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Etwas erkennen nach dem was es ganz an und für
sich sei, ist für alle Ewigkeit unmöglich: weil es
sich widerspricht. Denn sobald ich erkenne, habe
ich eine Vorstellung: diese muß aber eben weil
sie meine Vorstellung ist verschieden seyn von dem
Erkannten und kann nicht mit demselben identisch
seyn.

Im Reiche der Wirklichkeit, so schön, glücklich

und anmuthig sie auch ausgefallen seyn mag, be-
wegen wir uns doch stets nur unter dem Einfluß
der Schwere ����� hingegen sind wir, im Reiche der
Gedanken, unkörperliche Geister, ohne Schwere und
ohne Noth.

Schopenhauer



Abstract

Through out the world the natural gas resources will be one of the most important sources of energy
in the future. The development of optimised possibilities for the distribution of gas through a network
of pipelines will be very important for an effective operation of a gas transmission network. The aim
of this thesis is to formulate this problem as a suitable mathematical mixed integer problem and to find
advanced solutions, using techniques of mixed integer programming.
The main problem of the so called Transient Technical Optimisation (TTO) is to minimise the total
supply costs of a gas transmission company that has to satisfy demands of different kinds. A gas net-
work basically consists of a number of compressors and valves that are connected via pipes. The gas
transmission companies dispatchers decide how to run the compressors and how to switch the valves
cost-efficiently such that all demands of all customers are satisfied.
The cost function mainly consists of the supply costs of driving the compressors. Note that the compres-
sors consum a fraction of the gas transported through the pipelines. The costs imposed by consumed
gas should be minimised.
The gas transmission network has to satisfy several demands that are described by a minimal or maxi-
mal pressure requirement at a certain node or in a pipe. Also the consumers want to get gas of a certain
volume and quality. Furthermore some physical constraints, like Kirchhoff’s laws have to be modelled.
There are also some combinatorial constraints, e.g. the different possibilities of switching the valves or
compressor configurations. Note, that some of the constraints are nonlinear, like the pressure loss in a
pipeline or the fuel-gas consumption of the compressors. In order to formulate TTO as a mixed integer
program we approximate the nonlinear constraints by piecewise linear functions.
Considering the experiences of other projects where mixed integer programs have been used, e.g. VLSI-
Design or Telecommunications, we know that the problem can be solved by examination of the under-
lying polyhedra of such complex and high-dimensional mixed integer programs. We know from earlier
test evaluations of smaller problems that it is not possible to solve real gas transmission problems with
state-of-the-art general mixed integer programming solvers. One programming approach is the search
of better valid (or even facet-defining) inequalities of the polyhedra for the use in a Branch-and-Cut
Algorithm. We have developed a new class of valid inequalities that have been integrated in a general
MIP solver algorithm.

Summarising the results it was possible to develop a polynomial separation algorithm for a special
class of polyhedra. The use of these cuts reduces the calculation time by a significant factor. A suitable
branch-and-bound algorithm is also added. The cuts and the branching algorithms have been tested on
several test-models of real gas-networks.
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Zusammenfassung

Die reichen Gasvorkommen der Erde werden in den nächsten Jahren eine der Hauptenergiequellen un-
serer Gesellschaft darstellen. Aus diesem Grund gewinnt die Suche nach optimierten Verfahren, große
Gasmengen effizient durch weitverzweigte Gasnetze transportieren zu können immer größere Bedeu-
tung. Das Ziel der vorliegenden Arbeit, dieses Problem, das als Transiente Technische Optimierung
(TTO) bezeichnet wird, in Form eines gemischt ganzzahligen linearen Optimierungsproblems so zu
formulieren, dass die Kosten, die einem Gasversorgungsunternehmen bei der Gasverteilung in einem
Gasnetz entstehen, minimiert werden.
Das Hauptproblem der Transienten Technischen Optimierung (TTO) besteht darin, die Gesamtheit der
Verteilungskosten eines Gasversorgungsunternehmens zu minimieren, so dass alle Anforderungen, die
an das Gasnetz gestellt sind, erfüllt werden können. Ein Gasnetzwerk besteht im Wesentlichen aus einer
Menge von Kompressoren (Kompressorstationen) und Ventilen, die über Leitungen miteinander verbun-
den sind. Die Kompressoren werden dazu benutzt, um den in den Gasleitungen durch Reibung entste-
henden Druckabfall wieder auszugleichen. Die Dispatcher der Gasversorgungsunternehmen müssen
Entscheidungen darüber treffen, wie die Kompressoren und die Ventile kosteneffizient geschaltet wer-
den können, so dass alle Bedingungen, die aufgrund physikalischer oder marktgegebener Situationen an
das Gasnetz gestellt werden, erfüllt werden können.
Die Kostenfunktion besteht in der Hauptsache aus der Summe der Betriebskosten der einzelnen Verdich-
ter. Hierbei ist zu bedenken, dass die Kompressoren einen gewissen Anteil des durch die Gasleitungen
transportierten Gases verbrauchen. Die Kosten und damit die Menge des benötigten Gases sollen min-
imiert werden.
Das Gasnetzwerk muss zusätzlich einige weitere Bedingungen erfüllen, die beispielsweise darin beste-
hen, dass in einem Knoten oder in einer Leitung ein minimaler Druck nicht unterschritten und ein max-
imaler Druck nicht überschritten werden darf. Desgleichen ergeben sich aus der Strömungsmechanik
physikalische Bedingungen, die ein Gasnetz erfüllen muss, ebenso gelten Erhaltungsgleichungen, wie
sie durch die Kirchhoffschen Gesetze beschrieben werden. Besondere Bedeutung bei der Formulierung
des Problems der Transienten Technischen Optimierung als gemischt ganzzahliges Optimierungsprob-
lem haben die auftretenden kombinatorischen Nebenbedingungen, z.B. die verschiedenen Möglichkeiten,
die Ventile zu schalten oder die verschiedenen Fahrwege von Kompressoren. Hierbei besteht eine
wichtige Problematik darin, dass einige Bedingungen nichtlinear sind, wie z.B. der Druckverlust in-
nerhalb der einzelnen Leitungen oder der Brenngasverbrauch der Kompressoren. Um das Problem der
TTO als ein gemischt ganzzahliges Programm formulieren zu können, approximieren wir die nichtlin-
earen Nebenbedingungen durch stückweise lineare Funktionen.
Wenn wir die Erfahrungen, die in anderen Projekten, bei denen gemischt ganzzahlige Modelle zur Mod-
ellierung eines Problems genutzt wurden, heranziehen (so z.B. im VLSI-Design oder in der Telekom-
munikation), so war zu erwarten, dass auch das Problem der TTO schnell und effizient gelöst werden
kann, wenn die Polyeder der zugrundeliegenden komplexen und hochdimensionalen gemischt ganz-
zahligen Probleme analysiert werden. Denn Erfahrungen mit früheren Testrechnungen anhand kleiner
und stark vereinfachter Gasnetze zeigten, dass es unmöglich ist, reale Gasnetzoptimierungsprobleme
mit derzeitig üblichen Standardlösern für allgemeine gemischt ganzzahlige Programme zu lösen. Der
Ansatz, der daher in dieser Arbeit verfolgt wird, besteht in der Suche nach besseren gültigen (evtl.
sogar facettendefinierenden) Ungleichungen der zugrundeliegenden (Teil-) Polyeder als Voraussetzung
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für die Anwendung von LP-basierten Branch-and-Bound Verfahren, wobei die LP-Relaxierung durch
Schnittebenen verschärft wird (sog. Branch-and-Cut oder Schnittebenenverfahren). Die in dieser Arbeit
entwickelten Typen von gültigen Ungleichungen wurden in einen allgemeinen Löser für gemischt ganz-
zahlige Modelle integriert.
Insgesamt konnte ein polynomialer Separierungsalgorithmus für eine spezielle Klasse von Polyedern
entwickelt werden. Die Anwendung dieser Schnitte kann die Rechenzeit deutlich reduzieren. Ein eben-
falls entwickeltes Branch-and-Bound Verfahren vervollständigt das erarbeitete Schnittebenenverfahren.
Die Schnitte und die Branchingalgorithmen wurden anhand der Berechnungen bei einigen kleineren
Gasnetzen getestet.
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Chapter 1

Introduction

Natural gas is a mixture of different hydrocarbons. It consists about ����� of methane ( �
	�� ) which is
the simplest alkane to be found in nature. Methane is found under the earth’s crust but it also arises in
processes of fermentation under the absence of air, e.g., in marshes or in purification plants. Also there
are some non inflammable substances in natural gas such as carbon dioxide ( ���� ), helium ( 	�� ) and ni-
trogen ( ��� ). Before the gas can be transported to the consumers it has to be cleaned from pollutions (for
instance water ( 	��� ), sulfur ( � ) or hydrogen sulfide ( 	���� )). Significant natural gas sources are found
all over the world - the biggest ones in F.R. Russia. The typical use of natural gas is in household (heat-
ing, cooking , ����� ), in industry (production of heat, electricity, cooling, ����� ), in provisions of services
and in road traffic. Since natural gas is ecologically compatible it has become to a very important energy
source in Germany over the last years [9], [2]. In ������� only ��� of the German energy consumption has
been satisfied by the use of natural gas. Today this rate increased up to ����� and the gas consumption
still will increase rapidly over the next years [42], [44].
Another very important fact is the forthcoming liberalisation of the european gas-market in the closer
future. On the long term only those companies which are able to react to the demands and requirements
of the global market will survive. Because of this it is necessary to develop control systems that are able
of compiling and editing the data of a gas network. Also simulation and optimisation tools are of great
importance.
The summary of all these facts was the principal reason for our attempt to search for suitable models for
the optimisation of gas networks.

1.1 The Problem

A gas network basically consists of a set of compressors and valves that are connected by pipes. The
task of the Transient Technical Optimisation is to optimise the drives of the gas and control the com-
pressors cost-efficiently in such a manner that the required demands are satisfied. This problem leads to
a complex mixed integer nonlinear optimisation problem. We approach it by approximating the nonlin-
earities by piecewise linear functions leading to a huge mixed integer program. We study the polyhedral
consequences of this model and present some new cutting planes. Our computational results show the
benefits when incorporating these cuts into a general mixed integer programming solver.

Let us describe the problem a bit more detailed: The situation is that the pressure of flowing gas de-
creases in pipes due to the friction with the pipes walls. The consumers want to get gas of a certain
pressure and volume and with a certain quality. So it is necessary to unwind the pressure loss in the
pipes. This is usually done by using compressors. The problem is that the compressors consume some
fraction of the gas flowing through the pipes. Our task is to develop a suitable mathematical model for
this situation and we want to optimise the drives of the gas and run the compressors cost-efficiently such
that all demands are satisfied. In order to show how complex this problem is we consider the dimensions

9



CHAPTER 1. INTRODUCTION 10

of the gas network which is driven by the German Ruhrgas AG. The approximate length of the pipes is
about ��������� kilometres and there are ��� compressor stations each of this consisting of several singular
compressors [2]. The number of additional valves or control valves in this network is immense. Until
now it is not possible to optimise this complex gas network using a mathematical optimisation tool.
All optimisation nowadays has to be done completely by the gas company’s dispatchers. Additionally
the problem must be calculated in a very short time since the situation in the gas network very often
changes.
Posing the problem we have to consider the different facets of the model: There are a lot of nonlinear
aspects. The most important consist in the hydraulic of the pipes (the already mentioned pressure loss)
and the fuel gas consumption of the compressors. So the parameters of the compressors are nonlinear
functions, e.g. the efficiency or the specific heat rate. Also the gas quality, the compound of gas and
gas delivering contracts lead to nonlinear functions. There are also combinatorial aspects. Valves and
compressors can be switched on or off. In compressor stations one can decide in which combinations
several compressors should be run. Also delivery contracts can lead to combinatorial aspects. Of course
the problem is time dependent in fact as the hydraulics of pipes is transient. Another important com-
ponent of the model is that usually stochastical aspects have to be considered. So the sales quantity
of gas depends on the time of day or on the season; but the weather is uncertain and for the control
of the gas network it is of course very important if a winter is cold or open. Also some of the model-
parameters are uncertain. A very important problem in the last years was the planned liberalisation
of the european gas-market which also would have lead to a complex stochastical situation. But, until
now the liberalisation of gas market was by far not as wide as the liberalisation of electricity market [42].

We cannot consider all important aspects we have mentioned above because the problem would have
become unsolvable. In the present work we could only regard the most important parts of the problem
and we tried a special mathematical approach by mixed integer linear programming for the stationary
case of the problem. We only wanted to show that our approach can be useful in order to solve a very
complicated physical and technical problem.
In Chapter 2 we describe the physical and in Chapter 3 the mathematical basics of our problem. In the
Chapter 4 we formulate a suitable mixed integer problem. Later, in Chapter 5 we describe what can be
considered as main part of this thesis: the polyhedral consequences of the linearisation of the nonlinear
functions of the model and we develop a new separation algorithm. Some consequences and extensions
of these algorithms are studied in Chapter 6. In the last chapter we deal with some implementation
details and give some computational results.

1.2 Previous Approaches to the Problem

Additionally we want to give a short outline about the previous approaches which have been attempted
in order to attack the problem of the Transient Technical Optimisation. As far as we know, until today
no algorithm has been developed that includes all nonlinear, combinatorial and stochastical aspects of
the problem; only parts of the problem have been considered.
Often dynamic programming has been used [14],[51] but the problem is that the gas network must have
an easy structure in this case. Ideal for this approach is a gun-barrel system, i.e., a directed graph con-
sisting of pipes and compressors without any cycles. Recent papers on this topic try to deal with the
possibility of cyclic gas networks for the stationary case [36].
Since the problem contains nonlinear aspects (e.g. the pressure loss in pipes) nonlinear optimisation
methods are frequently applied. Here the nonlinear functions are modelled correctly neglecting the
combinatorial aspects of the problem. This nonlinear optimisation problems are often solved by sub-
gradient techniques [19],[24],[45] or SQP-methods [11].
Sometimes well known heuristics like Simulated Annealing or genetic algorithms are used, see [36],
[50].
Let us give a more detailed description of approaches that use similar techniques as in this thesis is done.
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The approach presented in this thesis is related to an approach for the stationary case presented in [35].
Here the authors describe a computer program for the stationary optimisation they have developed. The
model the authors use is also based on a huge mixed integer program. The optimisation problem is
solved by an iterative method. The nonlinear gas flow equations are linearised in order to build a linear
problem. The problem is solved iteratively until convergence is obtained. The cost function e.g. includes
the fuel gas consumption of the compressors or the gas flow from the sources. The solution is computed
in two steps: In the first step the linear problem is solved by mixed integer linear programming. Af-
ter that the algorithm re-linearises around the calculated optimum until convergence is obtained. The
authors give several computed examples. In [43] the problem is examined by developing an extended
simplex algorithm. Here also mixed integer linear programming is used (the nonlinear functions are
linearised and then this model is iterated). In [38], [39] the method of sequential optimisation is used
which also leads to a mixed integer problem. We remark that these papers gave us important hints for
our own activities since we were lucky to work together with its author at the beginning of our work on
the gas optimisation problem. Also here a mixed integer linear problem for the gas optimisation problem
is developed. We remark that this model is quite different from the model presented here. Especially the
approximation of nonlinear functions is quite different. The author uses the technique of sequential opti-
misation. Here in every iteration a solution of the linearised model (use of linear Taylor approximations)
is calculated. For every variable the author defines a slack variable in order to ensure the obtainment of
a solution for the problem. Every slack variable is part of the cost function of the model and a penalty
factor should ensure that the optimisation process converges to the problem’s optimum.
Another mixed integer formulation of the problem is presented in [16]. Here the author does not con-
sider a mixed integer model for a short time optimisation but for medium- and long-term optimisation
as is pointed out in the calculation of some examples. The author also uses the concept of SOS type �
inequalities but this is done quite differently from the way this concept is used in this thesis.
Unfortunately none of the approaches models all important facts of the problem - this of course also
holds for the ideas presented in this thesis.
Nevertheless, the approach exposed in this thesis is to the best of our knowledge new in the sense that
we are not aware of any IP- or MILP-approaches of the TTO-Problem which use the techniques of poly-
hedral studies combined with branch-and-cut algorithms. Also our use of the SOS type � inequalities
seems to be new. Added to this nobody seems to have used the present branching strategies. The ad-
vantage of our model is that we do not use an iterative optimisation process and we can guarantee not to
terminate with only a local optimum which is a danger of all nonlinear optimisation techniques and the
other described iterative methods. Also our linearisation methods for nonlinear functions can be used
very generally and are not dependent of the considered problem. We further add that the techniques and
concepts we described often have been helpful in order to solve complex mixed integer programs (see
e.g. [30],[29], [23], [12], [15]) and so there was hope also for the problem of the Transient Technical
Optimisation.

