122). These outliers where analyzed and they corresponded to
models where some samples presented an outlier subpopulation.
However, the difference was not significant enough to derive another
subpopulation and its difference was explained by a large coefficient
α for the platform dummy variable.
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Figure 16: Boxplot of the coefficient α of the methylation platform dummy
variable for all the gene-models with CpG sites methylation data.
A: Boxplot of the total α values. B: Zoom into the values close to
0.

4.4 S U M M A RY O F T H E I M P L E M E N TAT I O N A N D E X E C U T I O N R E -
S U LT S O F T H E M I X T U R E O F F I N I T E L I N E A R R E G R E S S I O N

M O D E L S W I T H P E N A L I Z AT I O N A L G O R I T H M .

Here the main results obtained from the implementation and run of the
MFLRMP algorithm are shown and briefly discussed. These results are
comprised by the generation of the datasets used to train the MFLRMP

and the technical results from the execution of the MFLRMP algorithm.
Because the obtainment and preprocessing of the datasets were

focused in the M E T H O D O L O G Y chapter, the attention in this chapter
was put in the conformation of the gene-models to be used with the

2 Not all the gene-models comprise CpGs methylation data
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MFLRMP. After considerations based on the number of covariates, the
number of gene-models to train was set in 10 247. By utilizing the bi-
ological prior knowledge, the number of covariates for the model was
modified and for most of them the number of covariates was less than
500.

These datasets were used as input for the MFLRMP algorithm, where
the models were trained independently. One important characteristic
of the MFLRMP algorithm is the inclusion of the lasso penalization term.

The effect of this penalization can be seen in a plethora of results.
The most significant one is the further reduction in the number of co-
variates for the gene-models. Before the training of the models and the
use of the lassso penalization, most design matrix were comprised of
less than 500 variables. This number was reduced drastically after the
penalization, where no models had more than 200 variables with non-
zero coefficients.

Another effect of the penalization was the distribution of the source
of covariates, where for the models before the penalization there was
a significant presence of the CpG sites methylation layer. This layer
was heavily penalized by the lasso penalization, while for the expres-
sion layers (genes and microRNA) the fraction of the source remained
constant, resulting in these 3 layers having similar amount of non-zero
coefficients. The CNV layer had a minor presence in the covariates of
most of the models and this characteristic did not change after the
penalization.

Along with the penalization the amount of subpopulations found with
the algorithm was analyzed as well. It was found that the vast majority
of gene-models presented only one subpopulation and for the case of
multiple subpopulations, the most common number of them was 2.

The study of the penalization strength (λ) and the number of subpop-
ulations (K) showed that for gene-models with a single subpopulation
the smallest penalization terms was mostly selected, while the models
with 4 or 5 subpopulations higher λs were selected. This relationships
was considered to reflect the uniqueness and well-defined of multiple
subpopulations, given their small number of covariates with non-zero
coefficients.

Finally, it was found that the use of different platforms to measure
the CpG sites methylation did not show any effect and was considered
not significant for the analysis.

In conclusion, the results obtained from the execution of the MFLRMP

algorithm showed that there are a defined set of gene-models with mul-
tiple subpopulations that have been heavily penalized. In addition, the
‘omics’ layers presented a similar number of non-penalized number
of covariates, with the exception of the CNV layer. With these results
we can conclude that the gene-models definition, the application of
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the algorithm and the penalization, and subpopulation discovery were
successful.
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5
B I O L O G I C A L R E S U LT S A N D O N C O L O G I C A L
I M P L I C AT I O N S O F T H E T R A I N E D M O D E L S

The general results of this project are divided into those focused on
the technical implementation and application of the MFLRMP algorithm
with GBM data, and those concerning the underlaying cancer biology
and are focused on the patients and the different molecular elements.

In this chapter, the latter results and analyses are presented. These
are separated into three sections: clustering of the GBM patients,
patient-wise analysis of the clusters and gene-models, and features
enrichment of the clusters.

The first one refers to the clustering of the patients using the result-
ing gene-models from the MFLRMP, the second section is comprised
by the analysis of the patients in each cluster, their clinical profiles and
other analyses. The last section is focused on the significant gene-
models for each cluster and their features.

5.1 A N A LY S I S O F C O - O C C U R R E N C E A N D C L U S T E R I N G O F PA -
T I E N T S

In this section, the implications of the trained gene-models on the pa-
tients is analyzed. Firstly, the co-occurrence of the samples in the dif-
ferent gene-models is studied and used to define subgroups of pa-
tients. Secondly, the different subgroups obtained are studied based
on their clinical characteristics and compared to previously reported
results.

5.1.1 Calculation of the co-occurrence value between samples

A key set of values defined by this work is the sample co-occurrence
probabilities. These values were defined in order to compare the co-
occurrence of two samples over all the trained gene-models subpopu-
lations (see Section 3.5.1).

These probabilities permit the comparison of the closeness between
each sample with the others samples and thus, generate groups of
them. Because of the probabilistic nature of the finite mixture model,
these values represent the chance that a pair of patients are together
over all the gene-models and are not distances in the mathematical
sense.

From the 10 427 gene-models trained, 3 281 have more than 1 sub-
population. From these gene-models an additional selection process
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was performed in order to choose only the gene-models without a dom-
inating subpopulation, see Section 3.5.2. In total 2 406 gene-models
were selected and used in this analysis.

The co-occurrence values, also called probabilities, for each pair of
samples over each gene-model was calculated. This resulted in over
50 000 values for each gene-model. The total co-occurrence proba-Total number of

pairs:
N∗(N−1)

2

with N = 324
bility for each pair was calculated by aggregating the values by the
mean over the gene-models, this value represents the probability of
co-occurrence over all the models.

Finally, the co-occurrence matrix was created with the total co-
occurrence values with dimensions n× n, where N is the number of
patients (N = 324).

The values in the matrix were linearly transformed as detailed in
Section 3.5.2. In Figure 17, a histogram of the data before (A) and
after (B) the transformation is shown.

0

20000

40000

60000

0.00 0.25 0.50 0.75 1.00

Co−occurence values

C
o

u
n

t

A

0

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00

Co−occurence values

C
o

u
n

t

B

Figure 17: Histogram of the co-occurrence values for each pair of samples
before and after transformation for easier discrimination of ag-
glomerated elements.
A: raw values. B: Values after transformation.

As can be seen, the transformation allowed us to easily discrimi-
nate between the values that were agglomerated before. This process
transforms the probabilities to pseudo-distance, where a high certainty
has a value close to 1 in the former, while in the latter is close to 0.

5.1.2 Hierarchical clustering of the co-occurrence matrix

After the transformation, the co-occurrence matrix was ready to be
used as a distance matrix for the agglomerative hierarchical clustering
algorithm, which was applied using complete linkage.Complete linkage:

method to combine

clusters where the

distance between

two groups is

defined as the

farthest distance of

elements between

groups.

The resulting dendrogram of the hierarchical clustering along with
the silhouette values were calculated and analyzed. By visual inspec-
tion, it was found that the set of patients could be divided into two.
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This clustering was by far the strongest but it left a significant portion
of samples agglomerated and without a possible profiling, while the
second group was small and with a small distance between members.

Due to this, it was decided to select a larger number of clusters, 6,
as the optimal value. By doing this the original well-defined cluster was
kept and the samples were divided into sparse groups and the number
of samples are equally distributed.

Table 5: Number of elements for each cluster.

Cluster Size

1 35

2 44

3 52

4 58

5 85

6 50

In Table 5 the size of each cluster are shown. The stable and well
defined cluster found previously when K = 2 is denominated Cluster 1
for future reference.

The histogram of the silhouette values for different number of clus-
ters can be found in Section B.1, and in Figure 18 the heatmap of the
distance matrix is shown along the with the discovered clusters.

5.2 PAT I E N T S - W I S E A N A LY S I S O F T H E C L U S T E R S

After obtaining the clusters for our set of patients, the next step was to
profile the samples belonging to each one of them. This process com-
prised the analysis of the clinical profiles, comparison to previously
discovered clusters and the analysis of the mutation profiles.

5.2.1 Covariates source for each cluster

With the clusters of patients calculated, it was possible to reanalyze
the source of the covariates considering the subpopulations. As shown
in the example in Figure 4, each cluster of patients are grouped over
one subpopulation for each gene-model. It is then possible to study a
cluster of patients by selecting those subpopulations and the features
that define them.

Figure 19 presents the fraction of covariates from each source (bi-
ological layers) segmented by cluster. This can show if there are dif-
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Figure 18: Heatmap of the co-occurrence matrix showing patients clusters.

ferences in the fraction of covariates from a particular source between
clusters.

1 2 3

4 5 6

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

G
en

e

Exp
re

ss
io
n

C
N
V

C
pG

 s
ite

s

m
et

h
m

iR
N
A

Exp
re

ss
io
n

G
en

e

Exp
re

ss
io
n

C
N
V

C
pG

 s
ite

s

m
et

h
m

iR
N
A

Exp
re

ss
io
n

G
en

e

Exp
re

ss
io
n

C
N
V

C
pG

 s
ite

s

m
et

h
m

iR
N
A

Exp
re

ss
io
n

Sources

C
o

u
n

t

Figure 19: Fraction of the features with non-zero coefficients for each layer
after penalization and considering the gene-models that belong
to a particular cluster.

72



Analyzing the boxplots, it is possible to observe that for the CNV

layer the distribution is constant over the different clusters. With the
sole exception of Cluster 5 which has a very low variance, but with a
similar median as the rest of the clusters.

For the other layers a constant distribution was found. In general,
the gene expression layer has a larger fraction of covariates for most
of the clusters while the methylation and microRNA layers have very
close distributions. There is a trade-off between the methylation and
microRNA layers; when the methylation value is higher the microRNA
fraction is smaller and vice-versa. The only cluster that presented an
unique profile is Cluster 5, where the distribution for these layers is
almost identical and with very large variance. Making this cluster an
interesting case to study for all the layers.

5.2.2 Clinical analysis of the clusters

In this section the main clinical parameters are analyzed in function of
the defined clusters. The data available in the TCGA repository allowed
us to study the distribution of the age, gender, survival, type of tumor,
history treatment and Karnofsky score between the groups.

From the data downloaded, 3 samples were not present in the
database. Due to this these samples were not considered in the clini-
cal analysis presented here, meaning that 321 samples are present in
the following analyses. The list of the missing samples can be found
in Table 6.

Table 6: Missing samples in the clinical data.

Patient Cluster

TCGA-16-1048 3

TCGA-32-2498 3

TCGA-28-2510 5

5.2.2.1 Distribution of the patients’ age over the clusters

The distribution of the age of the patients at the time of the diagnosis
is presented in Figure 20, where the values are grouped by clusters.

The distribution of the age is not homogeneous over all the clusters
and it presents a skewed non-normal distribution after visual inspec-
tion. Due to this a Kruskal-Wallis rank sum test was run on the data in
order to test the hypothesis that the mean is the same for all the clus-
ters. This test reported a Chi-squared value of 14,801 and a p-value
< 0,02.
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Figure 20: Distribution of the patients’ age for each cluster. Clusters 1 and
2 are comprised by younger patients and present a larger vari-
ance, while Clusters 4, 5 and 6 have older patients and a smaller
variance.

The difference between the means is noticeable when comparing
the Clusters 4, 5 and 6, which have mostly patients of old age, with
Cluster 1 and 2, which have over 60 % of the patients under 35 years
old. Finally, Cluster 3 has a distribution similar to the whole-set distri-
bution and cannot be uniquely profiled.

5.2.2.2 Gender distribution over the cluster

The ratio of the patients’ gender for the different clusters and for all the
samples is illustrated in Figure 21.

For the full set of samples, the ratio of male and female is close
to 60/40, which is similar to previously reported ratios (Verhaak et al.,
2010).

The gender ratio varies over the different clusters, in particular in
Clusters 1 and 5, but the difference appears not to be significantly
large. With the intention to test this, a Pearson’s Chi-squared Test is
applied over the data. The resulting p-value of the test is > 0,06 and
does not allow us to reject the hypothesis that the number of samples
for each cluster and gender does not have a significant difference from
the expected value.
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Figure 21: Ratio of males and females for each cluster and for all samples.

5.2.2.3 Analysis of the number of de novo samples

Because GBM tumors can arise from lower-grade gliomas or as de
novo tumors, the analysis of the type of tumor is in our interest.

From the clinical data is not possible to distinguish between sec-
ondary and recurrent tumor samples due to the annotation. Because
of this characteristic, these two groups are classified as one, named
non-de novo tumors.

Table 7: Distribution of non-de novo and de novo samples for each cluster.

De novo tumor

Cluster False True Total

1 8 27 35

2 4 40 44

3 7 43 50

4 0 58 58

5 2 82 84

6 0 50 50

Total 21 300 321
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In Table 7, the distribution of de novo and non-de novo samples for
each cluster is shown. The de novo samples are over 90 % of the total.
This difference can be seen in previous works, for example in Verhaak
et al. (2010) there were 19 of 202 samples with this characteristic.

The distribution of the non-de novo samples is concentrated in the
Clusters 1, 2 and 3. In particular, Clusters 1 and 3 have the most of the
non-de novo samples. In Verhaak et al. (2010) 3 of the 5 secondary
tumor samples are in the Proneural subtype and the other 2 in the
Classical subtype, while the recurrent tumor samples are distributed
fairly over the 4 subtypes.

The distribution of the non-de novo samples shows a stricter enrich-
ment in our study, while considering secondary and recurrent tumors,
compared to previous studies. This attribute allows us to characterized
Clusters 1 and 3 as the groups where the non-de novo tumors are
present and could exhibit similarities with the Proneural and Classical
subtypes of Verhaak et al. Because of this, additional comparisons be-
tween these groups and subtypes are of interest and are presented in
the following sections.

5.2.2.4 Analysis of the Karnofsky performance score of the tumor

samples

The Karnofsky performance scores were reported for 245 of the sam-
ples used in this project. Because of the qualitative nature of the score,
its distribution over the clusters is analyzed instead of using it to calcu-
late different statistics.

Figure 22 presents the mosaic plot of the scores over each clus-
ter and all the samples, where the ratio of each score over the total
number of elements is shown.

The distribution of scores over the Clusters 1 and 2 presents a large
ratio of high-level scores and a lack of any score lower than 60. This
profile contrasts with the distribution for the Clusters 4, 5 and 6, where
the ratio of higher scores is lower and there is a significance presence
of low-level scores. For Cluster 3 it can be seen that the distribution is
close to the distribution for all the samples.

Due to the qualitative nature of the Karnofsky values, a Pearson’s
Chi-squared Test for a contingency table was applied to them in order
to test a difference between the observed and expected distribution
of the values. The p-value of the test was < 0,04 and thus, we can
reject the hypothesis that the scores follows the expected distribution
as described in 3.6.1.

5.2.2.5 History of neoadjuvant treatment analysis

The history of administration of treatment before surgery, such as
chemotherapy or hormone therapy, is presented in Table 8.
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Figure 22: Mosaic plot of the Karnofsky scores for each cluster and the
whole set of patients.

Table 8: History of neoadjuvant treatment for each cluster.

Neoadjuvant treatment

Cluster False True Total

1 26 9 35

2 43 1 44

3 44 6 50

4 57 1 58

5 82 2 84

6 50 0 50

Total 302 19 321

While the distribution of patients without treatment is similar over all
the clusters, the patients with neoadjuvant treatment have a significant
presence only in Clusters 1 and 3.

The results presented in Table 8 recall the results previously pre-
sented in Table 7 where Clusters 1 and 3 had most of the non-de novo
samples. This correlation can be a consequence of the type of the tu-
mor, due to the disposition of secondary tumors for diffusive infiltration
(Kleihues and Ohgaki, 1999), where neoadjuvant treatment would be
preferable over surgery.
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5.2.2.6 Survival analysis of the patients

The survival analysis of the samples grouped by their cluster was per-
formed. For 320 patients, there was survival information, including cen-
sored data. The 4 missing patients were comprised of the 3 samples
without any clinical information identified in Table 6 and in addition, a
sample without vital status information, TCGA-16-0861.

The survival curve over the clusters is shown in Figure 23. A red
cross is used to represent censored data points.
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Figure 23: Survival curves of the patients grouped by clusters.

The survival curves were tested using the log-rank test if they have
a significance difference. The test returned a p-value > 0,08 and thus,
we cannot reject the hypothesis that they have the same survival func-
tion.

An inspection of the curves shows that the curve for Cluster 2 has
a higher survival rate overall. After day 1 000, Cluster 1 joins Cluster 2
to form a group with higher survival, which is in accordance with the
results showed for their age and Karnofsky scores, making this group
of clusters an interesting target of study, especially when contrasted
with Clusters 4 and 5, which have a different composition with respect
to non-de novo tumors, age distribution and Karnofsky scores.

5.2.3 Comparison to Verhaak subtypes

The clusters of patients found using the finite mixture approach can be
compared to those reported by Verhaak et al. (Verhaak et al., 2010).
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The main difference between them was the reported number of clus-
ters or subtypes, as denominated in Verhaak et al, where as described
in the introduction, 4 subtypes were discovered, while our findings
found 6 different clusters.

A direct comparison of the clusters was possible due to the use of
TCGA data by both studies. A comparison of the size of the datasets
is shown in Table 9. It can be seen that this study uses 75 % more
samples than the study from Verhaak et al., and when the sets are
intersected, only 50 samples are found.

Table 9: Number of samples for the Verhaak and Campos studies.

Study Number of Samples

Verhaak et al. 202

Campos 324

Intersection 50

This difference comes from the need to use samples in this study.
From the original 558 samples in the expression set (Table 1), only
324 have data for the other molecular layers and most of them without
this information are found in Verhaak et al.

The comparison between the sets for the 50 shared samples can be
seen in the Table 10, where a contingency table shows the distribution
of the patients over the subtypes and clusters.

Table 10: Contingency table of the shared samples and their clusters be-
tween Campos and Verhaak 2010.

Verhaak et al. subtypes

Campos

clusters

Classical Mesen-
chymal

Neural Proneu-
ral

Total

1 6 3 2 9 20

2 0 0 1 5 6

3 2 11 4 0 17

4 3 0 0 2 5

5 0 1 0 0 1

6 1 0 0 0 1

Total 12 15 7 16 50

An interesting first result was the distribution of the shared samples
over the clusters as defined in this work. Clusters 1 and 3 comprise
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75 % of the shared samples, while Clusters 2 and 4 have 6 and 5
respectively. Finally, there was an almost complete absence of shared
samples for Clusters 5 and 6, where for each one of them there was
only 1 shared sample. This result could show that these clusters are
new subtypes, not considered in previous studies, but due to the low
number of shared samples this hypothesis cannot be corroborated.

The majority of samples for Clusters 1 and 3 were distributed over
a few subtypes. The samples in Cluster 1 were allocated mostly in the
Classical and Proneural subtypes (15 of 20), while 11 of the 17 sam-
ples from the Cluster 3 were present in the Mesenchymal subtype. An
additional point of comparison was the survival, age distribution and
tumor type found in the Proneural subtype. In this subtype an enrich-
ment of younger patients with better survival was found and 3 of the 5
samples of secondary glioblastoma are grouped here. In comparison
with the results present here, Clusters 1 and 2, and in a lesser form
Cluster 3, have these characteristics. In summary, through the clinical
analysis it was possible to link the Proneural subtype to the Clusters 1
and 2, and the Mesenchymal subtype to Cluster 3.

Most of the subtypes in Verhaak et el. were defined through their
molecular signature, in the next section the genetic signatures are pre-
sented and analyzed. It also includes the most relevant signatures for
the subtypes of Verhaak et al. and other studies.

5.2.4 Genetic signatures in the clusters

The analysis of the genetic signatures in the clusters was performed by
analyzing the distribution of the somatic mutation in the patients and
clusters. For this study, only the SNPs were taken into account, the rea-
son behind this decision is that the mixture model already integrates
the signatures of the other molecular layers, such as methylation and
CNV.

5.2.4.1 Data and missing samples

For this purpose the database COSMIC was used. Here the somatic
mutations of the TCGA consortium are stored and cataloged. The data
downloaded from the COSMIC database was incomplete and 104
samples were missing. The allocation of the missing samples is shown
in Table 11, where the number of missing samples for each cluster is
presented along with the percent of missing samples over the total
number of patients for that cluster.

From the 104 missing samples, 65 belong to the Clusters 4 and
6, comprising over 55 % of the total number of samples. In a lesser
form, Cluster 2 misses information for over 30 % of their samples. This
lack of information makes it difficult to analyze these groups and this
handicap will be taken into when discussing these results.

80



Table 11: Number of samples without mutation signature for each cluster.

Cluster Missing

samples

Percent [%]

1 1 2,86

2 14 31,82

3 10 19,23

4 33 56,90

5 14 16,47

6 32 64,00

The genetic analysis was performed over all the clusters, including
those with a high number of missing samples, and involved the study
of the number of mutated samples on each cluster.

5.2.4.2 General mutations analysis

From the over 7 700 genes with somatic mutations, a selection of pos-
sible interesting genes was performed based on the minimal number
of samples in a cluster with a mutation in that gene. For a gene to be
considered it should present mutations in at least 6 samples in one
cluster.

In total 34 different genes had mutations in at least 6 samples for any
cluster and, in addition, a Fisher’s exact test was performed in order to
analyze the significance of the mutations. The reported p-values were
adjusted using the Bejamini-Hochberg method to take into account the
multiple comparison performed.

In Table 12, the 34 genes are shown along with the number of mu-
tated samples for each cluster. The table has been colored to ease its
inspection based on the number of mutated samples and the p-value
obtained for the cases with more than 6 samples.

S T U DY O F C L U S T E R 5 An examination of the table reveals that
Cluster 5 presented a high number of mutated samples. In fact, only
9 of the selected 34 genes have less than 6 mutated samples in this
cluster. This highly mutated number of samples raises the question
why this cluster in particular has a higher ratio of mutations per sample
than the other clusters. In Figure 24 the distribution of the number of
mutated samples for the Cluster 5 and for the other samples can be
seen in addition to the density of all the samples.

The density for the number of mutation per sample for the Cluster
5 peaks around 100 mutations per sample, this peak is present in the
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Table 12: Number of samples with gene mutations for each cluster. Colored
cells represent more than 6 samples mutated in the cluster. Red
cells show the level of statistical significance for that cell.