We remark that this thesis was written in a cooperative scientific project of the Technical University
Darmstadt (here the formulation and analysis of mixed integer programs for TTO was done as described
in this thesis), the Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) where new methods of
Nonlinear Optimisation were developed and the University of Duisburg where the problem of TTO was
studied in consideration of stochastic phenomena ([46]).



Chapter 2

Physical Background

2.1 Introduction

In this chapter we give a short outline about the physical and technical preliminaries that are neces-
sary for understanding the mixed integer model which we developed for the problem of the Transient
Technical Optimisation. From physics we know that the gas transport in a network is described as a
system of partial differential equations. At first we define the variables and constants that are needed in
order to describe this PDE-system. Later on we will see that the most depending variables must become
constants in order to give us the possibility to linearise the system. All simplifications we will do later
on are precise enough for the requirements of the gas industry. Furthermore we want to derive some
important simplification formulas in this chapter especially the pressure loss formula. Let us describe
now the needed variables. The basic facts of the following descriptions are developed and extended
from [39],[40], [41].

2.2 Summary of Variables

To describe the TTO we must introduce variables that depend on time and space. We will denote the
space variable by � , the time variables are indicated with  .

� variable of (pipe) length ! "$# variable of time !&%�#
After that we carry on with the summary of the dynamic variables. The most important variables we
will use in our model are the gas flow density (flow-rate, gas volume flow) ' , the gas pressure ( , the
power � and the fuel gas consumption ) of a compressor.

'
*+'-,.�0/1 12 gas flow density/flow-rate in a pipe ! "�3�4�%�#5 * 5 ,.�6/1 72 gas velocity ! "84�%�#($*9(:,.�0/1 12 pressure of gas ! �<; #= * = ,.�6/1 72 gas density !&>@?-4A" 3 #B * B ,.�C2 height of pipe ! "$#D * D ,E'F2 value of pipe friction !G�H#I * I ,. 72 heat addition to gas !&>KJK4-,L>@?M%N2O#P * P ,.�C2 slice plane of pipe ! " � #Q * Q ,.�0/1 12 gas temperature ! R8#S * S ,T(6/ Q 2 compressibility factor (z-factor) !G�H#(VUW*X(VUN,.�0/1 12 relatively gas pressure !G�H#Q UY* Q U�,.�0/1 12 relatively gas temperature !G�H#Z * Z ,.�6/1 72 mass flow of gas !&>@?-4�%�#
12
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[]\ * [^\ ,.�6/1 72 Reynolds number of gas !G�H#(V_G` gas pressure at the beginning of pipe/compressor !&a ;@b #(Kced�f gas pressure at the end of pipe/compressor !&a ;@b #Q _G` gas temperature at the beginning of pipe/compressor ! R8#S _g` z-factor at the beginning of pipe/compressor !G�H#	ihkj adiabatic head of a compressor ! "$#� fml theoretical power of a compressor !&> I #� power of a compressor !&> I #n hkj adiabatic efficiency of a compressor !G�H#) fuel gas consumption of a compressor ! op" 3 4 B #
After the depending variables we have to consider general physical constants and also typical gas con-
stants which are shown in the following table.

? acceleration due to gravity ! "84�% � #q
length of pipe ! "$#r
diameter of pipe ! "$#skt specific heat !&>KJK4-,L>@?WRu2O#=@v norm density !&>@?w4A" 3 #S v norm compressibility coefficient !G�H#( v norm gas pressure !&a ;�b #Q v norm temperature ! R8#(Kx pseudo-critical pressure !&a ;�b #Q x pseudo-critical temperature ! R8#> pipe roughness ! "$#% barometric factor !G�H#y adiabatic coefficient !G�H#" molecular weight of gas !&>@?w4�>z"|{N}~#[
universal gas constant !&>KJK4-,L>z"|{�}�Ru2O#a specific heat rate !G�H#	 d calorific value of gas !&> I 4A" 3 #n dynamic viscosity of gas !&>@?w4-,."�%N2O#

The following three equations describe the physics of the gas in a pipe: the continuity equation, the
momentum equation and the energy equation. Let us give some basic facts on these equations.

2.3 The Continuity Equation

The first important PDE (Partial Differential Equation) is the continuity equation: The alteration of the
gas flow is commensurate with the alteration of the gas density.

P�� =�  � � Z� � *��
We see that the continuity equation has only influence if we consider the transient case. In the stationary
case the continuity equation reduces to

� Z� � *�� � Z * s {No6%� �
Since

Z
can be converted in ' (a technical variable usually used in gas networks) by application of the

gas density via the formula Z * =@v '
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we also get '�* s {No6%� �
We will take ' as gas flow variable in our model.

2.4 The Momentum Equation

The momentum equation describes all forces that operate on the gas molecules. Here we show the
momentum equation in the form for cylindrical pipes:

� (� � � ? = �
B
� � �

D0� 5 � 5
� r = � �P � Z�  � � , =�5 � 2� � *�� �

The first term in this equation describes the pressure in dependence of the pipe length, the second term
describes the gravitational force working on the gas molecules for inclined pipes. After that the friction
force follows and the fourth term in the equation describes the change of flow rate in time. The last term
considers the so called impact pressure.

2.5 The Energy Equation

The third PDE is the energy equation:

I�� , = P8� �C2�* ��  !�, = P�� �C2 � , sHt Q �
5 �
� � ? � � B 2O#

� �� � !�, =�5 P8� �C2 � , skt Q � ( = � 5 �
� � ? � � B 2O# �I

describes the heat addition (per mass flow and time) from the soil to the gas and s t the specific heat
per constant gas volume.
The energy equation deals with the connection of the inner energy of the gas and the heat exchange with
the soil.
The most important components of the energy equation are (see [39]): The gas very slowly emits energy
to the soil. Furthermore the energy equation describes the kinetic energy which describes fast activities
of the gas. Also the Joule Thomson Effect that describes highly inclinations of the pipes is part of the
energy equation.

From these facts we conclude: Since in Germany the gas pipelines are placed subterranean and the
variation in temperature is very small this PDE can serendipitously be neglected. But even without this
PDE the problem is difficult enough.

2.6 The Gas Equation

The gas equation is the fourth basic equation we have to deal with. We begin with the gas equation
which models the ideal gas: == v * (Q SAv Q v( v �
Since we want to deal with the behaviour of real gas we have to modify this formula. Several basic
approaches have been developed in order to model real gas, e.g. the Van-der-Waals gas equation.
We use another approach which is used by the gas engineers: we introduce the so called z-factor (com-
pressibility factor) which is a nonlinear function depending on gas pressure and temperature. The z-
factor describes the differences of a real gas and the ideal gas. In our model we will simplify the



CHAPTER 2. PHYSICAL BACKGROUND 15

z-factor. So we get as a constitutive equation for a real gas:==@v * (S ,T(0/ Q 2 Q
S v Q v
( v �

Clearly we get a ideal gas if S ,T(0/ Q 2���� .
The American Gas Association (AGA) has developed a formula which is a good approximation for the
z-factor for a gas pressure up to �N��a ;@b . This value is usually not exceeded in our gas network. In order
to give this empirical formula we first define the relatively gas pressure (0U

(KUW* (( x
and analogously the relatively gas temperature

Q U
Q UM* QQ x

and so we get the following formula:

S ,T(0/ Q 2�*�� � � � ���F�V(KUM�u� � ����� ( UQ U �
2.7 Simplification of the Momentum Equation

In our model we have to deal with the two important nonlinearities of the pressure loss in pipes and
the fuel gas consumption of a compressor. Here we want to conclude a formula for the pressure loss
in pipes. This formula is a consequence of the momentum equation (here for cylindrical pipes) that we
already know: � (� � � ? = �

B
� � �

D0� 5 � 5
� r = � �P � Z�  � � , =�5 � 2� � *�� �

In the stationary case we get ���� f *+� . For horizontal pipes also the effect of the impact pressure and the
gravity can be neglected (see [39], [10]) and the formula simplifies to:

� (� � *�� D � 5 � 5� r = � (2.1)

With the equation 5 * = v 'P =
we can write this equation as � (� � *�� D = �vP � � ' � '� r �= � (2.2)

Now we have to strike out a bit:
First we define the Reynolds number

[�\
that describes if the gas flow is laminar or turbulent. It holds

[ \ * �
� n

Z r �
Remember that n means the dynamic viscosity of the gas. Generally the gas flow in the gas networks
we are considering is turbulent.
The pipe friction value

D
is a very important part of the right-hand side of equation (2.2). It is only

possible to give an implicit formula for
D

:

�� D *��M��}E{�?z� v , � � �-�[ \ � D � >� � �z� r�2 �
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The solution can be calculated by a suitable iteration method. We will show on page 18 that for usual
values in gas networks this method will converge.

But let us now come back to our actual aim:
We can write the gas equation in the form

= * =@v (S ,T(6/ Q 2 Q
S�v Q v
( v

and together with the average values

'�� * ' ced�f � ' _G`� /
Q � * Q ced�f � Q _G`� /S � * S ,T(V��/ Q �]2k/= �= v * (V�S � Q �

S v Q v
( v /D � * D ,E' � 2 �

we can solve (2.2). We remark that the calculation of the average pressure ( � in the pipe is a little bit
more difficult and so we tried several formulas which are used in the modelling of gas networks. We
will talk about this later. We also mention that in our calculations we usually set ' ced�f *�' _G` *�' since
we assume the gas flow ' to be constant in the pipe. So we do not need to introduce gas flow variables
in the beginning- or endpoints of a segment.
Now we conclude from (2.2)S v Q vS �i( v

�����O� �
��¡£¢ ( � ($*�� D � = v � '�� � '�� Q �� r P �

�¥¤
v � � �

and from this we can calculate the following simplified pressure drop calculation:

( �ced�f *9( �_G` � D � qr P � = v ( v S � Q �S v Q v � ' � � ' � / (2.3)

where subindex " indicates the average numbers defined above.
The same formula can also be derived by a discretisation of � ���¦ (take the difference quotient instead of
the differential quotient) which is pointed out in [10].

Defining the value ff as

ff * D � qr P � = v ( v S � Q �S v Q v
and setting the gas flow ' in the pipe to 'A� (which is of course a very crude approximation) we can write
approximation formula (2.3) as ( �ced�f *X( �_G` � ff ' � ' � (2.4)

and in the case (we will usually consider) that in the pipe there is no reversion of the gas flow direction
we get ( �ced�f *9( �_G` � ff ' � � (2.5)

In our stationary model we assume 'N� and so
D � to be constant. We also do with constant temperature

and so
Q � is constant. Our pressure loss formula simplifies if we also assume S � to be constant because

in this situation ff becomes constant. Indeed, for first test calculations this can be done as we have
seen in our test networks. Now we can examine the pressure loss in a serial connection or in a parallel
connection of pipes when using formula (2.5). We conclude the following marginal
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Lemma 1 Consider a serial connection of o¨§ª©«� pipes with constant values ff _ for ¬�*��/ ����� /1o6§ � For
every pipe we approximate the gas pressure at the end of this pipe by formula (2.5). Is the gas pressure
at the end of the last pipe physically reasonable than we can substitute these pipes by a single pipe with
value

ff * `�®¯
_m°0� ff _

and the gas pressure at the end of this pipe is equal to the gas pressure at the end of the last pipe of the
serial connection.

Proof. The proof is easily done by induction because we can show that the pressure ( ced�fE± ` ® after the
last pipe of the serial connection is

(Kced�fE± `�®²* ³´´µ ( �_G` �¶, ` ®¯ _m°0� ff _O2e' �
which is equal to the gas pressure at the end of the pipe with value ff. ·
For a parallel connection of some pipes holds

Lemma 2 Consider a parallel connection of o � ©¸� pipes with constant values ff _ and gas flow '�_ for¬¹*���/ ����� /1o � � For every pipe we again approximate the gas pressure at the end of this pipe by formula
(2.5). Is the gas pressure at the end of the pipes physically reasonable (and so of course equal) which
implies

ff _ ' �_ * ffº�' �º » ¬ /O¼½*���/ ����� /1o �
than we can substitue these pipes (depending on the gas flow) by a single pipe with value

ff * ff � ' � �,¿¾ `�À_m°0� '�_¿2 �
and the gas pressure at the end of this pipe is the same as at the end of the pipes of the parallel connec-
tion.

Proof. The proof is done by an easy calculation. ·
As a short forecast we add that the analysis of polyhedron

�ÂÁ
defined at the beginning of Chapter 5

is important and cannot be reduced by the lemma presented here. Although we gave a formula in order
to replace a serial connection of pipes by a single one it will be useful to develop separation algorithms
also for

�:Á
. Also remember that these formulas only hold for constant ff! Often the pressure values

at the connecting nodes of two pipes are important for the opimisation and the cuts that result of this
polyhedron will be helpful for the optimisation of a complexer model. We also mention that serial con-
nections of a huge number of pipes usually do not exist in real gas networks. Another advantage of the
analysis of

�ÃÁ
is that in this polyhedron we are not dependent on using approximation formulas. In� Á

we can use exact solutions of the Momentum Equation. Also
� Á

can be generalised to complexer
situations as we will describe in Chapter 5.