Clusters

Genes 1 2 3 4 5 6

ANK2 5 2 9 2 2 0

ASPM 4 2 8 0 5 0

C15orf2 0 0 0 0 7 0

CHEK2 14 5 13 2 2 1

CNTNAP2 0 1 1 0 6 1

DNAH3 1 1 4 0 6 1

EGFR 9 1 6 7 25 7

FBLN2 0 0 0 1 6 0

FLG 1 4 5 1 13 3

HIF1A 6 3 3 0 1 0

HMCN1 2 0 3 1 7 0

IDH1 0 10 1 2 2 0

IRS4 7 1 5 1 1 0

LAMA1 1 0 2 0 7 0

LRP2 0 0 2 1 9 1

MUC16 1 4 7 5 15 4

MUC17 4 0 3 0 10 3

NF1 3 1 2 1 6 0

OBSCN 2 0 3 2 7 0

PCLO 1 2 2 3 7 1

PIK3C3 5 0 6 1 1 0

PIK3CA 3 2 2 0 11 1

POTEC 0 1 2 1 6 2

PTEN 3 7 12 6 19 3

RELN 1 1 2 1 6 2

RYR1 1 1 0 2 6 1

RYR2 1 5 3 3 6 2

RYR3 3 2 3 2 7 1

SLC25A13 4 1 8 2 1 0

SPTA1 1 3 2 3 7 2

SYNE1 1 2 2 1 6 1

TP53 11 17 10 9 12 2

TTN 5 3 10 8 24 6

ZNF429 10 5 12 4 1 0

Value significance: > 6 samples p-value < 0,05 p-value < 0,01
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Figure 24: Density of the number of mutation per sample for Cluster 5 and
the others.

rest of clusters but has a lesser presence. In fact, the density function
for the rest of samples presents a first peak around 20 mutations per
sample, which is completely absent in Cluster 5.

A two-sided Kolmogorov-Smirnov test was applied to compare the
distribution of the number of mutation per sample between Cluster 5
and the rest of samples. The p-value obtained was < 0,003, which con-
firms an unique distribution of mutated samples for Cluster 5, which
consist of a larger number of mutation per sample.

An interesting result for this cluster was the low number of significant
genes present. Only 5 genes had an adjusted p-value under 0,05 and
one under 0,01. This result is due to the large size of the cluster (over
70 samples), which makes the expected value of the test higher and
thus closer to large number of mutated samples found.

For most genes with a high number of mutated samples and a low
p-value, no association has been reported to gliomas with some im-
portant exception that will be discussed in the following section.

5.2.4.3 Gene mutations in multiple clusters

The genes EGFR, PTEN, TP53 and TTN were found with an important
presence in 4 to 5 clusters.

The genes EGFR, PTEN and TP53 have been involved in several
studies regarding glioblastoma (Ohgaki, 2005; Ohgaki and Kleihues,
2007) and have been pointed out as crucial biomarkers in gliomas.
Particularly, mutations in EGFR and PTEN have been found mostly in
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primary GBMs, while mutations in TP53 are found mostly in secondary
GBMs.

On the other hand, TTN has not been directly linked to cancer devel-
opment and its mutations are considered to be passengers and conse-
quence to the large size of the encoding polypeptide (Greenman et al.,
2007).

Due to the presence of mutated genes on several clusters, the sig-
nificance test of these cases did not result in a small p-value, even
more EGFR, PTEN and TTN had no significant cases at all. On the
other hand, the importance of these genes cannot be dismissed and
their influence in cluster profiling is central. Finally, in the case of TP53,
there were two significant cases, Cluster 2 and 5, which could point to
a possible grouping of secondary samples.

5.2.4.4 Gene mutations in individual clusters

For the case of genes where the mutated samples were concentrated
in few clusters, they presented in general a higher significance than
those with a high number of mutated samples over several cluster. This
is due to the nature of Fisher’s test, where the allocation of all mutated
samples in one cluster represents a significant correlation between the
gene and the cluster, thus a small p-value is calculated. This effect was
found for most cases, but for the genes with a high presence in Cluster
5, because of the overall high number of samples in that cluster, it
made the correlation weaker and thus less significance.

The genes ANK2, ASPM, C15orf2, CHEK2, HIF1A, IDH1, IRS4,
SLC25A13 and ZNF429 presented the former mentioned effect.

From them, the gene IDH1 must be highlighted due to its importance
in the genetics of GBMs (Ohgaki and Kleihues, 2013), in particular for
its role as a potential specific marker for the secondary GBMs. This mu-
tations was allocated almost exclusively in the Cluster 2, which along
the presence of mutation in the gene TP53, opened the door to a char-
acterization of this cluster as secondary GBM.

For the other mutated genes, a gene set analysis of these genes
returned a small enrichment in the Central carbon metabolism in can-
cer pathway1, with 2 genes on the list belonging to the pathway. This
enrichment is expected in tumor samples and refers to the need of
cancer cells to support cell growth and survival.

It was searched in literature for information on the mutated genes
linked to GBM research, but the only relevant information that was
found was for HIF1A (also called HIF-1α). The function of the encoded
protein is to operate as a master regulator under hypoxia. This relates
it to over 40 genes2, including cell growth factors. Due to this is has

1 http://www.kegg.jp/pathway/hsa05230
2 http://www.uniprot.org/uniprot/Q16665
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been indicated as possible drug target in GBM patients (Van Meir et al.,
2010; Agnihotri et al., 2013).

5.2.4.5 Comparison to subtypes signatures

The subtypes presented by Verhaak et al. have a very particular ge-
netic signature, due to this the comparison to the mutated profiles of
our clusters is important.

The Classical subtype was defined by its CNV profile, aberrations
such as EGFR amplification and PTEN loss, along the over-expression
of EGFR. But no particular mutation worked as a marker for this sub-
type. In a similar way, the Neural subtype had no mutation marker and
it was overall difficult to define and compare.

In the case of the Mesenchymal subtype, the mutations of the NF1
and PTEN genes were significant markers. In our clusters, the NF1
gene presented a low number of mutated samples in all the cluster
and only over 6 mutated samples in Cluster 5, the hypermutated one,
but with no statistical significance. PTEN presented a high number of
mutated samples in the Clusters 2, 3, 4 and 5. But none of those cases
was significant.

Finally, the Proneural subtype has important mutation in the genes
IDH1 and TP53, and as discussed before can be related to the Cluster
2, due to the significant number of mutated samples for these genes.

5.3 G E N E - M O D E L S A N D F E AT U R E S A N A LY S I S O F T H E C L U S -
T E R S O F PAT I E N T S

With the definition of the clusters of patients and the analysis of the
samples belonging to each cluster, the next step was to find the gene-
models and features that give a particular profile to each cluster. This
section is comprised of the selection of the significant gene-models for
each cluster, the comparison of them between clusters and finally, the
study of the main features of the selected models.

5.3.1 Gene-models selection for each cluster of patients

The first analysis performed in this section is the selection of the sig-
nificant gene-models for each cluster. As discussed in Section 3.7.1,
the chosen method to perform this task is the calculation of the dis-
tance between gene-models considering the co-occurrence distances
for all the pairs of samples in a particular cluster. By this methodology,
is possible to use hierarchical clustering to group together the gene-
models with large co-occurrence values for a particular cluster. Finally,
the group of models with the highest co-occurrence can be selected
as significant set.
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Figure 25: Heatmap of the co-occurrence distances for Cluster 1. Grouping
done with K = 2 and the selected group is marked in orange.

Figure 26: Heatmap of the co-occurrence distances for Cluster 5. Grouping
done with K = 3 and the selected group is marked in orange.
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For most of the clusters this grouping approach resulted into one
small and well defined group with high co-occurrence values (or low
co-occurrence distances) and a large group with low co-occurrence
values. This lead to select K (number of groups) equal to 2. For the
Clusters 4 and 5, the number of groups was set to K = 3, this was done
due to the presence of a cluster with only 2 models in Cluster 4 and
the obtainment of a well-defined cluster with very low co-occurrence
values that aggregated all the gene-models with high co-occurrence
values together in Cluster 5.

In Figure 25 and 26, the dendrograms and heatmaps for the first and
fifth clusters are shown. In the figures, the groups, their co-occurrence
distances in the heatmap and the distance of their members on the top
dendrogram can be seen. Additionally, is possible to spot that for each
example, one group is distinctly small and with high co-occurrence
values. In both cases this is represented with the color orange.

Table 13: Number of selected gene-models for each cluster of patients

Cluster Number of

gene-models

Cluster 1 242

Cluster 2 267

Cluster 3 54

Cluster 4 68

Cluster 5 70

Cluster 6 41

The number of gene-models selected by this method for each clus-
ter of patients is shown Table 13. For the first two clusters, the number
is over 200, which corresponds to ~10 % of the total number of gene-
models. For the rest of the clusters, this number decreases to ~3 %.
This process permits us to have a unique profile of gene-models for
each cluster and, as presented in the next section, to have a low inter-
section of gene-models between clusters.

Heatmaps for the additional clusters of patients can be found in the
appendix Section B.2.

5.3.2 Analysis of shared gene-models

With the selection of a set of gene-models that are significant for each
cluster, it was possible to study the features and signatures for each
set of models.
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Figure 27: Distribution of the number of appearances of gene-models in the
different patients clusters

In the first place, the comparison of the selected gene-models be-
tween clusters, also called inter-cluster analysis, was performed. The
main question to answer is: are there shared gene-models between
clusters and, if so, how different are the selected subpopulations for
them on each cluster. It must be noticed that even in the case that two
clusters share a gene-model the patients of each cluster might belong
to different subpopulations on that gene-model and so the features
with non-zero coefficients can have differences between them.

The histogram in Figure 27 shows the distribution of the gene-
models by the number of clusters where they appear. In a first look
it is possible to observe that the number of shared gene-models is
extremely small. There are no gene-models shared by all the clusters,
only 2 of them are shared by 5 clusters and 13 for 4 clusters.

In Table 14, the gene-models with 4 or 5 appearances are shown. An
enrichment analysis of the target genes of these gene-models showed
that there are no pathways enriched, and that only the Gene Ontology
(GO) biological process Transmission of nerve impulse (GO:0019226)
showed a significant enrichment (adjusted p-value < 0,05). As the
name states this biological process is involved in the transmission of
signals through the nervous system, which is expected in samples of
brain matter but opens an analysis approach about the effect of the
disease in the synapses and potential transmission in patients.

The subpopulations of the gene-models with 4 and 5 appearances
for each cluster of patients are shown in Table 15. These values show
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Table 14: Gene-models with 4 or 5 appearances in the patients clusters.

Gene-model Number of

Appearances

DPP6 5

STMN4 5

ABAT 4

BAI3 4

CHST1 4

FAM5B 4

FCGBP 4

GAS2 4

GPM6A 4

GPR56 4

KLHL9 4

LGI1 4

NOVA1 4

PGBD5 4

SCN3A 4

on which submodel the patients of the cluster belong to a particular
gene-model. For some clusters there are no subpopulations for that
gene-model, this is annotated as NA. If different clusters of patients
are in the same submodel then they will share the same coefficients
for their covariates. The first characteristic observed is the low number
of gene-models present in Cluster 6, this hints at the possibility that
this cluster has few similarities with the others.

On the other hand, the high number of non-NA values for the Clus-
ters 1 and 2 can be explained due to their large number of gene-
models (> 200), making it more probable that they present shared
gene-models than the other clusters.

A comparison of the values over the different clusters shows a dis-
tinctive difference between Cluster 1 and the other clusters. In 12 of
the 15 gene-models, the values for the first cluster were different to
the values of the other clusters. Based on this finding, it is possible to
hypothesize that Cluster 1 has a very different profile than the other
clusters, in a similar fashion as Cluster 6.

While for the Clusters 2, 3, 4 and 5 they presented the same subpop-
ulation for the shared gene-models, which indicates a similar profile
between them.
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Table 15: Subpopulations of gene-models with 4 or 5 appearances on each
cluster of patients.