There are several possibilities to calculate the average pressure (0� which is needed for the calculation
of S � . In the gas industry often the following formula is used (for a calculation see [40]):

(V��* �� ,T(K_g` � (Kced�fÄ� (K_g`�(Kced�f( _g` � ( ced�f 2 � (2.6)

Taking the simplified pressure drop formula we can conclude the following algebraic equation of degree� in order to calculate the gas pressure (pced�f at the end of a pipe:

( 3ced�f � ,T( _G` � s � 2Å( �ced�f � , s � ( _G` � s � �$( �_g` 2Å( _G` �$( 3_g` � s � ( �_G` � s � ( _G` *+�



CHAPTER 2. PHYSICAL BACKGROUND 18

with s �Æ*�, �� 2 �
q = v Q ��( vr�Ç S�v Q v D �8' ��

and s �M* �� s �A, � � ���F�( x � � � ����� Q x( x Q � 2 �
Here we combined formula (2.6) and formula (2.3).
We have implemented the last formula in our model and calculated the solution by the formula of
Cardano.
It is well known that the approximation

(V�+* �� ,T(V_G` � (Kced�fO2 (2.7)

is more inexact than the approximation (2.6) but when we are using this formula in our simplified pres-
sure drop calculation the values for ( ced�f (in our test models) are quite the same. Since the calculation of(Kced�f becomes easier in this way we have decided to use (2.7).

We remark that it is also possible to derive a formula like (2.2) in the case of a inclined pipe. Let %
describe the altitude difference between the beginning of the pipe and the end of the pipe. We get

( �ced�f *�,T( �_G` � D � qr P � = v ( v S � Q �S v Q v � '�� � '�� � § �È�% 2É��Ê § �
Because of ËmÌmÍ�§eÎ v \ ® Ê �§ \ ® *�� for %]*�� formula (2.3) also follows from the last formula.

Let us shortly give a reason why the iteration method for calculating
D

usually will converge: We can
write the implicit formula for

D
as:

D * �� ,E}E{�?z� v , �HÏ Ç �ÐKÑ1Ò Ó � Ô3 Ï Õk�×Ö 212 � �
Define a function ?C, D 2Ø* D

and
B , D 2Ø* ��ÚÙGÛ£ceÜHÝÅÞÚÙÂß×à á Ýâ ÑÉã ä�å æç à è Ý~éÂêÅê ß . Then we can construct an iteration

method as described in [5], pp.744. It is well known that this method converges if
� B6ë , D 2 �íì � . We get

B ë , D 2�* � � �-�� }.o¹,É����2 [ \ D ç ß , �HÏ Ç �ÐKÑ Ò Ó � Ô3 Ï Õk��Ö 2C,E}E{A?@� v , �HÏ Ç �ÐVÑ Ò Ó � Ô3 Ï Õk��Ö 212 3
�

In our situations we can neglect Ô3 Ï Õk��Ö and from practical experiences in gas networks we can assume[ \^î ��������� and
D î ����� . Under these conditions we can calculate

� B ë , D 2 ��ï� �� }~o¹,É����2 D ,E}E{A?@� v , �HÏ Ç �ÐVÑ1Ò ÓK212 3 �-ì �
since the logarithm functions are strict monotone.

2.8 The Behaviour of Compressors

2.8.1 The ideal Compressor

In this section we want to discuss the technical facts of an ideal compressor because we want to minimise
the fuel gas consumption of the compressor.
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Starting from the adiabatic height 	�hkj of a compressor which can be interpreted as the height on which
the gas had to be pumped up for the same power

	ih jª* yy ���
S _G` [ Q _g`?Â" ,1, (Kced�f(V_G` 2�ðHñ

Ý
ð ����2

the formula of the fuel consumption ) is given by

)$* �«a�������¨	�d
with

� fml * ?������� 	�h j = v 'z/
� * � fmln hkj �

So we can write the formula for the fuel gas consumption ) in the following form:

)|*óò¨,1, ( ced�f(V_G` 2 ðHñ
Ý
ð ����2e' (2.8)

with ò�* =@v a� � � � ����ô n hkj�	�d
yy ���

S _G` [ Q _G`" � (2.9)

We remark that the function which describes the fuel gas consumption of a compressor is neither concave
nor convex which is interesting to know for building up our model because the sum of the fuel gas
consumption of the compressors is the objective function of our model. In order to see this we formulate
the following little

Lemma 3 The function )Ø*+)¨,.�0/1õK/ S 2�*+öÆ,1, � õ 2 h²�X÷ 2 S
with � ì ; ì ��/ ö¹/1�6/1õø/ S ©¶�-/ ÷9ùØú is neither concave nor convex.

Proof. Define two functions )-�Wû ú å�ü ú with

) � *+) � ,.�p2�*óòÃ,Lö � � h²�X÷ 2
with ò0/ ö��M©�� and )��^û ú å�ü ú with

)��Y*+)���,.�C2�*�òÃ,Lö0�Ú� Ê h �X÷ 2
with ò0/ ö��M©�� . We get: ) ë ë � ,.�C2�*�òCö�� ; , ; ����2×� h Ê � ì �
and ) ë ë � ,.�C2�*�òCö0� ; , ; � ��2×� Ê h Ê � ©È� �
So )@� is concave and )�� is convex. Since )-� and )�� can be understood obviously as restrictions of the
function ) cannot be concave or convex. ·
Since the value of the adiabatic exponent y fulfils � ìþý Ê �ý ì � the lemma above shows us that the
fuel gas consumption is neither a convex nor concave function. We have to mention this because the
piecewise linearisation of such functions as constraints of a Mixed Integer Program has to be done very
carefully [20]. We also mention that function ) does not have relative minima or maxima.
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As a short addendum we also for compressors examine serial and parallel connections. Since in the
formula of ò in (2.9) only n hkj and a are constants depending on the compressor we define for a com-
pressor ÿ�* ������ and now can write formula (2.8) as

)Ø*+ÿ��òÃ,1, (Kced�f(V_G` 2�ðÚñ
Ý
ð ����2e' (2.10)

with �òØ* = v
� � � � ��� ô 	 d

yy �È�
S _G` [ Q _G`" � (2.11)

Then we conclude the following

Lemma 4 Consider a parallel connection of o � compressors with values ÿ�_ and gas flow '�_ for ¬i*��/ ����� /1o � � For every compressor we calculate the fuel gas consumption by formula (2.10). Then we
theoretically can substitute these compressors by a single compressor with value

ÿ�* ¾ ` À_m°0� ÿ _ ' _¾ ` À_m°0� ' _
and the fuel gas consumption of this compressor is the same as the sum of the fuel gas consumption of
all compressors of the parallel connection.

Proof. The proof is done by an easy calculation. ·
It is easy to see that in the case of a compressor no easy formula for a (theoretical) simplification of
a serial connection can be given.

2.8.2 The general Compressor

In contrast to the ideal compressor we have to consider that the adiabatic efficiency n hkj and the specific
heat rate a of the compressor is not constant. It holds n h j�* n h j@, � /7	ihkjA2 and a * a�,.o¨/7�8/ Q ¤ 2 . HereQ ¤ is the temperature of air that is sucked in by the compressor. Also the maximal ( ��� h ¦ ) and minimal
( � �¹_G` ) power of the compressor are not constant values. The maximal power is a function depending on
the revolution number o * o¹, � /7	�h jF/ Q ¤ 2 of the compressor. Also the increase of the gas temperature
in the compressor has to be considered in a real compressor.
We remark that the technical value

�
is defined as� * �� � � (

v Q _G` S _G`(V_G` Q v ' �
So the situation of a real compressor is much more complicated as in the case of an ideal compressor.

Usually the data of a real compressor cannot be calculated via explicit formulas. The data are stored in
so called characteristic diagrams which are used from the gas transmission companies [39].

The first characteristic diagram usually has the following shape:

o � o � ����� ����� o ºn � 	ihkj �1±&� � �1±&� 	ihkj �1± � � �1± � �����þ����� 	ih j �1± º � �1± ºn � 	ihkj �H±&� � �H±&� 	ihkj �H± � � �H± � �����þ����� 	ih j �H± º � �H± º
...

...
...

...
...

...
...

...
...n _ 	ihkj _.±&� � _.±&� 	ihkj _.± � � _.± � �����þ����� 	ihkj _~± º � _.± º

Here for every pair of a efficiency and a revolution value of the compressor values for the adiabatic head
and the gas flow are given. Via the formula for the adiabatic head 	|hkj the connection to the pressure
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Figure 2.1: Plot of the function ) in Lemma 3 with fixed variable S
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values (K_G` and (øced�f is given.
The second characteristic diagram usually has the following shape:

� fml�±&� � fml�± � ����� � fml�± º)@� )�� ����� ) ºoÃ� oÄ� ����� o ºQ � �i�1±&� ���1± � ����� ���1± ºQ � � �H±&� ���H± � ����� ���H± º
...

...
...

...
...Q _ � _~±&� � _.± � ����� � _.± º

This diagram is to be understood in the following way: For discrete shaft power values (we mean � fml )
of the compressor the values of fuel gas consumption and the revolution number of the compressor is
given (above part of the diagram). Now for every pair of a shaft power value and a certain temperature
of the sucked in air the maximal power of the compressor is given in the second part of the table.
In this thesis we work with an ideal compressor. For a general compressor usually only the first char-
acteristic diagram is used for calculations. For the implementation of the model and the mathematical
analysis it is enough to discuss the ideal compressor.

A good collection of basic facts of gas dynamics can be found in [52].



Chapter 3

Mathematical Background

3.1 Introduction

We want to formulate the problem of the optimisation of gas networks with methods of discrete optimi-
sation especially in form of a Mixed Integer Linear Problem (MILP). Because of this we now want to
give a short summary of the basic mathematical concepts which we have used in the present work. It
is our aim to be so detailed that it is possible to understand our researches even for these readers who
did not work before with Mixed Integer Programs. A deeper study of the topics can be achieved from
pertinent text books on Optimisation, i.e., [7], [8], [22], [33], [34], [37], [49], [32], [47] and so on. We
follow [31] for our short recapitulation of the basic facts.

3.2 Problems in Discrete Optimisation

At first we want to define some classes of optimisation problems. We will see that a Mixed Integer
Linear Program is a special subclass of the General Optimisation Problem which we define now.

Definition 5 General Optimisation Problem.
Let � be a set and , Q /
	ª2 an ordered set, i.e., for all %F/1 ù Q holds % ì  , %�© or %|*  . Further
let )ûM� ü Q

be a map. We are searching for an element ��� ù � with )¨,.���2 î )¨,.�C2 » � ù �
(Maximisation Problem) or for an element � � ù � with )¨,.� � 2�	¶)¨,.�p2 » � ù � (Minimisation Problem).
Shortly we write Í����¦���� )¨,.�C2 resp. ÍiÌ��¦���� )¨,.�p2 (3.1)

For � *�� the values above are not defined.

Typical examples for
Q

are ú , � or � .

We give some examples for � :

(a) Let ?�_-/i¬ ù�� ��/ �z/ ����� /1" � and
B º / ¼ ù!� ��/ �z/ ����� /E("� be continuous (differentiable) functions

from ú ` in ú . Then we call (3.1) with

� * # � ù|ú `%$$ ?�_7,.�C2�	��-/¹¬:*���/ ����� /1"'& B º ,.�p2�*��-/0¼½*���/ ����� /E()(
a Nonlinear Optimisation problem.

(b) Let ) be convex, i.e.,D )¨,.�p2 � ,É�Y� D 2É)¨,.õí2 î )¨, D � � ,É�M� D 2×õí2 » �0/1õ ù ��/¹��	 D 	 � �
23
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Is furthermore � also convex, i.e.,D � � ,É�Y� D 2×õ ù � » �0/1õ ù �Ã/���	 D 	 �
(e.g., � can be given by the following set �+* � � � ? _ ,.�C2*	��+� , where ? _ are convex functions),
we call (3.1) a convex Optimisation problem.

Now we come to the problem class we need to formulate our gas network optimisation problem. We
define the

Definition 6 Mixed Integer Linear problem.
Let s ùØú ` / P ù$ú �-,@` /¹a ùØú � /C( ù � �-/ ����� /1o.� .
Then we call ÍiÌ�� s0/ �P �1	¶a� ù � �32 ú ` Ê � (3.1)

Mixed Integer Linear Program (MILP, MIP). In the case ($*�� the MIP is called linear
program (LP) and in the case ($*�o we call it integer program (IP).

3.3 General Notation

In the next sections we are working with the following well known basic sets of numbers: 4 *� ��/ �z/ ����� �F/5�]/6�]/ ú , that means the sets of natural, integer, rational and real numbers.
Let us give some notation on vectors and matrices:
Let ú ` be the set of n-tuples (vectors) with components from ú .
We understand vectors always in the form of a column

� * 789 �Ä�
...�V`
:<;= ù ú ` �

For a row vector we write � / . A vector � ù|ú ` is greater than or equal 0 ( � î � ) iff all of its components
are greater or equal � . A vector � ùØú ` is greater than 0 ( � ©¶� ) iff all of its components are greater � .
We define the scalar product as � / õ�* `¾_m°0� � _ õ _ and the euclidic norm by

��� � ��� * � � / � .

Furthermore we introduce the following notations for the canonical basis vectors and the vector > I (with
value � for every component (we will specialise these definitions later on)):

� º * j-th canonical basis vector,> I * `¯
º °0� � º * ,É��/���/ ����� /���2 / /

and for matrices we denote:ú �?,@` û set of all " 2 o matrices with entries from ú .

For
P ùØú �?,@` we also writeP * , ; _ º 2 i=1,. . . ,m

j=1,. . . ,n
±

PA@ º * 789 ; � º
...; � º
:<;= û j-th column of

P
,

P _ @ * , ; _.��/ ����� / ; _g`í2Xû i-th row of
P

.
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For two sets BDC � ��/ ����� /1" �
* Z /ÄJ'C � ��/ ����� /1o.�^*�� we denote by

PFE0G * , ; _ º 2 _ � Eº � G
the sub-matrix of

P ùØú �H,@` , which consists of the rows of set B and the columns of set J . The matricesPA@ G
and

PFEI@
are given by

PA@ G * P � G resp.
PFEI@ * PFEKJ

. For a vector a ù ú ` we define analogouslyak_6*+ak_ @ and a E *�a E<@ .
Combinations of Vectors, Hulls and Independency

A vector � ùØú ` is called linear combination of the vectors � � /1� � / ����� /1� Ô ùØú ` , if there exists
a vector

D ù|ú Ô with

� * Ô¯
_m°0�

D _N�V_ �
If additionally holds D î � and

D / > I *L> , we call � convex combination.