Cluster

Gene-model 1 2 3 4 5 6

ABAT 3 2 NA 2 2 NA

BAI3 1 2 NA 2 2 NA

CHST1 1 2 2 NA 2 NA

DPP6 2 1 1 1 1 NA

FAM5B 1 2 NA 2 2 NA

FCGBP 1 NA 2 2 NA 2

GAS2 2 2 2 2 NA NA

GPM6A 2 1 NA 1 1 NA

GPR56 2 1 NA 1 1 NA

KLHL9 1 1 1 NA NA 1

LGI1 1 2 2 NA 2 NA

NOVA1 1 2 NA 2 2 NA

PGBD5 1 2 2 NA 2 NA

SCN3A 1 2 NA 2 2 NA

STMN4 NA 1 1 1 1 1

NA : Cluster of patients has no subpopulations for that gene-model.

Additionally, in the annex Section B.3 the Venn diagram for all the
clusters over their gene-models is available. It can be seen that for
Cluster 6 (in yellow) 20 of the total 40 gene-models make an appear-
ance only in that cluster.

An additional approach in the study of shared gene-models, is the
analysis of the ratio of the pair-wise shared gene-models. The ratio
refers to the fraction of gene-models where the patients of the clus-
ters are in the same subpopulation over the total number of shared
gene-models This analysis was performed only for pairs of clusters
with more than 10 gene-models shared. This is shown in Table 16.

A ratio of 1 means that for all the shared gene-models between the
clusters, the patients of both clusters are in the same subpopulations,
thus they have the same coefficients for their covariants. While a ratio
close to 0 shows that there are none or a very low number of shared
gene-models for which the clusters are in the same subpopulation.

From these results it can be seen that onle Cluster 1 has a high ratio
with Cluster 6, and in a lower scale with Cluster 3. While the Clusters
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Table 16: Ratio of gene-models where the clusters of patients are in the
same submodel. Only pairs of clusters with more than 10 shared
gene-models are shown.

Cluster A Cluster B Ratio

1 2 0,29

1 3 0,75

1 4 0,22

1 5 0,17

1 6 0,93

2 3 0,71

2 4 0,97

2 5 1,00

3 5 1,00

4 5 0,93

2, 3, 4, 5 form a group with high ratios between them, which is in line
with the previously shown results.

Considering all the results in this section is possible to observe the
formation of 2 groups. The first one formed by Clusters 1 and 6 is an in-
dependent group, where the gene-models are not necessarily shared,
but the profiles of the clusters are unique. The second group is formed
by Clusters 2, 3, 4 and 5, where the clusters are present in the same
subpopulation for their shared models and their ratio is over 0,70 for
all the pair-wise combinations available. This makes the second group
closer and more significant for the profiling of the clusters.

5.3.3 Features analysis of the gene-models for each cluster of pa-

tients

After the inter-cluster analysis of the shared gene-models and subpop-
ulations, the study of the selected gene-models features is presented
here. For this approach, the focus is put on the particularities of the se-
lected gene-models, their subpopulations and the covariants for each
of the clusters.

To perform this, two methodologies have been defined: an intra-
cluster study of the features, where the features with non-zero coeffi-
cients are aggregated and studied for each cluster, and an enrichment
analysis of the features, where the features are compared to previously
known gene-sets.
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5.3.3.1 Intra-cluster feature aggregation over gene-models

The first approach for this analysis is to aggregate the different fea-
tures (gene and microRNA expression, CNV and CpG sites methyla-
tion) with non-zero coefficients for all the selected gene-models in a
cluster.

1 2 3 4 5 6

1

10

100

1

10

100

1

10

100

1

10

100

G
e
n
e
 E

x
p
re

s
s
io

n
C

N
V

C
p
G

 s
ite

s
 m

e
th

m
iR

N
A

 E
x
p
re

s
s
io

n

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Number of appearances

C
o

u
n

t

Figure 28: Distribution of the covariants with non-zero coefficients for each
layer and cluster. Covariates of all the selected subpopulations
were aggregated. Y-axis is in log scale.

In Figure 28, the distribution of the amount of appearances on all the
selected subpopulations for the covariants with non-zero coefficients
is presented for each layer and cluster.

The distribution of the CpG sites methylation, gene expression and
CNV features is almost identical for all clusters. In these cases, most of
the elements appears in less than 5 gene-models and in only 15 cases
in more than 5 models, with a maximum value of 15 appearances.

A very different set of results is obtained with the microRNA expres-
sion layer, where the low number of elements and high connectivity
makes them appear in several gene-models for each cluster. Due to
this characteristic, the microRNA layer was not used in the following
analysis, see Section 3.7.3.1.

Considering the aggregated values for all the covariates, but exclud-
ing the microRNA layer, a new value designated ‘appearance ratio’
was calculated, see Section 3.7.3.1.

92



Table 17: Contingency table for the 24 features with the highest appearances
ratios over the clusters and their biological layer.

Biological layers

Campos

clusters

CNV Gene
Expression

Methy-
lation

Total

1 2 9 0 11

2 2 4 0 6

3 0 0 0 0

4 1 1 1 3

5 0 1 0 1

6 0 3 0 3

Total 5 18 1 24

A threshold was implemented to filter the features for analysis, this
process was done using the appearance ratio (AR > 2) and the total
number of appearances (App. > 2). After its application, 24 features
were selected as significant.

In the Table 17, a contingency table of the number of features with
significant appearances ratios are shown. The number of elements are
presented by the cluster and biological layer.

As expected, based on the source of the covariates presented previ-
ously, most of the features with the highest appearances ratios belong
to the gene expression layer. One interesting result is the high pres-
ence of CNV features, where they appear at a much higher rate than
the CpG sites methylation layer. This can be interpreted as a high sig-
nificance of a few of these features, even when most of them are not
significant in the explanation of the dependent variable. This character-
istic is supported by the literature, where some genomic aberrations
are crucial in the profiling of GBM.

Cluster-wise only Cluster 1 presents over 10 features. For the Clus-
ter 2, 4 and 6 are under 10 and for 2 clusters, 3 and 5, there are almost
no selected features. The large number of features for Cluster 1 is sur-
prising, considering that the large number of gene-models was taken
into account by the use of the appearance ratio. This could mean a
strong relationship between the selected gene-models, as shown in
previous results. While for the Clusters 3 and 5, this lack of features
could represent a diversity in the gene-models and makes necessary
a study of all the features with an enrichment approach.

The table with the features can be found in Section A.2. In this table
it is possible to observe the different features and their recurrence over
the clusters.
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For each cluster the following results were found:

C L U S T E R 1 The genes UBC and UBD have an important presence
in this cluster. These genes are related to the ubiquitination of proteins,
where a ubiquitin-like protein is attached to another protein to signal,
in most cases, degradation. Due to its role in regulation it is part of the
epidermal growth factor receptor (EGFR) signaling pathway and the
NF-κB signaling. In literature no direct role for these genes in cancer
was found, only their potential as treatment targets (Vlachostergios et
al., 2012; Low et al., 2012).

The gene EGFR has a high number of appearances in two layers:
CNV and gene expression. This results is significant, but not unex-
pected. Its significance comes from the presence of a feature in more
than one layer, which shows that this element has an important role in
the explanation of gene-models and the cluster itself. This character-
istic is not unexpected due to the abundant literature about this gene
and its aberrations in the characterization of GBM, as presented in the
introduction.

The CNV and gene expression of the gene NRF1 are significant fea-
tures for several clusters. The role of the encoded protein is to function
as a transcription factor for metabolic genes involved in the regulation
of cell growth and development required for respiration3. The presence
of this type of neural-related gene is expected in the study of brain
related diseases, but its novelty could mean the discovery of a new
research target not involved previously with GBM.

The expression of the APP gene appears in several clusters. This
gene encodes a cell surface receptor located in the neurons with sev-
eral function, such as neurite growth and formation of axons4. Its rela-
tionship with GBM could be similar as the one for the NRF1 gene.

Finally, several genes known for its involvement in cancer are
present, such as TP53 and PIK3R1 (part of the PI3K family), which
will be considered for the final profiling of the clusters.

C L U S T E R 2 In this cluster the genes NRF1, UBC, EGFR and APP
have a significant presence. As these genes were already discussed
they will be not characterized again, but their importance will be stud-
ied when comparing the different clusters.

In addition to the previously presented gene, the protein encoded
by the gene ELAVL1 has the function of binding to mRNAs to increase
their stability, putting this gene in the same position as the NRF1 and
APP genes.

3 http://www.uniprot.org/uniprot/Q16656
4 http://www.uniprot.org/uniprot/P05067
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C L U S T E R 3 No features with a significant number of appearances
were found for this cluster. This issues comes from the small size of
the selected gene-models for this cluster. The set of selected models
is the second smallest (54 gene-models) and they present a high dis-
persion of the features, making it an interesting case of study in the
set enrichment analysis.

C L U S T E R 4 Besides the already discussed genes EGFR and UBC,
the methylation site cg21053323 appears as significant. This site is
related to the gene SUMO3, which encodes the Small ubiquitin-related
modifier 3 protein. This ubiquitin related protein has a different function
than the UBC and UBD proteins, where it may act as antagonist of
ubiquitin in the degradation process5.

C L U S T E R 5 Only the gene expression of the APP gene appears
as significant in this cluster. A similar approach as the one presented
before for this gene will take place in its study.

C L U S T E R 6 This cluster has the smallest set of selected gene-
models, but interestingly several features have a high rate of appear-
ance. This differs from the results obtained for Clusters 3 and 5. The
gene discussed firstly in Cluster 2, ELAVL1, appears here along the
genes UBC and NRF1.

S H A R E D F E AT U R E S Several features appeared in multiple clus-
ters. To study this set of features an additional analysis was performed,
which is the comparison of the subpopulations of the selected models
where these features are present. It must be remembered that for each
cluster only one of the gene-model’s subpopulation is selected. Here
the selected subpopulations are compared to see if the shared fea-
tures belong to the same subpopulation. The covariates to study are:
CNV and gene expression of EGFR and NRF1, and gene expression
of UBC.

As an additional note, it was thought to perform a comparison of the
coefficients (β) of the features between cluster, but because the fea-
tures belong to different gene-models and, even more, different sub-
populations this analysis is not significant.

In the first place, the CNV and expression of the EGFR were com-
pared between the clusters’ gene-models, 20 and 14 appearances
respectively. It was found that for both layers there is only one case
where the same gene-model and subpopulation are selected for more
than one cluster. Interestingly, it was the same model for both features,
gene-model SPRY2, where the co-appearance occurred.

5 http://www.uniprot.org/uniprot/P55854
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A similar situation was discovered for the features of the gene NRF1,
where for the CNV covariate (19 appearances) no shared subpopula-
tion was found, but for the expression one (10 appearances) there was
one shared subpopulation found.

In the last case, using the expression feature of gene UBC (29 ap-
pearances), it was found that for the 4 clusters where this features
appeared significantly, 2 subpopulations were shared by 2 different
clusters.

These results show that even when the features were significant
over several clusters they appear as features of different gene-models
and subpopulations and its function as unique markers can be used
further.

5.3.3.2 Gene-set enrichtment analysis

The second method used is the gene-set enrichment approach. It was
applied to features with non-zero coefficients on each cluster against
the KEGG pathways and was performed using the ConsensusPathDB
interaction database.

Similarly as in the previous analysis, the microRNA layer was not
taken into account for this study, because of the high appearance fre-
quency of its member. In addition, the KEGG pathways are composed
by genes, due to this the CpG site methylation features were mapped
to the gene layer.

Table 18: Number of features with non-zero coefficients for each cluster con-
sidering the selected gene-models. Methylation layer mapped to
gene and microRNA layer not used.

Cluster Number of features

1 1 007

2 967

3 194

4 251

5 195

6 193

The number of unique features with non-zero coefficients in the
gene space varies greatly between cluster. This is due to the differ-
ence in the number of selected gene-models. In Table 18, the number
of these features are shown. It is possible to observe the large differ-
ence between Cluster 1 and 2, and the rest of the clusters, which is
concordant with the number of selected gene-models.
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The number of obtained enriched pathway differs between clusters
in a similar manner as the number of features. For Cluster 1 and
2 more than 100 pathways were found significant (adjusted p-value
< 0,05), while the rest had around 70 significant pathways with the
exception of Cluster 3, where only 42 pathways were obtained.

Given the large number of pathways, the first approach was to
group the pathways based on their profile. This resulted into 3 dif-
ferent groups of pathways: disease-related, signaling pathways and
diverse pathways. In the first group, gene sets related to diseases and
infections such as Pathways in cancer, Type I diabetes mellitus and
Glioma are grouped. The signaling related pathway group contains
sets that have this function, such as Rap1 signaling pathway and
MAPK signaling pathway. The last group is comprised of pathways
that cannot be categorized in the other two, such as Endocytosis and
Focal adhesion.

The second approach was to compare the pathway by their appear-
ances. It was found that 15 pathways are present in all 6 clusters (from
a maximum number of 42) and only 34 appear exclusively in only one
cluster. This elevated number of shared pathways greatly hinders the
characterization of the clusters when using this method. The unique
pathways are comprised mostly of disease, structure and metabolic
related sets. Cluster 6 has only metabolic-related pathways and is the
only one with a unique composition.

Finally, the signaling pathways previously related to GBM such as
p53, PI3K-Akt and ErbB signaling pathways were found in all the clus-
ters, except Cluster 3. However, the analysis of the pathways in Cluster
3 found no particular profile for this cluster.

In summary, the use of gene set enrichment is not useful in this
setting due to the large and common set of features with non-zero
coefficients. The pathways found functioned more as a confirmation
of the expected general profiles of the features (signaling functions,
neural-related and part of diseases, in particular cancer) but did not
allow for the creation of particular profiles for each cluster.

5.4 S U M M A RY O F R E S U LT S

In this chapter, a number of results concerning the clustering of pa-
tients and their profiles have been presented. The most interesting
and significant results are summarized in this section. Along with them
a table, Table 19, has been added with a summary of the character-
istics of each cluster. This was done in order to group together the
disconnected sequential results obtained through this chapter and to
facilitate their study.

In the first place, a clustering of the samples was obtained by using
the co-occurrence values of the patients. Through this clustering pro-
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cess, 6 clusters were obtained. In particular, Cluster 1 appeared as
a well-defined cluster. This was found even when only 2 groups were
considered in the clustering. This cohesion between the samples of
the cluster made the definition of the other clusters difficult.

The clinical analysis of the clusters, see Table 19, showed to be an
important profiling method. In particular, the Clusters 1, 2 and, in a
minor manner, 3 formed a group of young samples with high survival
rate and Karnofsky scores. While cluster 4, 5 and 6 were composed
of older patients and low survival rate and Karnofsky scores.

The comparison to the subtypes of Verhaak et al. was feasible for
only the three first clusters. For the rest, no comparison was possible
to do.

Somatic mutations in the clusters were studied and the analysis
showed that the genes EGFR, PTEN, TTN and TP53 were found to
be mutated in over 6 samples in several clusters. These genes, with
the exception of TTN, have been pointed out as significant markers
of GBM and their presence was expected. From them, only the gene
TP53 had a statistical significant allocation in Clusters 2 and 5.

The analysis of the mutated genes that did appeared in a few
clusters did not bring any specific result. Most of the genes have no
recorded link to GBM and the only ones that presented a link were
IDH1, discussed later, and HIF1A, as a tentative drug target in GBM.

Gene-models were studied in order to select a set of significant
gene-models for each cluster. This process delivered the called se-
lected gene-models. The size of the sets for Clusters 1 and 2 was
over 200, while for the rest of the clusters less than models 70 were
selected.

The analysis of the selected gene-models showed that their intersec-
tion between clusters was small. This small set of shared gene-models
was studied in deep. The significant subpopulations for the models of
each cluster were compared and a subpopulation grouping was found.
Clusters 1 and 6 presented an independent profile, while the rest of
the clusters had the same subpopulation for the shared models.

The features of the selected gene-models were also analyzed for
each cluster. This and other results are described below for each clus-
ter.

C L U S T E R 1 This group of patients showed an independent profile
in most of the results, from their clustering to the selection of
their gene-models and shared samples mostly with the Classical
and Proneural subtypes. Mutation of several genes were found
in this clusters, for most of them no link to GBM was found. A
large number of selected gene-models were obtained. The fea-
tures analyzed for this cluster showed an interesting presence of
ubiquitin-related genes and NRF1, along to GBM related genes.
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C L U S T E R 2 This cluster presented some unique features, such as
the mutation of the genes p53 and IDH1, which link this cluster
to the Proneural subtype and to secondary GBM. Over 200 gene-
models were selected for this cluster. NRF1 and EGFR have a
important presence in the features of this cluster.

C L U S T E R 3 A significant amount of Mesenchymal samples are allo-
cated in this cluster. Similar to Cluster 1, several genes were
found significantly mutated in this cluster, but no link to GBM was
found. It presents a small amount of selected models with no
high frequency features and that presented a profile similar to
the whole-set profile.

C L U S T E R 4 Several relevant genes were found mutated in this clus-
ter, but not statistically significant. This is the only only group with
a significant feature of the methylation layer, which is related to
another ubiquitin-related modifier.

C L U S T E R 5 Cluster with a hypermutated profile, in addition several
genes not related to GBM were found with significant amount of
mutations. This cluster appears as a unique and novel group.
The distribution of the source of its covariates was unique. Only
the expression of the gene APP had a significance appearance
in this cluster.

C L U S T E R 6 Few mutated genes, but no significant ones were discov-
ered in this cluster. This cluster has the smallest set of selected
gene-models, but several features were found with a high ap-
pearance ratio, mostly novel genes such as APP, ELAVL1, NRF1
and UBC.

In many cases, the expression and CNV of the genes EGFR and
NRF1, along the expression of the UBC gene had significant appear-
ances in many clusters. This frequent presence was studied and it was
discovered that the features were located in different subpopulation for
most of the gene-models and clusters, and thus the features were not
actually share between clusters.

Finally, the use of an gene-set enrichment approach proved to be
not useful with our settings. Due to the large number of significant
enriched sets obtained no comprehensive profiling was done over the
clusters using this methodology.
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Table 19: Main characteristics of the discovered clusters. NS refers to no significant value found.

Clusters

Characteristic Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Patients’ age Young Young NS Old Old Old

Gender NS NS NS NS NS NS

Non de novo presence High Middle High Low Low Low

Karnofsky score High High NS Low Low Low

Neoadjuvant treatment
presence

High Low High Low Low Low

Survival rate High High Low Low Low Low

Verhaak subtypes Classical/
Proneural

Possibly
Proneural

Mesenchymal NS NS NS

Significant mutations CHEK2,
HIF1A, IRS4,

ZNF429

IDH1, TP53 ANK2, ASPM,
CHEK2,

SLC25A13

C15orf2,
FBLN2,

LAMA1, LRP2,
TP53

10
0
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6
D I S C U S S I O N

In this work a novel methodology for the clustering of patients based
on a mixture of linear models was presented. In addition, the resulting
clusters were used to define subgroups of GBM patients. Each group
was analyzed based on clinical and biological data to profile them and
to discover putative markers.

In order to accomplish such objectives, several complementary
methods were implemented and different analysis techniques were
used to interpret the results. This complex route resulted in a plethora
of independent results that must be put into order to understand and
discuss their significance.

DATA O B TA I N M E N T A N D P R E P R O C E S S I N G

The first stage of this work was performed in a straightforward manner
for most of the datasets, where the selection and preparation of them
was done to maximize the number of samples and biological layers
used in the model learning. This process presented the first critical
decision in this work: the exclusion of the somatic mutations as input
data for the model.

Exclusion of somatic mutation data in the models

SNP data has been an hallmark of molecular disease analysis and due
to this its inclusion in the study was desired. Unfortunately, this was not
possible in the proposed linear model. Even when mutation data can
be coded as categorical variables and integrated to our model using a
dummy coding, the number of elements (possible mutated bases) to
consider and the additional variables added by the coding make the
models much more complex and difficult to train. This characteristic
led the addition of the genetic variation data only after the model fitting.

After this decision, the preprocessing of the sets was done for the
gene expression and CNV data without major issues. The microRNA
dataset had to be preprocessed from the raw data, which allowed us
to eliminate any doubts about the quality of the data. Finally, the CpG
sites methylation data had the particularity of having two sources.
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Methylation data and dual platform source

Due to the dual source of the CpG sites methylation data, the mix-
ture model was modified adding a dummy variable for the analysis of
the effect of the platforms. No significant variation was found between
samples from different sources and the evidence indicates that the
platforms could be used together without major issues.

With all the datasets already preprocessed its integration and use in
the model was next, but it presented an obstacle: the different scales
of the variables.

Covariates scaling

An initial run of the model fitting showed that variables with larger vari-
ances were over-selected by the penalized model, because of this the
layers were scaled using the min-max scaling. This process worked
and no layer was over-selected as shown in the analysis of the post-
penalization design matrix. This procedure permits the integration of
different types of biological data but the effect of this process over the
fitting could not be measured. A possible negative effect of this proce-
dure is the scaling of sets with outliers, where most of the points will
be scaled down and the only significant values are those belonging
to the outliers. This effect was not tested but based on the results ob-
tained no small constant set of features with non-zero coefficients (the
outliers) was found in the trained gene-models. Instead a diverse set
of covariates was selected with non-zero coefficients.

T R A I N I N G O F M I X T U R E O F R E G R E S S I O N M O D E L S

Over 10 000 models were trained and for most of them (> 7000) only
one subpopulation was obtained, which is in concordance with our ex-
pectation over the number of significant relationships for the analysis
of complex diseases, see M OT I VAT I O N. With the use of the biological
prior knowledge and lasso penalization, the final number of covariates
for all of them was less than 200. This result showed the importance of
the double penalization scheme, where thanks to the biological prior
knowledge it was possible to obtained models with a number of covari-
ates small enough to be trained in a reasonable amount of time, and
the lasso penalization allowed to reduce the number of variables even
more by selecting the most significant ones.

Correlated variables and lasso

An additional characteristic of the lasso penalization is the elimination
of highly correlated features. This penalization method will select ran-
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domly one of the correlated variables and penalize the rest of them.
This effect helps to deal with the correlation found in biological sys-
tems and is considered to be one of the main reasons for the heavy
penalization of the methylation layer due to their bimodal profiles.

This random selection of correlated features, even though useful, is
not the best approach for this issue. One proposed solution is to per-
form a selection prior to the fitting of the models. But this approach
does not solve the issue of how to deal with covariates that are cor-
related but do not necessarily belong to the same system, such as
CpG sites. Another approach could be the use of independent penal-
ization terms for each layer, which would increase the fitting difficulty
and would not solve the previously mentioned issue. Because of these
problems our approach is considered an initial functional solution that
must be studied further.

The time used for the training of this large amount of models was
always a major consideration that was partially solved by the imple-
mentation of the algorithm in C++.