The combination is called pure if
DNM*�� and

DOM*� º » ¼ ùP� ��/ ����� / >�� . For a subset � M*�3C ú ` we
call

lin(S)
conv(S)

( the
#

linear
convex

( hull of � ,

i.e., the set of all vectors, which can be written as linear (convex) combination of a finite number of
vectors of � . We define

lin ,Q�F2 * � �+�F/RIS �6T6,Q�F29*U� �
A subset � ù|ú ` is called#

linear space (vector space)
convex set

( , if � * #
lin(S)
conv(S)

( �
A subset � M* ��C ú ` is called linear independent if no element from � can be written as a
pure linear combination of elements from � . The empty set is not linear independent. Every set which
is not linear dependent is called linear independent. For �%C ú ` we call the cardinality of
the biggest linear independent subset of � the rang of � . We denote the rang by

b�; oC?C,¿��2 . The rang of
a matrix

P
is defined as the rang of the set of column vectors, which is equal the rang of the set of row

vectors which is well known from linear algebra. For the rang of matrix
P

we shortly write
b ?ø, P 2 . ForP ù¥ú �?,@` holds

b ?ø, P 2*	�ÍiÌ�� � " /1o.� . If even holds
b ?C, P 2
* ÍiÌV� � " /1o.� we say that

P
has full

rang.

3.4 Graph Notations

As usual we define a graph as a pair
r * ,XW�/ZY�2 . W is a nonempty finite set and Y a set of pairs of W ,

i.e., it holds Y[C � ,]\0/ 5 2 � \6/ 5 ù W�/�\ M* 5 � � We call the elements of W vertices and the elements of Y
edges of

r
.

We assume
r

to be a directed graph, i.e., we did not define Y^C ��� \6/ 5 � � \0/ 5 ù W¨/�\ M* 5 � � The reason
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for this is that in our model the gas flow is directed in every segment.
For all 5 ù W we denote with _ Ê , 5 2 the set of all outgoing edges in 5 . Formally we write_ Ê , 5 2�* � � ù Y ��` \ ù W�ûz�ª*�, 5 /�\C2K� �
Analogously we denote for all 5 ù W with _ å , 5 2 the set of all ingoing edges in 5 . Formally we write_ å , 5 2�* � � ù Y ��` \ ù W�ûz�ª*�,]\0/ 5 2K� �
3.5 Basics of the Theory of Polyhedra

Now we define some basic topics which are necessary in order to understand the techniques to tighten
the formulation of a Mixed-Integer Linear Problem. Very important is to define a polyhedron and a
polytop. Closed to these concepts are the definition of hyper- and half-spaces since every polyhedron
can be understood as intersection of finite many half-spaces. Also hyper- and half-spaces are special
polyhedra.

Definition 7 Hyperspace, Halfspace, Polyhedron, Polytop.

(a) A subset abC ú ` is called hyper-space if there exists a vector
; ùØú `�c � �+� and a numberö ù|ú with a�* � � ùØú ` � ; / �+* ö�� �

(b) A subset 	 C ú ` is called half-space if there exists a vector
; ù|ú `dc � �+� and a numberö ù|ú with 	 * � � ù$ú ` � ; / �e	 öf� �

(c) A subset
� C ú ` is called polyhedron if there exists a matrix

P ùØú �-,@` and a vector a ùØú �
with � * � � ùØú ` � P �!	 a�� �
We also write

� * � , P /Ka�2 .
(d) A polyhedron is called polytop if it is bounded, i.e., there exists a number g ù$ú /hg¸©¶� with� C � � ùØú ` �w��� � ��� 	igj� �

We have various possibilities in order to describe a polyhedron.

3.6 Faces of Polyhedra

We shortly give some basic facts about the concept of faces and facets of a polyhedron which are impor-
tant for the understanding of branch-and-cut algorithms. Also the definition of a vertex will be needed
in the special separation algorithm we have developed for our problem. At first we define the concept of
a valid inequality.

Definition 8 Let �kC ú ` / ; ù$ú ` /Kö ùØú . The inequality
; / �l	óö is called valid for � if

�%C � � ù|ú ` � ; / �l	¶ö)� �
If we consider the hyper-space that is introduced by a valid inequality (which can be understood as a
half-space of course) and take the intersection with a polyhedron we get a face of the polyhedron.
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Definition 9 Let
� C ú ` be a polyhedron. A set mnC �

is called face of
�

if there exists a valid
inequality

� / �l	O_ with m * �po � � ùØú ` � � / � *�_q� �
The face is called proper if m M* �

holds. m is called nontrivial if � M*rm M* �
holds. If

� / �l	O_
is valid for

�
we call

�Oo � � ùØú ` � � / �Ø*r_�� the face induced by
� / � 	P_ .

For the optimal use of branch-and-cut algorithms it will be very important to know something about
high dimensional faces. Therefore we come to the next

Definition 10 Let
� * � , P / a�2 be a polyhedron. We define:

A nontrivial face m of
� , P / aÚ2 is called facet of

� , P / a�2 if m is not a subset of any proper face of� , P / a�2 .
We will see in the next sections that in real problems it is often quite difficult to find exact formulas for
the description of faces and facets. But we will show that it is possible to find valid inequalities from the
knowledge of the vertices of a polyhedron. With special lifting techniques it is possible to get faces and
even facets from these valid inequalities. We will not describe the procedure of lifting because it is very
special. More information can be found in [32], [27].

Definition 11 Let
� C ú ` be a polyhedron and m a face of

�
. If there exists � ù�ú ` with m * � ���

we call m vertex.

We see that the vertices are of course faces of dimension zero. Faces of dimension one we call edges of
the polyhedron.
Now we shortly describe the principle of SOS conditions and cutting plane algorithms.

3.7 Modelling piecewise linear Functions and SOS Conditions

In this section we want to give a short outline how it is possible to approximate a nonlinear function by
piecewise linear functions in a mixed integer model. Let )�û ú ü ú be a nonlinear real function.
In order to approximate this function by a piecewise linear function on the interval ! ; / a #¿/ ; / a ùØú / ; ì a
we define a set s of variables for the grid points and a set t of variables that define sectors of the � -axis
(see Figure 3.1). We define the set s as follows:s�* � D � / D � / ����� / D ` � �
The set t is declared by t�* � õ � /1õ � / ����� /1õ ` Ê � � �
Set

õ º * #
1 , if ) is approximated by conv. combin. of ) º and ) º å �
0 else.

Here the values ) _ /1¬ ù'� ��/ �z/ ����� /1o.� are the exact function values at the grid points.
Further we define for ¼ ù � ��/ �z/ ����� /1o|�¶��� :

�X,�¼z2�* � D º / D º å � � �
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The traditional way of linearising such functions is as follows (see also Figure 3.1):D � 	 õ �
D _ 	 õ _ Ê � � õ _ » ¬Ã*+�z/ ����� /1o|���
D ` 	 õ ` Ê �

¾ _ �vu D _ * �
¾ º ��w õ º * �

) * ¾ _ �vu ) _ D _
õ º ù � �-/���� » ¼ ù t
D _ î � » ¬ ù s �

This approximation idea is the traditional way known from pertinent text books, see e.g. [20], [32] or
[47]. The latter one extends this formulation on the two dimensional case.
One of our aims was to develop a model which can be generalized to functions )�û ú ` ü ú . We will see
in the next chapter that the generalisation of this formulation is more complex than the generalisation of
an equivalent formulation we now present.

Alternatively we can linearise our function piecewise via the following conditions:

¾ _ ��u D _ * �
¾ º ��w õ º * �

õ º 	 ¾ Ô � J Ù º ê D Ô » ¼ ù t
) * ¾ _ �vu ) _ D _
õ º ù � �-/���� » ¼ ù t
D _ î � » ¬ ù s �

We see that the function ) is approximated by a convex combination of exact function values at the grid
points. Via the binary variables we have ensured that only

D � variables from exactly one segment do
not vanish, i.e., we do not approximate ) by function values which belong to grid points of different
segments. In Chapter 5 we give an example why we are working with this formulation in order to model
our MIP.

Let us describe another way to model this situation. We want to get rid of the binary variables (compare
e.g. [17],[18],[1], [4]).
So we declare ¯

_ ��u D _ *��
as SOS Type � equation, that is

- at most two
D � variables are positive,
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Figure 3.1: Approximation of a linear function

- if two
D � variables are positive these variables must appear consecutively.

Although this is at first glance only a reformulation we have the advantage that binary variables are no
longer necessary. The additional requirements can be incorporated easily within branch-and-bound (see
Section 3.8.2). We will generalise this modeling for � - and � -dimensional functions and to study the
polyhedral consequences of the model according to our special situation.

3.8 Relaxations

In this section we give a short overview about the most common algorithms for the solution of mixed
integer programs which we use for the solution of the Transient Technical Optimisation, like cutting
plane or branch-and-bound algorithms. The formal description of the algorithms is taken from [13].

3.8.1 Cutting Planes

Remember the general Mixed Integer Program

Í�Ì�� s / �P �1	¶a� ù � � 2 ú ` Ê � � (3.2)

Now we forget the integrality conditions of the variables � � / ����� /1� � and we get the so-called linear
programming relaxation: S

LP *�ÍiÌ�� s / �
s.t.

P �l	óa� ùØú ` � (3.3)

The linear programming relaxation is usually solved by the well known simplex algorithm.
Let

�
MIP ûT* RIS �6T � � ù � � 2 ú ` Ê � û P �l	¶ax� , and

�
LP ûT* RIS �yT � � ùØú ` û P �l	óa
� .

Let � � *�,.� � � / ����� /1� �` 2 be an optimal solution of the linear programming relaxation. If � � ù � � 2 ú ` Ê �
holds we obviously have solved the mixed integer problem. If not, than it is well known (see [49],
[32]) that there exists a valid inequality

; / �O	 ÷ for the polyhedron
�

MIP that cuts off (goemetrically
speaking) � � . Because of this

; / �1	 ÷ is called a cutting plane. In a cutting plane algorithm
; / �l	 ÷

is added to (3.3) and so we get ÍiÌV� s / �
s.t.

P � 	¶a; / �1	 ÷� ù$ú ` /
(3.4)
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We continue this procedure until we get a solution of the linear programming relaxation that is in � � 2ú ` Ê � .
The complete algorithm now becomes (see [13]):

Algorithm 12 (Cutting Plane)

1. Let >�ûT*�� and
qÂ� v

the linear programming relaxation of the mixed integer program.

2. Solve
q¹� Ô . Let z� Ô be an optimal solution.

3. If z� Ô is in � � 2 ú ` Ê � , stop; z� Ô is an optimal solution of the mixed integer program.

4. Otherwise, find a linear inequality, that is satisfied by all feasible mixed integer points, but not byz� Ô .
5. Add this inequality to

qÂ� Ô to obtain
q¹� Ô å � .

6. Increase > by one and go to Step 2.

From the previous descriptions it is clear how
q¹� Ô å � is calculated from

qÂ� Ô .
In Chapter 5 we develop a special class of cutting planes which we have implemented in a cutting plane
algorithm of the form of Algorithm 12.
A description of a huge class of well known cutting planes for several general or special problems are
to be found in [27], [28], [13]. These cutting planes are already implemented in common MIP-solvers.
In our test calculations we will see that our specially developed cutting planes usually improve the
calculation time of the models more than these general cuts can do.

3.8.2 Branch-and-Bound and Branch-and-Cut

Branch-and-bound algorithms are well known in discrete mathematics. In this section we give a short
outline how they are usually used in mixed integer programming.
With { * � � ù � � 2 ú ` Ê � û P �l	¶ax� we can write the general mixed integer problem as

S
MIP * ÍiÌV� s / �

s.t. � ù {8/
We now have the possibility (in some cases even the use of a cutting plane algorithm will not be enough
for a fast solution of a mixed integer problem) to divide { into a finite number of disjoint subsets{$��/ ����� /�{ Ô}| { with ~ Ôº °0� { º *N{ . Afterwards we solve the subproblems

ÍiÌ�� s / �
s.t. � ù { º

for all ¼½*���/ ����� / > .

This procedure can be done iteratively and so we get the well known branch-and-bound tree. Sum-
marising this basic idea we get the following algorithm (see again [13]).

Algorithm 13 (Branch-and-Bound)

1. Let
q

be the list of unsolved problems. Initialize
q

with the MILP which has to be solved. Set� ûT* �A� as upper bound.

2. Choose an unsolved problem { º from the list
q

and delete it from
q

.

3. Compute the lower bound aI�� by solving the linear relaxation. Let z���� be the optimal solution,
so a ��� ûT* s / z� �� .
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4. If z����� ù � � 2 ú ` Ê � , problem { º is solved and we found a feasible solution of { º ; if
� © a0��� ,

set
� ûT*+a0��� and delete all subproblems {�_ with a�� ¡ î � from the list.

5. If z� �� 4ù � � 2 ú ` Ê � , split problem { º into subproblems and add them to the list
q

.

6. Go to Step 2, until the list is empty.

Cutting plane algorithms and branch-and-bound algorithms are usually combined in order to fasten the
solution time of mixed integer programs which we call a branch-and-cut algorithm.

Algorithm 14 (Branch-and-Cut)

1. Let
q

be the list of unsolved problems. Initialise
q

with the mixed integer program which has to
be solved. Set

� ûT* �H� as upper bound.

2. Choose an unsolved problem { º from the list
q

and delete it from
q

.

3. Compute the lower bound aI�� by solving the linear relaxation. Let z���� be the optimal solution,
so a0���
ûT* s / z���� .

4. If z� ��� ù � � 2 ú ` Ê � , problem { º is solved and we found a feasible solution of { º ; if
� © a ��� ,

set
� ûT*+a0��� and delete all subproblems {�_ with a�� ¡ î � from the list.

5. If z� �� 4ù � � 2 ú ` Ê � , look for cutting planes and add them to the linear relaxation.

6. Go to Step 3, until no more violated inequalities can be found or violated inequalities have too
little impact in improving the lower bound.

7. Split problem { º into subproblems and add them to the list
q

.

8. Go to Step 2, until the list is empty.

There are a lot of strategies for the selection of the nodes like Best First Search, Depth First Search, Best
Projection and for the selection of the variables Most Infeasibility, Pseudo-costs and Strong Branching
strategies, see [13].
For the solution of the Transient Technical Optimisation we have developed a branch-and-cut algorithm
which we will describe in Chapter 5.
Nearer informations about solution strategies of mixed integer programs based on cutting planes, branch-
and-bound or branch-and-cut can be found in the cited text books, i.e., [7], [8], [22], [33], [34], [37],
[49], [32], [47].

Let us come now to the formulation of a Mixed Integer Program for the stationary case of the Tran-
sient Technical Optimisation Problem.



Chapter 4

The Model

4.1 Introduction

In the following chapter we develop a Mixed Integer Model for the optimisation of gas networks. In
Chapter 2 we have described the physical basics of the problem. Here we formulate a system of linear
(in-)equalities in order to define the behaviour of valves, control valves, compressors, pipes and the other
components of a gas network that we want to integrate in our model. So we have to emphasise on the
combinatorial constraints (e.g. we get binary variables that indicate whether a compressor or a valve is
switched on or off). The second important problem are the nonlinear components of the model. We have
approached it by approximating the nonlinearities (we have already mentioned that the most important
nonlinear functions in this model describe the fuel gas consumption of the compressors and the pressure
loss in the pipes) by piece-wise linear functions. Since we want to solve this mixed integer program via
a branch-and-cut algorithm we give a mathematical analysis of this model in Chapter 5 which belongs
to the shape of the nonlinearities.
We will restrict us to the stationary case of the problem, that means that the gas flow in the segments
and the pressure in the nodes is independent from time.
In this chapter we proceed as follows: First we show how to model the problem in a graph, then we
introduce the most important variables and after that we formulate the conditions that are necessary in
order to describe the properties of each type of segment or of each type of node. After that we will
conclude with a summarising description of the whole model. Finally our preliminary computational
results show the calculations of the model for a simple gas network when solving it with a general mixed
integer programming solver. In Figure 4.1 we see a simple example of a gas network with a compressor,
a valve and a control valve.