Algorithm speed and issue with number of features

The new implementation of the MFLRMP algorithm showed a gain of
speed ranging from 10 times faster for smaller sets to 2 times faster
for more complex data. The complexity of the data is related to the
number of subpopulation trained, the number of samples and covari-
ates. The latter was found to be the most significant parameter in the
speed gain and for large models (over 500 covariates) the gain would
be insignificant. This effect shows once again the major role that the
penalization plays in the fitting of the models, where it has, a direct
relationship with the cost of running the algorithm.

It has been considered that the loss in speed of the new implementa-
tion could be due to the movement of data between R and C++ caused
by the use of a wrapping R function over the C++ code. This and other
considerations are the object of future work of this project.

After the fitting of the gene-models the hyperparameters (λ and K)
selected for them were analyzed. It was found that a main relation-
ship between the number of subpopulations and the strength of the
penalization term existed. For models with a larger number of sub-
populations, a stronger penalization was applied. This correlation was
understood as a selective definition of the subpopulations: for models
with one or few subpopulations, a strong penalization did not have a
large effect (hence is not chosen), while for models with multiple sub-
populations, the penalization helps to define each subpopulation. Ad-
ditionally, an interesting issue with the analysis of the hyperparameters
was found.
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Difficulties in the analysis and comparison of the hyperparameters

The distribution of the hyperparameters found for each gene-model
was compared and studied. As discussed in the result section, the fo-
cus in some models with a particular large number of covariates made
the analysis of the distribution of the hyperparameters erratic. These
models, although significant, represented a small portion of the total
models and do not represent the general distribution of them. Making
them a focus of the analysis without considering the vast majority of
models was the source of the erratic analysis.

This effect must be taken into consideration for future analyses, in
particular, when a small set of models or variables are focused on and
the vast majority of the elements are not taken into account.

C L U S T E R I N G O F PAT I E N T S A N D P R O F I L I N G

After the fitting of the gene-models, the co-occurrence probabilities
were defined for each pair of samples in order to study if they belong
to the same subpopulation for most of the models. This scheme was
used to group the patients into 6 clusters. A problem presented by
this approach in gene-models with more than 2 subpopulations is dis-
cussed below.

Co-occurrence in multiple models

The definition of the co-occurrence probability is given by a quadratic
expression as shown in Section 3.5.3. Given this profile the values
are heavily skewed towards 0,5. This effect is stronger for models with
more than 2 subpopulations, where the values are closer to 0,3. Even
with its difficulties this value is considered the right approach from a
technical point of view to calculate the co-occurrence of samples in the
gene-models, because it uses the probabilistic nature of the resulting
gene-models. Possible modifications to solve this issue are a major
objective in the future work of this project, but due to the small number
of gene-models with large amount of subpopulations this phenomena
did not have a widespread effect in the analysis.

During the clustering process, a particular group of samples appear
well-defined for the different setting of the clustering algorithm. This
group hindered the obtainment of the other clusters and was denomi-
nated Cluster 1. Due to this effect, the criteria for the number of clus-
ters selected was based on the visual analysis of the dendrogram and
not in the silhouette values.
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Multiple linear model evidence

The main hypothesis of this work is that the different groups of pa-
tients with GBM present particular inter-molecular relationships. Which
means that if a linear model is built with a gene expression as output
variable then the covariates and coefficients of that model can differ
between patients.

This main hypothesis was probed by the obtainment of several clus-
ters, especially one well-defined compact cluster (Cluster 1) and a
group of closely related clusters. The clinical and model analysis of
these clusters showed a small intersection between them and allowed
us to characterized them.

Clinical analyses of the cluster

The characterization of the clusters of patients was done using the
clinical data from the TCGA repository. One problem faced was the
incapacity to access all the clinical data due to restriction of the clin-
ical information of the patients. This can be seen in the difficulty to
annotate the samples as secondary GBM, which was not entirely pos-
sible. The clinical analyses showed that the clusters could be grouped
into two groups. The first one comprised by Clusters 1, 2 and 3 had
younger patients with better prognosis, while the other clusters were
comprised by older patients with more negative prognosis. This gave
us a first approach the general organization and profiling of the clus-
ters.

A second profiling approach was the comparison of the clusters de-
fined in this work with those defined in Verhaak et al.

Cluster and subtypes comparison

This comparison was not completely successful due to two issues. The
first one was the small number of samples present in both studies.
Most of the samples used in Verhaak et al. could not be used in this
work because they lack information in some layers. Considering this
problem the use of samples with full information (paired data) is crucial
for the training of the models and cannot be changed. The second is-
sue was the allocation of the shared samples. In this case, no subtype
was completely allocated in a cluster and, in fact, most of the subtypes
were assigned to multiple clusters. Because of these characteristic, a
partial comparison was done, where clusters 1 and 3 were identify
as possible analogs to the Classical and Mesenchymal subtypes re-
spectively and Cluster 2 to the Proneural subtype in a less stringent
manner. The rest of the clusters presented almost no shared samples
and are considered novel groups.
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The last profiling performed to the samples was the somatic muta-
tions analysis, where the SNP data not used previously as input data for
the models was utilized to study the mutation profiles of the clusters.

Somatic mutations profiles

This analysis was the first proof of concept of the importance of certain
genes (EGFR, PTEN and TP53) in the profiling of GBM. Mutations for
these genes appeared in several clusters, but only the gene TP53
had a statistical significant presence in some clusters (2 and 5). In a
similar fashion, gene IDH1, which is key in the study of secondary GBM,
appeared only in the Cluster 2 in a significant amount, reinforcing its
profile similar to the Proneural subtype.

Several genes showed a significant mutation profile in a particular
cluster, but for the most of them no connection to GBM was possi-
ble based on the literature. Besides announcing their potential role as
biomarkers for the different clusters, the implication of the presence of
these genes is something that could not be completely studied in this
work. Further analysis of their status in additional samples is needed.

G E N E - M O D E L S A N D F E AT U R E S A N A LY S I S F O R E AC H C L U S T E R

With the profiling of the patients for each clusters done, the analysis
was put on the gene-models that define each cluster and their features.
The first approach for this was the selection of the significant gene-
models for each cluster and their comparison.

Gene-models selection and analysis

The selection of gene-models for each cluster gave rise to a set of
unique models with very small intersection between clusters. Clusters
1 and 2 obtained a large number of selected gene-models, over 200,
while for the rest of the clusters this amount was under 100. This re-
sult came as a surprise, considering that Cluster 1 is the smallest clus-
ter, but the one with the highest co-occurrence between samples. The
difference in the selected models size can be explained due to the
cohesion of the members of the cluster. Clusters, such as the first
one, appear with high co-occurrence in several models, while a group
of samples with low cohesion would appear in few gene-models with
high co-occurrence.

In addition, the analysis of the selected gene-models was done
between clusters, which resulted in a very small number of models
shared by 4 or more clusters. The analysis of the subpopulation of
these shared models showed that the samples from the Clusters 2, 3,
4 and 5 were allocated in the same subpopulations for these models,
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while Clusters 1 and 6 presented unique profiles. This was the first
result were Clusters 1 and 2 were allocated in different groups and
Cluster 6 presented an unique profile.

A short gene set enrichment analysis of the gene-models selected
for each cluster was performed. This study gave no interesting results
and for the clusters with the smaller sets of selected models almost no
significant pathway (adjust p-value 6 0,05) were retrieved.

Features aggregation for each cluster

Having performed the analysis of the gene-models the attention was
then given to the features of these models, where the aggregation of
them for each cluster let us discover relevant covariates for several
models in a cluster. During the analysis, the number of appearances
of each feature was normalized based on the amount of gene sets
selected for that cluster. The normalization was crucial to discriminate
covariates in clusters with a large number of selected models.

Most of the features retrieved with the highest appearance between
clusters were directly related to GBM, such as EGFR, PIK3R1, TP53.
This not only confirmed their importance in these tumors but also
proved that their signatures can define essential gene-models. While
CNV was not relevant in most results presented previously, features
belonging to this cluster appeared highly significant in this analysis.

Besides the genes and proteins families involved in GBM, a set of co-
variates that appeared repeatedly are NRF1 and the ubiquitin-related
genes.

The gene NRF1 appears as a significant feature in several clusters,
its gene expression and CNV signatures were crucial in the definition
of the significant gene-models. No linked has been made between this
gene and GBM before. The appearances of ubiquitin-related genes in
several clusters and from 3 different genes show that this family of
genes have a crucial role in the definition of the gene-models and clus-
ters. No relationship between ubiquitin functions and GBM was found in
literature, which opens a door to a new focus in the treatment of GBM.

The last analysis applied was the gene set enrichment analysis of
the features, which presented important issues.

Gene set enrichment application and issues

Gene sets enrichment analysis over different sets of results was used
several times in this work. A major complication was found in the ap-
plication of it to the models’ features due to the large number of genes
to study (from 200 to over 1 000). This large amount of genes led to
a large number of significant enriched pathways. Making any distinc-
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tion between the pathways was not possible and the study in general
delivered no important results.

The main issue in the gene set enrichment analysis was the incapa-
bility of selecting or weighting the features. In other studies, a statistic
or p-value is used along a set of genes to filter or enrich them. This
problem is discussed below in the relation of how to analyze the fea-
tures and their coefficients.

Coefficients significance

One main issue was the difficulty to study the coefficients of the covari-
ates. This issues was partially solved by analyzing the appearances
of covariates over the selected gene-models of a cluster, but there
was no direct way to discriminate between the different features with
non-zero coefficients. One possible, but erroneous approach, would
be to discriminate them based on their absolute value, but this method
would not take into consideration the statistical significance of the co-
efficient.

A better approach would be to calculate a statistical for each coef-
ficient. In general, is possible to calculate a t-statistic for regression
models where the null hypothesis of the coefficient being 0, is tested.
This approach is not yet possible in our case, just a few years ago a
method was proposed to perform such analysis in simple linear mod-
els with lasso penalization (Lockhart et al., 2014). This methodology
contemplates an iteration of the penalization over individual features,
calculating on each step the importance of that feature. A method such
as this would not only be very costly in our framework but also it would
have to consider the use of the EM-algorithm in our method. This prob-
lem is significant, but its resolution escapes the scope of this work.

microRNA layer presence issue

For the previous analyses, the microRNA layer was not used. This
decision was based on the difficulties to study the covariates belonging
to this layer due to their high appearances in most of the gene-models.
This issues arises from the small amount of elements belonging to
this layer and the large number of interactions between them and the
gene layer. Due to these characteristics, the small set of microRNAs
were present as covariates for most of the gene-models, making them
indistinguishable based on their appearances.

To solve this issue, additional experimentally validated interactions
information are necessarily. With these additional datasets it would be
possible to have a larger number of microRNAs included in the design
matrices and only true positive interactions.
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7
C O N C L U S I O N

This work focused in the non-sequential integrative analysis of GBM

samples and the discovery of novel subgroups of patients with unique
profiles and mechanics. This project not only showed the potential of
the mixture of linear models approach for the integration of heteroge-
neous data for the study of complex diseases, but was also able to
discover 6 different subgroups, half of them resembling previously de-
fined subtypes and the other half as novel clusters.

Key genomic aberrations and genes differential expression in the
study of GBM were found as critical markers in the clusters profiling.
In addition, ubiquitin-related genes appeared along these previously
known markers and have opened a door to a new set of research
targets.

R E S E A R C H O B J E C T I V E S A N D M E T H O D O L O G Y

The main objective for this project was the definition and implemen-
tation of an integrative framework of heterogeneous data from GBM

patients and the detection of subgroups of patients in it. This objective
was accompanied with the use of the subgroups to analyze the molec-
ular and clinical signatures of the patients to discover possible novel
research targets.

The main objective presented itself as a complex problem which had
to be solved by a pipeline of different methodologies. These methods
range from the obtainment and preprocessing of the datasets to be in-
tegrated (gene and microRNA expression, CNV and CpG sites methy-
lation), to the definition, performance optimization and execution of the
mixture of regression model with heterogeneous data, and finally the
clustering of samples based on the resulting mixture models.

The second objective, the analysis of the resulting clusters, was
performed to discover clinical and molecular enrichments in the sub-
groups. Then, the most significant gene-models for each cluster were
selected and their structure studied and compare between subgroups.

The enrichment analysis of the clusters allowed us to discover par-
ticular profiles and the putative research target for each cluster.

M A I N R E S U LT S A N D I M P L I C AT I O N S

Through the integration of the multi-‘omic’ datasets, over 10 000 gene-
models were trained and thanks to the double penalization scheme,
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all these models had less than 200 covariates. From them, over 2 000
presented subpopulations and were used in the clustering of the GBM

samples.
This first set of results was studied in order to observe the behavior

of the MFLRMP algorithm and whether the resulting gene-models fol-
lowed the expected configuration. In line with our hypothesis only over
a fifth of the gene-models presented subpopulations, and for models
with more subpopulations, the penalization strength was stronger and
thus smaller and better defined subpopulations were obtained.

The clustering of the samples using the gene-models allowed us to
discover 6 distinct clusters. Using this grouping of the samples, the
characterization of the groups was done using the clinical information
and the somatic mutations profiles of the samples. This profiling of the
groups allowed us to give an initial characterization to them, finding in
addition supergroups of clusters that share significant characteristics.
The comparison to previously studies was difficult due to the small
number of samples shared between them.

By the additional analysis of the significant models for each cluster,
it was possible to study the gene-models and the features that define
these groups. A significant role of GBM related aberrations, such as
CNV and differential expression of EGFR and TP53, was discovered. In
addition, it was found a strong involvement of elements not previously
related to GBMs such as NRF1 and ubiquitin-related genes.

F U T U R E W O R K

Some of the several methodologies comprising the pipeline developed
in this work are the direct focus of future development in order to
achieve an analysis of higher quality. These methodologies are the
re-definition of the co-occurrence values for a better clustering of the
samples and the inclusion of a significance test for the gene-models’
coefficients. These improvements are not easily achieved and can be
considered projects on their own, in particular the latter one.

Additionally, several smaller elements can be optimized for an im-
provement in the execution of this pipeline, such as the revision of the
C++ code and the inclusion of the microRNA layer in the feature analy-
sis, which should be possible with the appearance of larger validated
interaction databases.

Finally, it would be in our interest to apply this framework in other
complex diseases for their analysis. Thanks to the TCGA repository is
possible to obtain the datasets necessarily for other types of cancer,
making them the most obvious targets of new studies.
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C O N T R I B U T I O N S M A D E B Y T H I S P R O J E C T

This work has developed a new analytic framework to study complex
diseases. This novel framework is capable of solving three main is-
sues: integration of heterogeneous data, patients’ subgroups discov-
ery and translation of these results into research target and patients
profiling.

The used methodology allows to integrate the different layers of
information from the beginning. This is a crucial difference with the
most common sequential methodologies to analyze heterogeneous
data. Furthermore, our framework allows us to group the patients us-
ing these multi-‘omic’ gene-models and not to compare or integrate
the clustering results of each individual layer of information. And finally,
the gene-models that define the clusters are comprised not only by ex-
pected genetic aberrations, but new elements also arise as defining
elements in the gene-models and proposed research targets.
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S U M M A RY

Glioblastoma multiforme (GMB) is an extremely aggressive and inva-
sive brain cancer with a median survival of less than one year. In ad-
dition, due to its anaplastic nature the histological classification of this
cancer is not simple. These characteristics make this disease an in-
teresting and important target for new methodologies of analysis and
classification. In recent years, molecular information has been used
to segregate and analyze GBM patients, but generally this method-
ology utilizes single-‘omic’ data to perform the classification or multi-
’omic’ data in a sequential manner. In this project, a novel approach for
the classification and analysis of patients with GBM is presented. The
main objective of this work is to find clusters of patients with distinctive
profiles using multi-’omic’ data with a real integrative methodology.

During the last years, the TCGA consortium has made publicly
available thousands of multi-’omic’ samples for multiple cancer types.
Thanks to this, it was possible to obtain numerous GBM samples (>
300) with data for gene and microRNA expression, CpG sites methy-
lation and copy-number variation (CNV). To achieve our objective, a
mixture of linear models were built for each gene using its expression
as output and a mixture of multi-‘omic’ data as covariates. Each model
was coupled with a lasso penalization scheme, and thanks to the mix-
ture nature of the model, it was possible to fit multiple submodels to
discover different linear relationships in the same model. This complex
but interpretable method was used to train over 10 000 models. For
~2 400 cases, two or more submodels were obtained.

Using the models and their submodels, 6 different clusters of pa-
tients were discovered. The clusters were profiled based on clinical
information and gene mutations. Through this analysis, a clear sep-
aration between the younger patients and with higher survival rate
(Clusters 1, 2 and 3) and those from older patients and lower survival
rate (Clusters 4, 5 and 6) was found. Mutations in the gene IDH1 were
found almost exclusively in Cluster 2, additionally, Cluster 5 presented
a hypermutated profile. Finally, several genes not previously related to
GBM showed a significant presence in the clusters, such as C15orf2
and CHEK2.

The most significant models for each clusters were studied, with a
special focus on their covariants. It was discovered that the number
of shared significant models were very small and that the well known
GBM related genes appeared as significant covariates for plenty of
models, such as EGFR1 and TP53. Along with them, ubiquitin-related
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genes (UBC and UBD) and NRF1, which have not been linked to GBM
previously, had a very significant role.

This work showed the potential of using a mixture of linear models
to integrate multi-’omic’ data and to group patients in order to profile
them and find novel markers. The resulting clusters showed unique
profiles and their significant models and covariates were comprised by
well known GBM related genes and novel markers, which present the
possibility for new approaches to study and attack this disease. The
next step of the project is to improve several elements of the method-
ology to achieve a more detail analysis of the models and covariates,
in particular taking into account the regression coefficients of the sub-
models.
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Z U S A M M E N FA S S U N G

Glioblastoma multiforme (GMB) ist eine extrem aggressive und invasi-
ve Form von Hirntumor mit einer medianen Überlebenszeit von unter
einem Jahr. Des weiteren ist, aufgrund seiner anaplastischen Natur, ei-
ne histologische Klassifikation nicht einfach. Aufgrund dieser Charak-
teristika ist GMB ein interessantes und wichtiges Ziel für neue Metho-
den der Analyse und Klassifizierung. In jüngster Zeit wurden molekula-
re Informationen zur Segregation und Analyse von GMB Patienten ver-
wendet, allerdings verwendet diese Methode meist nur einen Datentyp
zur Klasifizierung, oder multiple-“omics“ Daten in einer sequenziellen
Weise. In dieser Arbeit wird ein neuer Ansatz zur Klassifizierung und
Analyse von Patienten mit GMB vorgestellt. Hauptziel ist die Identi-
fikation von Patienten-Clustern mit charakteristischen Profilen, unter
Verwendung multipler-“omic“ Daten mit einer echten integrativen Me-
thode.

In den letzten Jahren wurden vom TCGA Konsortium tausende
multi-“omic“ Proben verschiedener Krebstypen öffentlich zur Ver-
fügung gestellt. Dank diesem war es möglich zahlreiche (>300)
GMB Proben mit Daten für: Gen- und microRNA Expression, CpG-
Dinukleotid Methylierung, und copy-number variation (CNV). Um un-
sere Zielsetzung zu erreichen wurde eine Mischung von linearen
Modellen für jedes Gen erzeugt, die Genexpression als Ausgabe und
eine Mischung von multi-“omics“ Daten als Kovariaten verwendend.
Jedes Modell wurde mit einem lasso penalization Schema gekoppelt,
und Dank der gemischten Natur des Modells war es möglich multiple
Submodelle zu fitten, um verschiedene lineare Beziehungen im selben
Modell zu entdecken. Diese komplexe aber interpretierbare Methode
wurde verwendet um über 10 000 Modele zu trainieren. Wobei für
~2 400 Fälle zwei oder mehr Submodelle erhalten wurden.

Die Modelle und ihre Submodelle verwendend, wurden 6 verschie-
dene Patienten-Cluster entdeckt. Diese Cluster wurden anhand klini-
scher Informationen und Genmutationen profiliert. Dabei zeigte sich
eine klare Trennung zwischen jüngeren Patienten mit höherer Über-
lebensrate (Cluster 1, 2 und 3) und älteren Patienten mit niedrigerer
Überlebensrate (Cluster 4, 5 und 6). Mutationen im IDH1 Gen wurden
fast ausschließlich in Cluster 2 gefunden und Cluster 5 präsentierte
ein hypermutiertes Profil. Zusätzlich zeigte sich eine signifikante Prä-
senz von bisher nicht mit GMB in Verbindung gebrachten Genen (wie
C15orf2 und CHEK2) in den Clustern.

Das signifikantesten Modelle jedes Clusters wurde studiert, wobei
ein spezieller Fokus auf ihre Kovarianten gelegt wurde. Es wurde ent-
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deckt, dass die Anzahl geteilter signifikanter Modelle sehr klein war
und das die bekannten mit GMB zusammenhängenden Gene (wie EG-
FR1 und TP53) in vielen Modellen als Covariablen auftauchen. Zusam-
men mit diesen spielten Ubiquitin-verwandte Gene (UBC und UBD) so-
wie NERF1, welche bisher nicht mit GMB in Zusammenhang gebracht
wurden, eine sehr signifikante Rolle.

Diese Arbeit zeigt das Potential einer Mischung linearer Modelle
um multi-“omics“ Daten zu integrieren sowie Patienten zu gruppieren
um sie zu profilieren und neue Marker zu finden. Die resultierenden
Cluster zeigten einzigartige Profile und ihre signifikanten Modelle be-
standen aus bekannten mit GMB zusammenhängenden (assoziierten)
Genen und neuen Markern, welche die Möglichkeit für neue Ansätze
zum Studium und Bekämpfung dieser Krankheit eröffnen. Der nächste
Schritt dieses Projektes ist es mehrere Elemente der Methoden zu ver-
bessern um eine detailliertere Analyse der Modelle zu ermöglichen, im
Speziellen unter Berücksichtigung der Regressionskoeffizienten der
Kovariaten.
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Part V