4.2 Basic Preliminaries of the Model

The problem of the Transient Technical Optimisation is evidently modelled in a directed graph a *,XW�/ZY�2 . The set Y of segments here is partitioned in the set of compressors, the set of valves, the set of
control valves, the set of pipes and the set of connections. Connections can be understood as a special
kind of pipes which are very short so that they do not have any pressure loss. The set W of nodes consists
of the set of intersection points of the segments, the set of sources (the gas delivering points) and the set
of sinks (which are the gas demanding points of the gas network). We assume the graph to be directed
since the gas flow in each segment in our model is assumed to be directed (this means we do not allow
back-flow in the pipes).
We now point out the most important kinds of variables which are necessary to understand the succeed-
ing descriptions of the several constraints of the model. At first we introduce flow variables ' \ / � ù Y
and ' t / 5 ù W . These variables describe the gas volume flow in each segment, i.e., the gas volume flow
in the valves, control valves, pipes, compressors and connections or the gas flow in the nodes. Second

32
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Figure 4.1: Schematic of a pipe network section with switching components: compressor CS, valve V
and control valve RG connected by pipes, see [3]
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we consider pressure variables ( t / 5 ù W . The pressure variables describe the pressure of the gas in each
node, i.e., the pressure in the sources, the sinks and the pressure in the intersection points. With (¨_g` and( ced�f we mark the pressure in the node of the beginning or at the end point of a certain segment. These
variables are nonnegative continuous variables. Additionally to the flow and the pressure variables there
are variables ) and � for every compressor which describe the fuel gas consumption of the compressor
and its power. These variables are very important since the compressors are driven with a fraction of the
gas directed through the gas network. Our aim is to minimise this fuel gas consumption. Nowadays the
fuel gas consumption of the compressors is on average about �F� of the gas flow through the compres-
sors.
The variable � is also important since the power is connected with the fuel gas consumption and the
power of the compressor has to be within certain bounds. After these continuous variables we introduce
some binary variables % ù � �-/���� which are switching variables of a valve, control valve or a compressor.
It is clear that we need such kinds of variables because the valves, control valves and compressors can
be switched on or off.
We remark that generally all variables and constants in this model are nonnegative and if there is a vari-
able which values can be negative we will regard on this fact!
In the next section of this chapter we will describe all important constraints that are necessary to formu-
late the stationary case of the Transient Technical Optimisation Problem.

4.3 Description of the individual Constraints of the Model

For the description of the individual constraints of the model we proceed as follows:
We built up the model step by step. For each node and for each type of segment the necessary constraints
are formulated separately. The notation in this section will be described as easily as it is possible, i.e.,
we will describe the constraint for a single segment or a single node resp. to the type of the segment or
node. After we have described all principle types of constraints we will finally summarise the complete
model. Because of this we will describe the needed formalism in the whole complexity for the entire
model in Section

�
.

So let us come now to a first description of the needed constraints. In order to emphasise the constraints
they are numbered consecutively.

4.3.1 Modelling the Constraints in the Nodes

For all nodes, i.e., for all intersection nodes, all sources and all sinks the first law of Kirchhoff must be
observed:

The first law of Kirchhoff deals with the balance of gas-flows in each node ¬ ù W . The sum of the
ingoing gas flows must be equal to the sum of the outgoing gas flows.
We can formalise the first law of Kirchhoff by introducing the gas flow variables ' \ for a segment:
Let ¬ ù W be the considered node. Remember that _ å ,.¬e2 means the set of ingoing segments of node ¬
and _ Ê ,.¬e2 means the set of outgoing segments of node ¬ . Taking this formalism into account we get the
following formulation of the first law of Kirchhoff:¯\ ����� Ùg_ ê ' \ * ¯\ ��� ñ ÙT_ ê ' \ � (4.1)

It is important to notice that in the node which corresponds to the endpoint of a compressor the fuel gas
consumption is also observed in the Kirchhoff law (that means that the fuel gas consumption is added to
the gas flow in the node at the endpoint of the compressor).
Let us describe this formula with a simple example:
In Figure 4.2 there are three ingoing segments (which may be pipes, valves, control valves, connec-
tions and compressors) and two outgoing segments. Considering the first law of Kirchhoff we get the
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Figure 4.2: Schematic of first law of Kirchhoff

Figure 4.3: Symbol of a valve

following condition: '�� � '�� � ' 3 *+'�� � ' Ç �
After this for all nodes ¬ ù W we get lower and upper bounds for the pressure (( �¹_G` /E( � h ¦ ) and lower
and upper bounds for the gas flow ( ' �¹_G` /7' � h ¦ ) in the nodes. So if ' is the gas flow in the node and (
the pressure in the node we get the following lower and upper bounds:

' �¹_G` 	�'d	È' � h ¦ / (4.2)( �Â_g` 	�(l	 ( � h ¦ � (4.3)

4.3.2 Modelling of a Valve

In order to model the properties of a valve we have to recognise that a valve can be closed (switched off)
or open (switched on) so that we have to introduce a binary variable % t ù�� �-/���� which describes if the
valve 5 is open or closed. The symbol of valve in a technical description of a gas network is shown in
Figure 4.3.

Let us now come to the constraints:
If the valve is closed, i.e., if % t *+� , there must not be any gas flow through the valve and if the valve is
open, i.e., if % t *�� , the gas flow is bounded from above by a maximal flow rate ' � h ¦ and so we get:

'�	�' � h ¦ % t � (4.4)

We get a second analogously constraint. Is % t *¸� the gas flow also shall be bounded from below by a
minimum flow rate ' �¹_G` and so we get: ' î ' �¹_G` % t � (4.5)
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Figure 4.4: Valve as bypass valve of a compressor

These two constraints ensure that if % t *¸� there is now gas flow through the valve and if % t * � the
gas flow fulfils the condition:

' �Â_G` 	�'�	�' � h ¦ �
We usually set ' �¹_G` *�� . There are two additional constraints for a valve that only must hold in a special
case. Some valves are only needed in a direct connection with a compressor. Since a compressor also
can be switched on or off, what is the consequence if the compressor is switched off? In this case the
gas cannot flow through the compressor. So a valve is built parallel to the compressor which we call a
bypass valve. If the compressor is switched off the gas flows through the valve.
Figure 4.4 describes the situation.
A bypass valve of a compressor has to fulfil the following additional inequalities:

(V_G` �$(Kced�f î � ( � h ¦ ,L% t ����2 � (4.6)

This inequality, where (ø_G` is the pressure at the node of the beginning of the valve and the compressor,( ced�f is the pressure at the node of the end of the valve and the compressor and
� ( � h ¦ means a nonneg-

ative real number which describes the minimal pressure difference between these two nodes (it is clear
that

� ( � h ¦ is the difference between the maximal pressure value in the node at the end of the valve and
the minimal pressure value in the node at the beginning of the valve), describes the following:
If the valve is on, i.e., % t * � , which also means that the switching variable of the compressor is zero
(see the subsection of the compressor) than ( _g` ��( c×d�f î � holds. In the case % t * � we see that the
constraint has no consequence.
The following constraint (K_g`��$(Kced�f�	�� (4.7)

is regarded closely to the last constraint. Since the valve is a bypass valve to a compressor and a com-
pressor is built in order to increase the gas pressure again is obviously that (0_G` �$(øc×d�f)	¶� holds. In the
case % t *�� we conclude by the previous constraint the equality (Ä_G`½*X(Kced�f .
As it is easy to see there are also some other constraints in this case regarding the switching vari-
ables of the compressor and its bypass valve or the gas flow through a compressor. We will mention this
constraint when we are describing the constraints of a compressor.

Generally we introduce the following two inequalities for valves:Z % t �$(K_g` � (Kced�f�	 Z � (4.8)

Here we can take
Z *È( � h ¦ced�f �|( �¹_G`_G` where ( � h ¦ced�f is the maximal pressure in the node at the end of the

valve and ( �Â_G`_G` is the minimal pressure in the node at the beginning of the valve.Z % t � ( _g` �$( ced�f 	 Z � (4.9)
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Figure 4.5: Symbol of a control valve

In this inequality we can take
Z *9( � h ¦_G` ��( �¹_G`ced�f where ( � h ¦_G` is the maximal pressure in the node at the

beginning of the valve and ( �¹_G`ced�f is the minimal pressure in the node at the end of the valve.
We remark that these two inequalities are part of the MIR (Mixed-Integer-Rounding) cuts (see e.g. [32],
[28] or [27]) that can be calculated from constraints (4.8) and (4.9).

4.3.3 Modelling of a Control Valve

Control valves in principle have the same properties as valves. The basic difference between a valve and
a control valve is that a control valve can control down the pressure at the end of it. The control valve
can be switched on and switched off again. The switching variable here may be %�U ù1� �-/���� .
The usual symbol for a control valve is shown in Figure 4.5. So the properties of control valves can be
modelled as follows:
First we get two constraints which are obviously analogous to the situation for a valve:

'�	�' � h ¦ %�UA/ (4.10)

' î ' �¹_G` % U � (4.11)

We usually set ' �¹_G` * � . There are two more constraints that are needed in order to describe the
behaviour of the control valve:
We want to model that if the control valve is on , i.e, %�UY*�� , the control valve shall manage the pressure.
Because of this we introduce a positive constant

� ( � h ¦ which describes the maximal value how much
the control valve can regulate down the pressure (

� ( here means “difference of pressure” - since there
is no variable

�
in our model there is no danger of confusion). If the control valve is switched off,

i.e, %�Ui* � , we introduce a relatively big constant
Z

(a so called “big
Z

”) such that in this case the
pressure in the node at the beginning of the control valve ((6_g` ) and the pressure in the node at the end of
the control valve (( ced�f ) is arbitrary. We can formulate this situation with the following constraint:

(V_G` �Ø(Kced�f�	 � ( � h ¦ %�U � Z ,É�Y�9%�U�2 � (4.12)

Now we have to model an analogous situation because if the control valve is on it shall control down the
pressure at least by a minimal value

� ( �¹_G` . Again if the control valve is switched off (p_G` and (øc×d�f shall
be arbitrary and so we add the following constraint:

(V_G` �Ø(Kced�f î � ( �Â_G` %�UÆ� Z ,É�Y�9%�U�2 � (4.13)

If we consider constraints (4.12) and (4.13) together we see that the introduction of the term
Z ,É�Æ��%zU�2

is necessary. If we would not have done this we would get in the case %FU]*«� the condition (ø_g`�*¶(øc×d�f
which is of course not a correct formulation.
We remark that a control valve never is used as a bypass valve to a compressor.

4.3.4 Modelling the Properties of a Connection

We remember that a connection can be understood as a special pipe which is so short that there is no
pressure loss.
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So we only have to consider lower ( ' �Â_g` ) and upper ( ' � h ¦ ) bounds for the gas flow ' in a connection
and we get the constraint: ' �¹_G` 	�'�	�' � h ¦ � (4.14)

Since there is no pressure loss we get the constraint

(V_G`½*9(Kced�f � (4.15)

4.3.5 Modelling the Properties of a Pipe

At first there are lower ( ' �¹_G` ) and upper ( ' � h ¦ ) bounds for the gas flow ' in a pipe. So we get the
constraint: ' �¹_G` 	�'�	�' � h ¦ � (4.16)

The description of the pressure loss in the pipes is relatively complex. The reason for this is that the
pressure loss cannot be described by a simple linear function.

We shortly remember the already known structure of this nonlinear function.
Remember the momentum equation (we describe it here for cylindrical pipes) in the notation of Chapter
2:

� (� � � ? = �
B
� � �

D0� 5 � 5
� r = � �P � Z�  � � , =�5 � 2� � *�� �

We remember that this equation simplifies for the stationary case and for horizontal pipes to:

( �ced�f *9( �_G` � ff ' � ' � / (*)

where holds:

ff * ff ,T(øced�f1/�(V_G`-2 �
Since we cannot use (*) in a Mixed Integer Model we want to build a piecewise linear approximation of
(*).

Some calculations showed us that we can assume ff to be constant and so in principle we get the
situation that we want to approximate a nonlinear function (0c×d�fW* (Kced�f7,T(V_G`V/7'F2 where (øced�f is the pres-
sure at the end of the pipe, ( _G` is the pressure at the beginning of the pipe and ' is the gas flow through
the pipe. We define some grid points of the form ,T(Ä_G`K/7'F2 and associate nonnegative weightings

D
for

each grid point. The pressure loss in a pipe is visualised in Figure 4.6. In Figure 4.6 the grid of the
values ,T(K_G`V/7'F2 is equidistant.
So our approximation of the pressure loss in pipes is done in the following way:

Define a decomposition of the two-dimensional manifold (function) (0ced�f�* (Kced�f ,T(V_G`V/7'F2 . These tri-
angulations are done by a triangulation of the domain of (0c×d�f in triangles, that means:� Definition of a set s � of two-dimensional grid points.� Linearisation of the function ( ced�f for each element of the set t � of triangles between the grid

points.

Subindex ( here stands for a pipe. The principle situation is described in Figure 4.7.

Modelling this we get the following variables:
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Figure 4.6: Piecewise linearisation of the pressure loss in a pipe
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Figure 4.7: Typical triangulation of the pressure loss in a pipe

� There is a variable
D _ for each grid point ¬ ù s � (it describes the fraction of a special grid point

of the linearisation).� There is a variable õ º ù � �-/���� for each triangle ¼ ù t � .
Clearly we define for ¼ ù t � :

õ º * #
1 , if the value of ( ced�f is approximated by

D � variables of triangle ¼ ,
0 , else.