A P P E N D I X





A
DATA

A.1 S H A R E D PAT I E N T S S A M P L E S B E T W E E N DATA S E T

Patients’ id Patients’ id Patients’ id

TCGA-02-0001-01 TCGA-12-0826-01 TCGA-19-2631-01

TCGA-02-0003-01 TCGA-12-0827-01 TCGA-19-5947-01

TCGA-02-0007-01 TCGA-12-0828-01 TCGA-19-5950-01

TCGA-02-0009-01 TCGA-12-0829-01 TCGA-19-5952-01

TCGA-02-0010-01 TCGA-12-1088-01 TCGA-19-5954-01

TCGA-02-0011-01 TCGA-12-1089-01 TCGA-19-5955-01

TCGA-02-0014-01 TCGA-12-1090-01 TCGA-19-5956-01

TCGA-02-0021-01 TCGA-12-1091-01 TCGA-19-5958-01

TCGA-02-0024-01 TCGA-12-1092-01 TCGA-19-5959-01

TCGA-02-0027-01 TCGA-12-1093-01 TCGA-19-5960-01

TCGA-02-0028-01 TCGA-12-1094-01 TCGA-26-1438-01

TCGA-02-0033-01 TCGA-12-1095-01 TCGA-26-1440-01

TCGA-02-0034-01 TCGA-12-1096-01 TCGA-26-1442-01

TCGA-02-0038-01 TCGA-12-1097-01 TCGA-26-1443-01

TCGA-02-0043-01 TCGA-12-1098-01 TCGA-26-1799-01

TCGA-02-0047-01 TCGA-12-1099-01 TCGA-26-5133-01

TCGA-02-0052-01 TCGA-12-1598-01 TCGA-26-5134-01

TCGA-02-0054-01 TCGA-12-1599-01 TCGA-26-5135-01

TCGA-02-0057-01 TCGA-12-1600-01 TCGA-26-5136-01

TCGA-02-0058-01 TCGA-12-1602-01 TCGA-26-5139-01

TCGA-02-0060-01 TCGA-12-3644-01 TCGA-27-1830-01

TCGA-02-0064-01 TCGA-12-3646-01 TCGA-27-1831-01

TCGA-02-0069-01 TCGA-12-3648-01 TCGA-27-1832-01

TCGA-02-0071-01 TCGA-12-3649-01 TCGA-27-1833-01

TCGA-02-0074-01 TCGA-12-3650-01 TCGA-27-1834-01

TCGA-02-0075-01 TCGA-12-3651-01 TCGA-27-1835-01

TCGA-02-0080-01 TCGA-12-3652-01 TCGA-27-1836-01

TCGA-02-0083-01 TCGA-12-3653-01 TCGA-27-1837-01

Continued on next page
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Patients’ id Patients’ id Patients’ id

TCGA-02-0085-01 TCGA-12-5295-01 TCGA-27-1838-01

TCGA-02-0086-01 TCGA-12-5301-01 TCGA-27-2518-01

TCGA-02-0089-01 TCGA-14-0736-01 TCGA-27-2521-01

TCGA-02-0099-01 TCGA-14-0781-01 TCGA-27-2523-01

TCGA-02-0102-01 TCGA-14-0783-01 TCGA-27-2524-01

TCGA-02-0107-01 TCGA-14-0786-01 TCGA-27-2526-01

TCGA-02-0113-01 TCGA-14-0787-01 TCGA-27-2527-01

TCGA-02-0114-01 TCGA-14-0789-01 TCGA-27-2528-01

TCGA-02-0115-01 TCGA-14-0790-01 TCGA-28-1746-01

TCGA-02-0116-01 TCGA-14-0812-01 TCGA-28-1747-01

TCGA-02-2466-01 TCGA-14-0813-01 TCGA-28-1749-01

TCGA-02-2470-01 TCGA-14-0817-01 TCGA-28-1750-01

TCGA-02-2483-01 TCGA-14-0865-01 TCGA-28-1751-01

TCGA-02-2485-01 TCGA-14-0866-01 TCGA-28-1752-01

TCGA-02-2486-01 TCGA-14-0867-01 TCGA-28-1753-01

TCGA-06-0122-01 TCGA-14-0871-01 TCGA-28-1755-01

TCGA-06-0124-01 TCGA-14-1034-01 TCGA-28-1756-01

TCGA-06-0125-01 TCGA-14-1037-01 TCGA-28-1757-01

TCGA-06-0126-01 TCGA-14-1396-01 TCGA-28-2502-01

TCGA-06-0128-01 TCGA-14-1401-01 TCGA-28-2506-01

TCGA-06-0129-01 TCGA-14-1402-01 TCGA-28-2509-01

TCGA-06-0130-01 TCGA-14-1451-01 TCGA-28-2510-01

TCGA-06-0133-01 TCGA-14-1452-01 TCGA-28-2513-01

TCGA-06-0137-01 TCGA-14-1453-01 TCGA-28-2514-01

TCGA-06-0139-01 TCGA-14-1454-01 TCGA-28-5204-01

TCGA-06-0140-01 TCGA-14-1455-01 TCGA-28-5207-01

TCGA-06-0141-01 TCGA-14-1456-01 TCGA-28-5208-01

TCGA-06-0142-01 TCGA-14-1458-01 TCGA-28-5209-01

TCGA-06-0143-01 TCGA-14-1459-01 TCGA-28-5213-01

TCGA-06-0145-01 TCGA-14-1794-01 TCGA-28-5214-01

TCGA-06-0147-01 TCGA-14-1795-01 TCGA-28-5215-01

TCGA-06-0155-01 TCGA-14-1821-01 TCGA-28-5216-01

TCGA-06-0169-01 TCGA-14-1823-01 TCGA-28-5218-01

TCGA-06-0650-01 TCGA-14-1825-01 TCGA-28-5219-01

TCGA-06-0875-01 TCGA-14-1827-01 TCGA-28-5220-01

Continued on next page
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Patients’ id Patients’ id Patients’ id

TCGA-06-0876-01 TCGA-14-1829-01 TCGA-28-6450-01

TCGA-06-0877-01 TCGA-14-2554-01 TCGA-32-1970-01

TCGA-06-0878-01 TCGA-14-2555-01 TCGA-32-1973-01

TCGA-06-0879-01 TCGA-14-3477-01 TCGA-32-1976-01

TCGA-06-0881-01 TCGA-14-4157-01 TCGA-32-1977-01

TCGA-06-0882-01 TCGA-15-1444-01 TCGA-32-1978-01

TCGA-06-0939-01 TCGA-15-1446-01 TCGA-32-1979-01

TCGA-06-1084-01 TCGA-15-1447-01 TCGA-32-1980-01

TCGA-06-1086-01 TCGA-15-1449-01 TCGA-32-1982-01

TCGA-06-1087-01 TCGA-16-0846-01 TCGA-32-1986-01

TCGA-06-1800-01 TCGA-16-0848-01 TCGA-32-1987-01

TCGA-06-1801-01 TCGA-16-0849-01 TCGA-32-1991-01

TCGA-06-1802-01 TCGA-16-0850-01 TCGA-32-2491-01

TCGA-06-1804-01 TCGA-16-0861-01 TCGA-32-2494-01

TCGA-06-1805-01 TCGA-16-1045-01 TCGA-32-2495-01

TCGA-06-2557-01 TCGA-16-1047-01 TCGA-32-2498-01

TCGA-06-2558-01 TCGA-16-1048-01 TCGA-32-2615-01

TCGA-06-2559-01 TCGA-16-1055-01 TCGA-32-2616-01

TCGA-06-2561-01 TCGA-16-1056-01 TCGA-32-2632-01

TCGA-06-2562-01 TCGA-16-1060-01 TCGA-32-2634-01

TCGA-06-2563-01 TCGA-16-1062-01 TCGA-32-2638-01

TCGA-06-2564-01 TCGA-16-1063-01 TCGA-32-4208-01

TCGA-06-2565-01 TCGA-16-1460-01 TCGA-32-4211-01

TCGA-06-2566-01 TCGA-19-0955-01 TCGA-32-4213-01

TCGA-06-2567-01 TCGA-19-0957-01 TCGA-32-4719-01

TCGA-06-2569-01 TCGA-19-0960-01 TCGA-32-5222-01

TCGA-06-2570-01 TCGA-19-0962-01 TCGA-41-2571-01

TCGA-06-5408-01 TCGA-19-0963-01 TCGA-41-2572-01

TCGA-06-5410-01 TCGA-19-0964-01 TCGA-41-2573-01

TCGA-06-5411-01 TCGA-19-1385-01 TCGA-41-3392-01

TCGA-06-5412-01 TCGA-19-1386-01 TCGA-41-3393-01

TCGA-06-5413-01 TCGA-19-1387-01 TCGA-41-3915-01

TCGA-06-5414-01 TCGA-19-1388-01 TCGA-41-5651-01

TCGA-06-5415-01 TCGA-19-1389-01 TCGA-76-4925-01

TCGA-06-5416-01 TCGA-19-1390-01 TCGA-76-4926-01

Continued on next page
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Patients’ id Patients’ id Patients’ id

TCGA-06-5418-01 TCGA-19-1392-01 TCGA-76-4931-01

TCGA-06-5856-01 TCGA-19-1786-01 TCGA-76-4934-01

TCGA-06-5858-01 TCGA-19-1787-01 TCGA-76-4935-01

TCGA-06-5859-01 TCGA-19-1789-01 TCGA-76-6191-01

TCGA-06-6389-01 TCGA-19-1791-01 TCGA-76-6192-01

TCGA-06-6391-01 TCGA-19-2620-01 TCGA-76-6193-01

TCGA-12-0670-01 TCGA-19-2623-01 TCGA-76-6282-01

TCGA-12-0820-01 TCGA-19-2624-01 TCGA-76-6285-01

TCGA-12-0821-01 TCGA-19-2625-01 TCGA-81-5910-01

TCGA-12-0822-01 TCGA-19-2629-01 TCGA-87-5896-01

Table 20: Set of shared patients between datasets.
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A.2 F E AT U R E S W I T H T H E H I G H E S T A P P E A R A N C E S R AT I O S O N

E AC H C L U S T E R

Cluster Layer Name Appearances Appearances
Ratio

1 Gene Expr. UBC 15 6.20

1 CNV EGFR 11 4.55

1 CNV NRF1 10 4.13

1 Gene Expr. APP 9 3.72

1 Gene Expr. EGFR 8 3.31

1 Gene Expr. NRF1 7 2.89

1 Gene Expr. PIK3R1 7 2.89

1 Gene Expr. SFN 6 2.48

1 Gene Expr. UBD 6 2.48

1 Gene Expr. FYN 5 2.07

1 Gene Expr. TP53 5 2.07

2 CNV NRF1 9 3.37

2 Gene Expr. ELAVL1 9 3.37

2 Gene Expr. UBC 7 2.62

2 CNV EGFR 6 2.25

2 Gene Expr. APP 6 2.25

2 Gene Expr. EGFR 6 2.25

4 CNV EGFR 3 4.41

4 Gene Expr. UBC 3 4.41

4 Methyation cg21053323 3 4.41

5 Gene Expr. APP 3 4.29

6 Gene Expr. ELAVL1 5 12.20

6 Gene Expr. UBC 4 9.76

6 Gene Expr. NRF1 3 7.32

Table 21: Features with a significant number of appearances for each cluster
considering the selected gene-models.
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B
I M AG E S

B.1 A N A LY S I S O F T H E S I L H O U E T T E VA L U E S O F T H E C O - O C -
C U R R E N C E M AT R I X

Histograms of the silhouette values for the clustering of the co-
occurrence matrix for different number of clusters.
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Figure 29: Histogram of the silhouette values of the co-occurrence matrix for
different number of clusters.

B.2 H E AT M A P S O F C O - O C C U R R E N C E D I S TA N C E S F O R T H E

G E N E - M O D E L S G R O U P I N G F O R T H E PAT I E N T S ’ C L U S -
T E R S
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(a) Heatmap cluster 1 (b) Heatmap cluster 2

(c) Heatmap cluster 3 (d) Heatmap cluster 4

(e) Heatmap cluster 5 (f) Heatmap cluster 6

Figure 30: Heatmaps and dendrograms of the co-occurrence values to
group gene-models for each cluster, the clustering of gene-
models was performed with K = 2 for the clusters 1, 2, 4 and 5

and K = 3 for the rest.
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B.3 V E N N D I AG R A M O F T H E S E L E C T E D G E N E - M O D E L S F O R

T H E PAT I E N T S C L U S T E R S
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Figure 31: Venn diagram of the 6 clusters over their selected gene-models.
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