As an example consider Figure 4.8, which shows the variables introduced for the example in Figure 4.7.
With this preliminary descriptions we now can describe all the inequalities that define the piecewise

linear approximation of the nonlinear function of pressure loss in a pipe.
Let for ¬ ù s � (for the considered pipe) the numbers ( __g` and ' _ be the values of the pressure in the node
at the beginning of the pipe and the gas flow for the �-� dimensional grid points and ( _ ced�f be the value of
the nonlinear function for the grid point, i.e., it holds for ¬ ù s �

( _ ced�f *9(øc×d�f ,T( __G` /7' _ 2 �
For ¼ ù t � let �¥,�¼@2 be the set of

D � variables that belong to the considered triangle.
As an easy example we see that in Figure 4.8 holds �¥,É��2�* � ��/ �z/ �y�F/7�X,L�F2u* � ��/ �z/ �y�F/0�¥,L�F2�*� �z/ �z/k�6�F/ ����� .
So we get as a first constraint that the sum of all

D � variables of the pipe must be equal to one since we
want to linearise the nonlinear function piecewise by convex combinations of grid points and so we get¯

_ ��u À D _ *���/ D _ î � � (4.17)

The next constraint describes that exactly one triangle is chosen in order to linearise the nonlinear func-
tion. Remember that the variables õ _ /1¬ ù t � , are binary variables so that the following constraint implies
that exactly one triangle is chosen. ¯

º ��w À õ º *���/ õ º ù � �-/���� � (4.18)
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Figure 4.8:
D � and õø� variables in a triangulation of the pressure loss in a pipe

The constraints (4.17) and (4.18) are not enough because it is not yet ensured that the nonlinear function
is only approximated by grid points which belong to exactly one triangle. But if we remember that we
have defined the sets �¥,�¼@2 for all ¼ ù t � we can formulate this by introducing the following constraint:

õ º 	 ¯
Ô � J Ù º ê D Ô » ¼ ù t � � (4.19)

Additionally to the constraints (4.17), (4.18), (4.19) we now calculate convex combinations from the
grid points (that fulfil (4.17), (4.18), (4.19)). The convex combination according to the pressure in the
node at the beginning of the pipe is modelled by the constraint:

(V_G`½* ¯
_ �vu À ( __g` D _ � (4.20)

The convex combination according to the gas flow in the pipe analogously is modelled by:

'<* ¯
_ ��u À ' _ D _ � (4.21)

The last constraint which is necessary in order to complete the piecewise linearisation of the pressure
loss in the pipes describes the linearisation of the value of the function, i.e., the pressure at the end of
the pipe and so we get the constraint:

(Kced�f0* ¯
_ �vu À ( _ c×d�f D _ � (4.22)

With these conditions it is ensured that we get a piecewise linear approximation of the pressure loss
function in a pipe. It is easy to see that this is a generalisation of Section 3.7 in Chapter 3.
In our test computations we noticed that the addition of the constraint

(V_G` �$(øc×d�f î � � (4.23)

accelerates the calculations.
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Figure 4.9: Example for inequalities connecting
D

- and y-variables in case of rectangles

In Chapter 2 we stated that we take an alternative formulation for the piecewise approximation of non-
linear functions to the well known formulations in [20], [32]. We give two simple examples in order
to give reasons for this decision. In Figure 4.9 we show a small discretisation in rectangles (we give
this example since our first discretisations have been implemented in this way). The inequalities in our
formulation are:

õ � 	 D � � D � � D � � D Ç
õ � 	 D � � D 3 � D Ç � D ôõ 3 	 D � � D Ç � D Õ � D5�
õ � 	 D Ç � D ô � D � � D5�

The inequalities connecting
D

and y-variables for the formulation in [20],[32] are:D � 	 õ �D � 	 õ � � õ �D 3 	 õ �D � 	 õ � � õ 3D Ç 	 õ � � õ � � õ 3 � õ �D ô 	 õ � � õ �D Õ 	 õ 3D � 	 õ 3 � õ �D�� 	 õ �

Figure 4.10 shows the same discretisation as Figure 4.9 with triangles.
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Figure 4.10: Example for inequalities connecting
D

- and y-variables in case of triangles

The inequalities in our formulation are:

õ � 	 D � � D � � D �
õ � 	 D � � D � � D Ç
õ 3 	 D � � D 3 � D Çõ � 	 D 3 � D Ç � D ôõ Ç 	 D � � D Ç � D Õ
õ ô 	 D Ç � D Õ � D��
õ Õ 	 D Ç � D ô � D �
õ � 	 D ô � D � � D��

The inequalities connecting
D

and y-variables for the formulation in [20],[32] are:D � 	 õ �D � 	 õ � � õ � � õ 3D 3 	 õ 3 � õ �D � 	 õ � � õ ÇD Ç 	 õ � � õ 3 � õ � � õ Ç � õ ô � õ ÕD ô 	 õ � � õ Õ � õ �D Õ 	 õ Ç � õ ôD � 	 õ ô � õ Õ � õ �D � 	 õ �
These two examples easily can be generalized.
We note that the advantage of our formulation is that we little depend on the geometric structure of the
considered discretisation. So the implementation of the inequalities becomes easier for our formulation.
But we add that one disadvantage of our formulation is that in complexer discretisations we need more
inequalities than the standard formulation. Using SOS Type � formulation and the facts we develop in
Chapter 5 the two formulations become equivalent.

As a further side remark we add the following note: If we select a certain triangle with the values,T( Ô_G` /7' Ô 2 / for the first corner, ,T( Û_g` /7' Û 2 / for the second corner and ,T( �_G` /7' � 2 / for the third corner we get
for

D Ô / D Û / D � that define the convex-combination of a point ,T( _G` /7'�2 / which lies in the triangle:
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D Ô * ( Û_G` ']�$( �_g` '
��(V_G`@' Û � ( �_G` ' Û � (V_G`@' � �$( Û_g` ' �( Û_g` ' Ô �$( �_g` ' Ô �$( Ô_G` ' Û � ( �_G` ' Û � ( Ô_G` ' � �$( Û_G` ' �D Û * �¨( Ô_G` ' � ( �_G` ' � (V_G`z' Ô �$( �_G` ' Ô �$(V_G`@' � � ( Ô_G` ' �( Û_G` ' Ô �$( �_G` ' Ô ��( Ô_G` ' Û � ( �_G` ' Û � ( Ô_G` ' � �$( Û_G` ' �D � * �Ã( Ô_G` ' � ( Û_G` ' � ( _G` ' Ô ��( Û_g` ' Ô �$( _g` ' Û � ( Ô_G` ' Û�¨( Û_G` ' Ô � ( �_g` ' Ô � ( Ô_g` ' Û �$( �_G` ' Û �$( Ô_g` ' � � ( Û_G` ' �
With ö�*9( Û_G` ' Ô �$( �_G` ' Ô �Ø( Ô_G` ' Û � ( �_G` ' Û � ( Ô_G` ' � �$( Û_g` ' �
and

÷ Ô * ( Û_G` �$( �_G`ò Ô * ' � �u' Û_ Ô * ( �_G` ' Û �$( Û_G` ' �÷ Û * ( �_G` �$( Ô_G`ò Û * ' Ô �u' �_ Û * ( Ô_G` ' � �$( �_g` ' Ô÷ � * ( Ô_G` �$( Û_G`ò � * ' Û �u' Ô_ � * ( Û_G` ' Ô �Ø( Ô_G` ' Û

we can write
D Ô / D Û / D � as

D Ô * �ö , ÷ Ô ' � ò Ô (V_G` � _ Ô 2D Ô * �ö , ÷ Û ' � ò Û (V_G` � _ Û 2D Ô * �ö , ÷ � ' � ò � ( _G` � _ � 2
That means we approximate for constant ff (as a first approximation) the value (:ced�f¨*�� ,T(V_G`-2 � � ff ' �
by the value

( h �7� U1c ¦ced�f * D Ô+� ,T( Ô_G` 2 � � ff ,E' Ô 2 � � D Û � ,T( Û_G` 2 � � ff ,E' Û 2 � � D � � ,T( �_G` 2 � � ff ,E' � 2 � �
Since we know that the pressure loss function is concave (because the square root function is concave
and monotone and the function )�û ú � ü ú û�)¨,.�6/1õí2�*�� � � ; õ � with

; ©�� is concave) we get

( h �7� UÉc ¦ced�f 	�( ced�f �
That means we approximate the pressure loss with a little underevaluation. But in every iteration we
can calculate the absolute deviation of the pressure value and so we are always informed about the dif-
ferences between approximated and real value at every iteration. In our test calculations the differences
always have been very small.
The consequence for our model is that the fuel gas consumption of the compressors will be somewhat
higher than in reality which is all right for our optimisation problem (that means we will never calculate
a solution which is better than the real optimum - a somewhat pessimistic optimisation).
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Figure 4.11: A compressor with bypass valve

4.3.6 Modelling the Properties of a Compressor

The constraints in order to formulate the properties of a compressor are quite multifaceted but we will
see that all the constraints are principally known from the constraints we have formulated until now.

We can divide the constraints for modelling a compressor into two parts:
First we formulate some basic inequalities and after that we describe how to get a piecewise linearisation
of the nonlinear function which describes the gas flow consumption of a compressor. This piecewise
linearisation is quite analogous to the piecewise linearisation of the pressure loss in a pipe that we have
discussed in the previous subsection.

The typical situation is described in Figure 4.11:
A compressor (with switching variable % x ù�� �-/���� ) which has to increase the pressure of the gas if
necessary is constructed parallel to its bypass valve (with switching variable % t�� ùP� �-/���� ). So the gas
flows through the compressor if the gas pressure must be increased and the gas flows through the bypass
valve if the compressor is switched off.

Let us now come to the basic (in-)equalities for modelling a compressor:
Analogously to the case of a valve or a control valve we get two constraints that describe the gas flow
through the compressor: '�	�' � h ¦ % x / (4.24)

' î ' �Â_g` % x � (4.25)

The next constraint is combinatorial nature and we have mentioned it implicitly several times. Either the
compressor is open (binary switching variable % x ) or the bypass valve (binary switching variable % t � ) is
open and so we get: % x � % t � *�� � (4.26)

Since a compressor has to compensate the pressure loss in the pipes the gas pressure at the beginning
of the compressor ((ø_g` ) must be lower or equal to the gas pressure at the end of the compressor ((0ced�f )
which is modelled by the constraint (V_G` �$(øc×d�f)	�� � (4.27)

The fuel gas consumption ) which is zero if the compressor is switched off should not be bigger as a
maximal fuel gas consumption ) � h ¦ (a constant of our model for each compressor) if the compressor is
switched on and so we get the following constraint:

) 	¶) � h ¦ % x � (4.28)
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Additionally we get two more technical constraints regarding the power of a compressor:
If the compressor is closed, i.e., if % x * � , the power � of the compressor must be zero and if the
compressor is open, i.e., if %�x�* � , the power shall be bounded from above by a maximal power rate� � h ¦ and so we get: �n	�� � h ¦ % x � (4.29)

Analogously we get a second constraint. If % x * � the power also shall be bounded from below by a
minimum power rate � �Â_G` of the compressor and so we get:

� î � �¹_G` % x � (4.30)

In this model only the ideal compressor is embraced.
Now we consider the second important nonlinear function in our model that we have already described
in Chapter 2:
The fuel gas consumption of the ideal compressor is a nonlinear function of the form )|* )¨,T(0_G`í/E(øc×d�f1/7'�2
where ( _G` is the gas pressure in the node at the beginning of the compressor, ( ced�f is the gas pressure in
the node at the end of the compressor and ' the gas flow through the compressor.

We will shortly remember the form of this function: We start from the adiabatic height 	8h j of a com-
pressor

	ihkjª* yy �¶�
S _G` [ Q _G`?Æ" � , (Kced�f(V_G` 2 ðHñ

Ý
ð ����� �

Remember that y (isontropic exponent), ? (gravity constant),
[

(gas constant) and " (molecular mass
of the gas) are physical or gas constants. S _G` and

Q _G` are calculated values for the gas in the node at the
beginning of the compressor. The formula of the fuel consumption ) is then given by

)$* �«a�������¨	�d
with:

� fml * ?������� 	�h j =zv 'z/
� * � fmln hkj �

Remember that � fml means the theoretical power of the compressor, n hkj the adiabatic efficiency of the
compressor, = v the norm density of the gas, a the specific fuel gas consumption of the compressor and	�d the lower heat rate of the gas. These values are constants.

Let us formulate now the constraints for the compressor:
From our recapitulation it is clear that there is a direct connection between the power � and the gas flow
consumption ) of the compressor. So we introduce a constraint

)|*óòø� (4.31)

to our model. ò is a constant which can be calculated from the complete formula for the gas consumption) of the compressor and it holds

ò�* a�������¨	�d �
It is important to explain the sense of constraint (4.28) and (4.29). Because of constraint (4.31) one
could think that one of the constraints (4.28) or (4.29) could be omitted. Unfortunately it is better to
have both constraints. The power of the compressor is bounded from above by � � h ¦ but it could be that
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in this case the fuel gas consumption could increase too much so that it is better to have the possibility
to bound the gas flow consumption by )F� h ¦ .
Because of constraint (4.31) we now can decide if we want to linearise the power � or the flow con-
sumption ) . Since the gas flow consumption of the sum of all compressors is to be minimized at the end
our approach is to find a piecewise linear approximation of fuel consumption ) . The linear approxima-
tion of the fuel consumption ) is done analogously like the linear approximation of the pressure loss in
a pipe.

Since we get the situation that we want to approximate a nonlinear function )�* )¨,T( _G` /E( ced�f /7'F2 (where(Kced�f is the pressure in the node at the end of the compressor, (Ä_G` the pressure in the node at the beginning
of the compressor, ' is the gas flow through it and ) is the fuel gas consumption) we define some grid
points of the form ,T(ø_G`V/E(øc×d�f1/7'�2 and associate again nonnegative

D � variables as “weightings” for each
grid point.

So the approximation of the fuel gas consumption of compressors is done (compare the approxima-
tion of the pressure loss function) by the following steps: Define a triangulation (decomposition) of the
three-dimensional manifold (function) ) * )¨,T(p_G`í/E(øc×d�f1/7'�2 . These triangulations e.g. can be done by a
triangulation of the domain of ) in cubes or in tetrahedrons, that means:� Definition of a set sWx of three-dimensional grid points.� Linearisation of the function ) for each element of the set t x of cubes/tetrahedra between the grid

points.

Subindex s here stands for a compressor.

The advantage of tetrahedra is that an approximation of an inner point of a tetrahedron is a unique convex
combination of its corners.
Considering our last ventilations we get the following variables:� There is a variable

D _ for each grid point ¬ ù s x .� There is a variable õ º ù � �-/���� for each cube/tetrahedron ¼ ù t x .
We define (compare again the description of the linearisation of the pressure loss in a pipe) for ¼ ù t x :

õ º * #
1 , if the value of ) is approximated by

D � variables of cube/tetrahedron ¼
0 , else.

With these preliminary descriptions we now can describe all inequalities that are needed to linearise
the nonlinear function of the fuel gas consumption of a ideal compressor. The description is quite the
same as we have done it for the pressure loss in a pipe. We only additionally have to consider that a
compressor can be switched on or switched off such that the constraints have to be a little modified.

Let for ¬ ù s x for the considered compressor ( __G` , ( _ ced�f and ' _ be the values of the �-� dimensional
grid points and ) _ the value of the nonlinear function in the grid point, i.e., it holds for ¬ ù s � :

) _ *+)¨,T( __G` /E( _ c×d�f /7' _ 2 �
For ¼ ù t x let �¥,�¼@2 the set of

D � variables that belong to the considered cube or tetrahedron.
It is clear that if we built our decomposition of cubes it holds

� �X,�¼z2 � *�� for all ¼ ù t x and if we
triangulate the domain of ) into tetrahedrons we get

� �X,�¼z2 � * �
for all ¼ ù t0x .

So we get as a first constraint that the sum of all
D � variables of the compressor must be equal to one if

the compressor is switched on and zero if the compressor is switched off (since we want to linearise the
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nonlinear function piecewise by convex combinations of grid points only if the compressor is switched
on) and so we get ¯

_ ��u � D _ * % x / D _ î � � (4.32)

The next constraint describes that exactly one cube/tetrahedron is chosen in order to linearise the non-
linear function if the compressor is switched on. Remember that the variables õ _ /1¬ ù t x are binary
variables so that the constraint implies that exactly one cube/tetrahedron in this case is chosen.¯

º ��w � õ º *+% x / õ º ù � �-/���� � (4.33)

Like in the situation of the pressure loss function for pipes the constraints (4.32) and (4.33) are not
enough because it is not yet ensured that the nonlinear function is only approximated by grid points that
belong to exactly one cube/tetrahedron. But if we remember that we have defined the sets �X,�¼z2 for all¼ ù t x we can formulate this by introducing the following constraint (we remark that this inequality is
correct formulated as well as the compressor is switched on or off):

õ º 	 ¯
Ô � J Ù º ê D Ô » ¼ ù t x � (4.34)

Additionally to the constraints (4.32), (4.33), (4.34) we now calculate convex combinations from the grid
points (that fulfil (4.32), (4.33), (4.34)). The convex combination according to the pressure in the node
at the beginning of the compressor is modelled by the following constraint where ( l_g` is a nonnegative
auxiliary variable: ( _G` * ¯

_ �vu � ( __G` D _ � ( l_G` � (4.35)

We remark that if %Nx¹*�� , i.e., the compressor is switched on (4.35) must reduce to ( _G` * ¾ _ �vu � ( __g` D _ .
Is % x * � , i.e., the compressor is switched off (4.35) must reduce to (6_G`X*( l_G` . Because of this we
introduce the following constraint which implies ( l_g` *�� if the compressor is switched on:

( � h ¦_G` ,L%�x�� ��2 � ( l_G` 	¶� � (4.36)

( � h ¦_G` is a constant that ensures that (4.36) is of no relevance if %�x
* � . So all conditions are fulfilled.
We mention that the auxiliary variable is important because without this variable we would get (Ã_g`i*+�
if the compressor is switched off in (4.35) and this would be wrong of course. (0_G` in this case can be
calculated from the ingoing segments of the compressor.
The convex combination according to the gas pressure at the end of the compressor now clearly is
modelled by an analogous constraint. Here we need a nonnegative auxiliary variable ( lc×d�f in order to get
a correct formulation: (Kced�f6* ¯

_ ��u � ( _ ced�f D _ � ( lc×d�f � (4.37)

In order to be correct we additionally introduce the following constraint with a constant ( � h ¦ced�f :

( � h ¦ced�f ,L% x � ��2 � ( lced�f 	�� � (4.38)

Now ( lced�f is zero if the compressor is switched on and (6c×d�f�* ( lced�f if it is switched off and so the
formulation is correct.
The convex combination according to the gas flow in the compressor becomes:

'<* ¯
_ �vu � ' _ D _ � (4.39)

Here no auxiliary variable is necessary since the gas flow through the compressor is zero if the compres-
sor is switched off because of (4.24) and (4.25).
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The last constraint which is necessary in order to complete the piecewise linearisation of the gas flow
consumption in the compressor now describes the linearisation of the value of the function, i.e., the gas
flow consumption ) of the compressor and so we get the constraint:

)|* ¯
_ �vu � ) _ D _ � (4.40)

Here also no auxiliary variable is necessary since the fuel gas consumption through the compressor is
zero if the compressor is switched off because of (4.28).

4.4 Summary of the whole Model

In the previous section we have described for each type of segment and for each type of node by means
of a single element of each type the constraints that are necessary in order to built up a stationary Mixed
Integer Model for the Optimisation of Gas Networks. In this section we want to summarise the whole
mixed integer linear model (MILP). Because of this we have to introduce some definitions and a little
bit more formalism because we now cannot longer deal with a single segment or node of a special type.
Nevertheless the reader will easily recognise that all the constraints are the same.

4.4.1 Definitions

The following basic sets define the essential types of segments and nodes:W Set of nodesY Set of segmentsY�� Set of pipesYF� Set of compressorsYF� Set of valvesY Ð Set of control valvesY�� Set of connections

It holds: Y�*�Y����~kY����~kYF���~kY Ð �~kY � ��~ stands for the disjoint union of two sets. 5 denotes an element of W and � an element of Y . An index� denotes a variable or constant belonging to the element � . For example % \ is the switching variable of
the compressor � if � ù Y?� . We remark that in this case % t Ñ , 5 \ ù YF�¹2 denotes the switching variable
of the bypass valve of compressor ��/ � ù Y-� (we write % t Ñ since we define the valve as a bypass valve
of compressor � ). Sometimes we will write �<* ,]\6/ 5 2 where \ deals with the node at the beginning of
segment � and 5 means the node at the end of segment � . This is especially the case when we are dealing
with the piecewise linearisation of a nonlinear function (e.g. ( _ \ ± d means the pressure at the beginning of
a special segment � at a grid point ¬ ).
For � ù Y�� we denote with � º\ the set of grid points that are belonging to triangle ¼ of the triangulation.
Analogously for � ù Y?� we denote with � º\ the set of grid points that are belonging to cube/tetrahedron¼ . In both cases (ød means the pressure in the node at the beginning of the pipe, ( t the pressure in the
node at the end of the pipes and so on.

In order to give the formal description of the whole model and for a summary of the last declarations we
give the following table:
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Variables of the model

' \ flow variable of a segment � ù Y% \ switching variable of of a segment � ù Y c ,�Y-��~ Y � 2( \_G` pressure variable at the node at the beginning of a control valve( \ced�f pressure variable at the node at the end of a control valve% t Ñ switching variable of bypass valve of compressor � ù YA�) \ fuel consumption of compressor � ù YH�� \ power of compressor � ù Y?�' t flow in node 5 ù W( t pressure in node 5 ù WD _ \ D � variable for linearisation of pipe � ù Y?� or compressor � ù Y?�õ º \ õC� variable for linearisation of pipe � ù Y?� or compressor � ù Y?�(Vd pressure variable at the node at the beginning of a pipe or compressor( t pressure variable at the node at the end of a pipe or compressor( ld auxiliary variable for the pressure at the node at the beginning of a compressor( lt auxiliary variable for the pressure at the node at the end of a compressor

Constants and other values

' � h ¦\ maximal flow of segment � ù Y' �¹_G`\ minimal flow of segment � ù Y� ( � h ¦\ maximal pressure regulation of control valve � ù Y Ð� ( �Â_G`t Ñ minimal pressure regulation of control valve � ù Y ÐZ \
constant “big

Z
” depending on segment � ù Y Ð ~DY��) � h ¦\ maximal fuel consumption of compressor � ù YH�ò \ constant for calculation of fuel gas consumption of compressor � ù Y �� � h ¦\ maximal power of compressor � ù Y-�� �Â_G`\ minimal power of compressor � ù Y-�' �¹_G`t minimal flow in node 5 ù W' � h ¦t maximal flow in node 5 ù W( �¹_G`t minimal pressure in a node 5 ù W( � h ¦t maximal pressure in a node 5 ù W( _ \ ± d discretisation values for pressure in the node at beginning of segment � ù Y}�¡~DY��( _ \ ± t discretisation values for pressure in the node at end of segment � ù Y}�¢~DYF�' _\ discretisation values for flow of segment � ù Y-�¡~ Y��) _\ discretisation values for fuel consumption of segment � ù Y �

4.4.2 Inequality System

With the definitions of the last subsection we get the following MILP (see the next page):
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£?¤¦¥�§�¨ª©x«¬�® ¨
s.t.¯X°I± ² ¨´³ ²<µ.¶Z·¨ ¸ ¨ ¹»º½¼�¾)¿¯ÁÀv± ² ¨´Â ² µhÃÅÄ¨ ¸ ¨ ¹»º½¼�¾)¿¯VÆ�± Ç ¨ÃÅÄ�È Ç ¨ÉËÊ�Ì ³ Í Ç+µ.¶Z·¨ ¸ ¨�Î�Ï¡¨ ¯Ð° È ¸ ¨ ± ¹»º½¼�¾ ¿¯�Ñ�± Ç ¨ÃÅÄ È Ç ¨ÉËÊ�Ì Â Í Ç+µhÃÅÄ¨ ¸ ¨ È Ï�¨ ¯X° È ¸ ¨ ± ¹»º½¼�¾ ¿¯ÁÒv± ² ¨ ³ ²<µ.¶Z·¨ ¸ ¨ ¹»º½¼�¾ÔÓ¯VÕ�± ² ¨ Â ²<µhÃÅÄ¨ ¸ ¨ ¹»º½¼�¾ÔÓ¯]Öx± Ï¡¨ ¸ ¨ È Ç ¨ÃÅÄ Î Ç ¨ÉËÊ�Ì ³ Ï¡¨ ¹»º½¼�¾ÔÓ¯V×�± Ï ¨ ¸ ¨ Î Ç ¨ÃÅÄ È Ç ¨ÉËÊ�Ì ³ Ï ¨ ¹»º½¼�¾ Ó¯VØ�± ² ¨´³ ²<µ.¶Z·¨ ¸ ¨ ¹»º½¼�¾)Ù¯X°0Ú�± ² ¨´Â ² µhÃÅÄ¨ ¸ ¨ ¹»º½¼�¾)Ù¯X°x°I± ¸ ¨ Î ¸�ÛªÜÞÝ ° ¹»º½¼�¾)Ù¯X°�Àv± Ç ¨ÃÅÄ È Ç ¨ÉËÊ�Ì Â Í Ç+µ.¶Z·Û Ü ¯ ¸�Û�Ü È °I± ¹»º½¼�¾)Ù¯X°0Æ�± Ç ¨ÃÅÄ È Ç ¨ÉËÊ�Ì ³ Ú ¹»º½¼�¾)Ù¯X°KÑ�± ® ¨Þ³ ® µ.¶Z·¨ ¸ ¨ ¹»º½¼�¾)Ù¯X°�Òv± ® ¨ Ý ß ¨�àF¨ ¹»º½¼�¾)Ù¯X°0Õ�± à ¨ ³ à µ�¶�·¨ ¸ ¨ ¹»º½¼�¾ Ù¯X°IÖx± à ¨ Â à µ.Ã¦Ä¨ ¸ ¨ ¹»º½¼�¾ Ù¯X°0×�± ² µ.Ã¦Ä¨ ³ ² ¨ ¹»º½¼�¾)á¯X°0Ø�± ² ¨ ³ ²<µ.¶Z·¨ ¹»º½¼�¾)á¯ÁÀ
Ú�± Ç ¨Ã¦Ä Ý Ç ¨ÉËÊ0Ì ¹»º½¼�¾)á¯ÁÀ�°I± §â¨ª©xãªä»å Û�æ ² ¨ Ý §ç¨ª©xãZèå Û�æ ² ¨ ¹+é-¼�ê¯ÁÀxÀv± ²<µ.Ã¦ÄÛ ³ ² Û ¹+é-¼�ê¯ÁÀ
Æ�± ² Û ³ ²<µ.¶Z·Û ¹+é-¼�ê¯ÁÀ<Ñ�± Çyµ.Ã¦ÄÛ ³ Ç Û ¹+é-¼�ê¯ÁÀxÒv± Ç Û ³ Ç µ�¶�·Û ¹+é-¼�ê¯ÁÀ
Õ�± ²<µ.Ã¦Ä¨ ³ ² ¨ ¹»º½¼�¾)ë¯ÁÀvÖx± ² ¨´³ ²<µ.¶Z·¨ ¹»º½¼�¾)ë¯ÁÀ
×�± § Ã ©
ì Ü�í Ã¨ Ý ° ¹»º½¼�¾ ë¯ÁÀ
Ø�± §1îZ©vï Ü»ð î¨ Ý ° ¹»º½¼�¾)ë¯VÆxÚ�± ð î¨ ³ §çñ ©xòhóÜ í ñ¨ ¹»º½¼�¾ ë�ô ¹�õ?¼dö ¨¯VÆ÷°I± Ç Ê Ý § Ã ©
ì Ü ÇyÃ¨�ø Ê í Ã ¨ ¹»º Ý ¯�ù ô é ± ¼*¾që¯VÆvÀv± Ç Û Ý § Ã ©
ì Ü ÇyÃ¨�ø Û í Ã ¨ ¹»º Ý ¯�ù ô é ± ¼*¾ ë¯VÆxÆ�± ² ¨ Ý § Ã ©
ì Ü ²<Ã¨ í Ã ¨ ¹»º½¼�¾)ë¯VÆ
Ñ�± Ç ¨ÃÅÄ�È Ç ¨ÉËÊ�Ì Â Ú ¹»º½¼�¾ ë¯VÆvÒv± § Ã ©
ì Ü í Ã ¨UÝ ¸ ¨ ¹»º½¼�¾ Ù¯VÆxÕ�± § îZ©vï Ü ð î¨úÝ ¸ ¨ ¹»º½¼�¾)Ù¯VÆ�Öx± ð î¨ ³ §çñ ©xòhóÜ í ñ¨ ¹»º½¼�¾ Ù�ô ¹�õ-¼*ö ¨¯VÆx×�± Ç Ê Ý § Ã ©
ì Ü ÇyÃ¨�ø Ê í Ã ¨ Î Ç+ûÊ ¹»º Ý ¯�ù ô é ± ¼*¾qÙ¯VÆxØ�± Ç Û Ý § Ã ©
ì Ü ÇyÃ¨�ø Û í Ã ¨ Î Ç»ûÛ ¹»º Ý ¯�ù ô é ± ¼*¾ Ù¯�ÑvÚ�± ² ¨ Ý § Ã ©
ì Ü ²<Ã¨ í Ã ¨ ¹»º½¼�¾)Ù¯�Ñ6°I± ® ¨ Ý § Ã ©
ì Ü ® Ã¨ í Ã ¨ ¹»º½¼�¾)Ù¯�Ñ�Àv±bÇyµ�¶�·Ê ¯ ¸ ¨ È °I± Î Ç+ûÊ ³ Ú ¹»º Ý ¯�ù ô é ± ¼*¾ Ù¯�ÑvÆ�±bÇyµ�¶�·Û ¯ ¸ ¨ È °�± Î Ç+ûÛ ³ Ú ¹»º Ý ¯�ù ô é ± ¼*¾ Ùí Ã ¨ Â Ú ¹»º½¼�¾ ë ¹»ü"¼dý ¨í Ã ¨ Â Ú ¹»º½¼�¾ Ù ¹+ü"¼�ý ¨ð î¨ ¼ þ Ú ô °
ÿ ¹»º½¼�¾)ë�¹÷õ-¼�ö+¨ð î¨ ¼ þ Ú ô °
ÿ ¹»º½¼�¾)Ù3¹�õ?¼�ö+¨¸ ¨ ¼ þ Ú ô °
ÿ ¹»º½¼�¾)¿¸ ¨ ¼ þ Ú ô °
ÿ ¹»º½¼�¾ Ó¸ ¨ ¼ þ Ú ô °
ÿ ¹»º½¼�¾)Ù¾ Ý ¾)ë��� ¾)Ù��� ¾ Ó �� ¾)¿��� ¾ á

We remark that generally all variables are nonnegative (with respect to the well known exceptions).
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Figure 4.12: A small gas network
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Figure 4.13: Graph of Figure 4.12

4.5 Computational Results

We have implemented the described MILP and have tested it for the small gas network shown in Figure
4.12 which consists of eleven pipes, one connection, four valves, one control valve, three compressors,
two sources, three sinks and eleven innodes (the intersection points of segments, see Chapter 4). Note
that bypass valves for compressors are not drawn in the figure. The graph a�*�,XW�/ZY�2 of the test model
shown in Figure 4.12 is given in Figure 4.13. The following table shows our first experiences of the
computational situation when solving the defined MILP with a standard solver (CPLEX, [25], [26]):

compressors pipes Solution(V_G`@± � (Kced�fE± � 'x� (V_G`@± � '
� Var. Ineq. Opt value time(sec)� � � � ��� ���F� ����� � � �F� � � ���� � � � � ���÷� ����� ���F� � � �F� � � � �� � � � ��� ���w� ����� ��� � ��� � � ���� � � � � ��� � ����� ����� � � � � ��� � �-�� � ��� � ��� ������� � ��� ��� � ��� � � � ���� � ��� � � ���÷� ������� ���F� � � �F� ����� � ���
We remark that in the table above � means that we have implemented an additional refinement step. In
this refinement step we have introduced one additional grid point at the optimum solution of the MILP



CHAPTER 4. THE MODEL 53

and solved the problem again. The values (p_G`@± � , (Kced�fE± � , 'v� , (V_G`@± � , '
� define the number of intervals
we divide the domain of the pressure loss function or the fuel gas consumption function according to
the variables of these functions. The column with the entry W ;@b � gives the numbers of variables of the
model and the column with the entry B�o6��' � the number of inequalities of the model.
We remark that CPLEX did not calculate the model for finer triangulations in acceptable time even
for this small test network. From the test calculations we also see that the calculation time is distinct
dependend on the accuracy of the model. This implies that approximating this nonlinear problem by a
MILP we have to find a compromise between exactness and calculation time. The ideas of Chapter 5
will be helpful in order to fasten the calculations.

4.6 Preprocessing

Here we only want to give a short note that there are several possibilities in order to formulate the
polyhedron that describes the conditions of a (bypass) valve. In the following lemma

� � and
� � are the

generalisations of two formulations we tried out in our model. Polyhedron
� � in Lemma 15 tightens

the formulation of
� � (compare inequalities �z/����z/k�@/K�z/ � in 4.4.2, the last inequality with ' �¹_G`\ *+� and

additional bounds) and so it is also possible to implement the polyhedron in this way.

Lemma 15 Let �6��/1� 3 /1�V� ùuú å and �ø� ù%� �-/���� . Let
; / aA/ s / � be positive real numbers with s �¥a�©�-/ s �9a ì � / s � a ì ; ì � and� � * � �6� � ; �K� 	 ���, s � a�2×�ø� � � 3 �W�K� î ��, s � a�2� �ø� �W� 3 � �K�.	 �� �ø� � � 3 �W�K�.	 �

�6� î �� � 	 ;
� 3 î a� 3 	 s
�V� î a�V� 	 s�� /

and � � * � �6� � ; �K� 	 �, s � a�2×�ø�¨�W� 3 � �K�)	 s � a, s � a�2×�ø� � � 3 �W�K�)	 s � a� � î �� 3 î a� 3 	 s
�V� î a�V� 	 s�� �

Then
� � * � � . If in

� � we omit the inequality ��, s �|a�2×�p� � � 3 �$�K� î ��, s �|a�2 the equality
� � * � �

also holds.

Proof. Obvious. ·
Polyhedron

� � in Lemma 16 is the generalisation of the polyhedron that describes the conditions of
a control valve (compare inequalities ��/ �z/ � / � in 4.4.2, the last inequality with ' �Â_g`\ *�� and additional
bounds). Polyhedron

� � again gives us an alternative formulation of
� � .
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Lemma 16 Let �6��/1� 3 /1�K� ù�ú å and �ø� ù^� �-/���� . Let
; / aA/ s / � / ��/ ) be positive real numbers with� ì s ì � ì � ì ) ì ; ì a and� � * � � � � ; � � 	 �,LaÆ� � 2×�K� � � 3 �W�V��	 a,La � s 2×�K�]�W� 3 � �V��	 a�6� î ��6� 	 ;
� 3 î �� 3 	 )� � î ��V� 	�) � /

and � � * � �Ä� � ; �K� 	 �,L)$� �Y� � 2×�K� � � 3 �W�K�.	8)��9�,L)$� � � s 2×� � �Y� 3 � � � 	8)��9�s �K� �Y� 3 	 �M�s �K� � �K�.	 )�Ä� î �� 3 	 )� � î � � �
Then

� � * � � .
Proof. Let �C�W*+��û
We only have to remember that holds � 3 	¶) and �K� î � and we get � 3 ���K�H	¶)$�u� ì a .
Let �K�M*��
û
Here with � � î � we get � 3 î � � � s î � � s from the condition � 3 �u� � î s in

� � and analogously
because of � 3 	ó) we calculate �K�H	È� 3 � s 	¶)$� s .
With an easy inspection of the further inequalities of

� � and
� � we conclude

� � * � � . ·
For the other substructures of our model like the Kirchhoff conditions or the conditions of a compressor
no such easy tightened formulations could be constructed.

Considering the polyhedron that describes the gas flow preservation law in all nodes we mention that in
the preprocessing step linear dependent conditions are removed without changing this subpolyhedron.
Also it is well known that a node-arc incidence matrix of the underlying digraph a is totally unimodu-
lar, see [32]. This means that the sets of feasible solutions of the underlying network flow problem are
integral subpolyhedra.

4.7 Conclusions

We have shown that in the described way we can define a useful MILP for the optimisation of gas
networks. But it is clear that the presented first computational results for our small test model show that
we cannot act on the assumption that this model is able to solve reasonable gas networks in short times
since the solving times for the test model are relatively high. So we now have to search for a better way
in order to fasten the solution time of the model. Because of this we now deal with polyhedral studies
of the model and with separation algorithms for the underlying polyhedron or sub-polyhedra. When we
have understood the model in a better way we will be able to solve bigger problems (how far we will
be able to solve realistic problems is vague since later calculations showed that unfortunately all ideas
we have developed will not be enough to solve the problem of a real-world gas transmission company).
The next step after this will be that we generalise the stationary model to the transient case which means
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that the flow and pressure values do not longer need to be constant in time. But such a transient model
can only be solved in a reasonable time if we succeed in finding good and fast separation algorithms
since the binary variables we had to introduce for the linearisation of the pipes and the compressors
increase the solution time of such MILP’s. We will search for such possibilities in the next chapter but
we antcipate that the ideas we deveolped and implemented will not be enough for the solution of big
time depending networks.



Chapter 5

Cutting Planes and Separation Algorithms

5.1 Introduction

Since we want to solve the mixed integer program of the TTO-model via a branch-and-cut algorithm
we present in this chapter cutting planes which are useful or potentially useful for solving mixed integer
programs that arise in the optimisation of gas networks (see the description in Chapter 4). We consider
polyhedra that are defining essential parts of the model (important substructures like the interface of
several segments) and give a polynomial algorithm for the calculation of the set of vertices of such
polyhedra implying that a polynomial separation algorithm for the convex hull of the polyhedra can be
developed.
We also point out how this knowledge can be generalised to more complex structures. Finally our
preliminary computational results show the benefits when incorporating these cuts into a general mixed
integer programming solver. One important part of our mathematical analysis is that we want to get
rid of the binary variables that we introduced for the approximation of nonlinear functions. In Chapter
4 we showed the traditional way for the approximation of nonlinear functions via introducing binary
variables. Here we develop an extension of 3.7. Our computational results show the benefits of this
method.

5.2 The Polyhedron

From Chapter 4 we only need to remember the flow variables ' \ / � ù Y and the pressure variables( t / 5 ù W . Also remember that (ø_G` describes the gas pressure in the node at the beginning of a segment
and (Kced�f means the gas pressure in the node at the end of a segment.
The basic idea behind our polyhedral studies is that the pressure at the end of all ingoing segments of a
node must be equal the pressure at the beginning of all outgoing segments of the same node.

Now let us shortly describe how the polyhedron under investigation comes upon in the global model.
We have already described and modelled the physics of the gas flowing through a gas network. Remem-
ber that the pressure drop in pipes can be approximated by

( �ced�f *9( �_G` � ff ' � ' � /
where

ff * ff ,T( c×d�f /F( _G` 2
is the friction factor. After simplifying the friction factor to a constant we get (Ãced�f6*9(Kced�f ,T(V_G`V/7'F2 , where(Kced�f means the pressure at the end of the pipe, (p_G` means the pressure at the beginning of the pipe and '
means the gas flow through the pipe.
The well known fuel gas consumption of the compressors analogously is described by a nonlinear func-
tion ) of the form: )u*)¨,T( _g` /E( ced�f /7'F2 . Here ) describes the fuel consumption of the compressor, ( _G`

56
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5 � 5 � 5 3(V¬�(C� � (V¬m(ø� �
( �out * ( �in

Figure 5.1: Sequence of pipes

the pressure of the gas at the beginning of the compressor, (0c×d�f the gas pressure which the compressor
has to constitute at the endpoint of the compressor and ' stands for the gas flow through the compressor.
In order to come up with a mixed integer linear program these two nonlinear functions are approximated
by suitable triangulations as pointed out in the following demonstrations.

The first substructure of the model we have studied are sequences of pipes. The situation is shown
in Figure 5.1.

We have already mentioned one important aspect of the model that the pressure ( �ced�f at the end of the
ingoing pipe ((V¬m(ø� � ) must be equal the pressure ( �_g` at the beginning of the outgoing pipe ((V¬m(ø� � ). We
already know that ( �ced�f is a nonlinear function depending on the flow through the pipe and the pressure
at the beginning of the pipe. We approximate the pressure loss in pipes by determing a triangulation of
the 2-dimensional manifold describing the pressure loss in the pipes. We denote by s � _ � \ the set of grid
points and by t � _ � \ the set of triangles. We approximate the �-� dimensional function (0ced�f ,T(V_G`K/7'�2 by
linearising it within each triangle. Modelling this piecewise linear approximation results in the following
non convex polyhedron:�:Á * �	� Ó ÝÓ ß�
 ù|ú� u Ý � å � u ß � � ¯

º �vu Ý D �º * �
¯
º �vu ß D �º * �

¯
º �vu Ý ( �out ± º D �º � ¯

º �vu ß ( �in ± º D �º * �
D �º / D �º î �

D � / D � satisfy the triangle condition � /
where the triangle condition states that the set of

D � variables which are strictly positive must belong
to grid points of a distinct triangle.
Figure 5.2 describes the situation of the polyhedron

�¹Á
: The numbers in the left triangulation (for the

ingoing pipe) stand for the pressure values ( �ced�fE± º at the grid points ¼ ù s � and the numbers in the right
triangulation (for the outgoing pipe) stand for the pressure values ( �_g`@± _ at the grid points ¬ ù s � . Let
us consider a simple example (see Figure 5.3) for a little calculation. Here is ( �ced�fE±&� * ��� , ( �ced�fE± � * � ,( �ced�fE± 3 * �

and so on, analogously we have for ( �_G`@±&� *X( �_G`�± � *9( �_G`@± 3 *����-/ ����� , etc. Consider

D �� * �� / D �� *��-/ D �3 *��-/ D �� * �� / D �Ç * �� / D �ô *��
and D � � * ���� / D �� *��-/ D �3 *��-/ D �� *��-/ D �Ç * ������ / D �ô *�� �
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60.98 56.97 51.18
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61.01 61.01 61.01

Figure 5.2: Typical triangulation of the pressure loss in a pipe

This setting for the
D � variables fulfils all conditions, especially the triangle condition.

But if we take D �� * �� / D �� *��-/ D �3 *��-/ D �� * �� / D �Ç * �� / D �ô *��
and D � � * ���� / D �� *��-/ D �3 *��-/ D �� *��-/ D �Ç *��-/ D �ô * ������ /
we see that the triangle condition is not satisfied since the nonzero variables

D � � and
D �ô belong to two

different triangles of the triangulation and so this point is no element of
�ÆÁ

. In the following we want
to generalise our ideas (remember how we approximated the fuel gas consumption of a compressor).
Clearly the sequence of two pipes is of course only the simplest case we are faced with. We want to
examine the problem more general, where we consider the case that we have an arbitrary number ¬¿o of
ingoing segments and an arbitrary number {v\K of outgoing segments. A segment can now be either a
pipe or a compressor (but we can as a matter of principle take valves or control valves as segments as we
will see later). For every in- and outgoing segment we determine a certain triangulation. In the general
case these triangulations do not need to consist only of such regular triangles as in Figure 5.2. The
structure can be much more complicated. Perhaps we can not only consider triangles but also squares,
pentagons, sexangles, heptagons and so on. Even arbitrary mixtures in the triangulations are possible
although this is not interesting for a concrete gas network. And we do not only describe the pressure in
the segments but also the gas flow in the segments. Very important for the general formulation is the
first law of Kirchhoff which means that the sum of the ingoing gas flows must be equal to the sum of the
outgoing gas flows. So in principle (see e.g. [38], [39]) we get the situation which is shown in Figure
5.4.

The requirements of the triangle conditions of
� Á

are now generalised in the following way:
The triangle conditions mean that for every segment only special combinations of

D � variables are al-
lowed. For

���
this means that only

D � variables may be positive that belong to exactly one certain
triangle. In the general case only the elements of special sets of

D � variables may not vanish (Indeed:
the reader can recognise that our conditions are a generalised form of Special Ordered Sets (SOS) of
type 2, see e.g. [4]). Before going into the details we need to fix some notation.
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Figure 5.3: An easy example for a triangulation
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Figure 5.4: Ingoing and outgoing segments in a node
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Notation

In this section we give some mathematical notation which is necessary in order to formalise and gener-
alise the above approach.
Let ¬Oo ù 4 be the number of ingoing segments and {v\K ù 4 be the number of outgoing segments. A
segment may be a pipe or a compressor but also the other types of segments, i.e., valves, control valves
and connections (short pipes without pressure loss) can be included in this model. In the mathematical
formulation of the model we are no longer bounded to the physical background of the model.
We define a set � _ of grid points for every segment ¬ ù�� ��/ �z/ ����� /1¬¿o � {�\V 0� . W.l.o.g. we assume
the ingoing segments to be ��/ �z/ ����� /1¬Oo and the outgoing segments to be ¬¿o � ��/1¬¿o � �z/ ����� /1¬¿o � {�\V .
Furthermore we assume: � _ o � º *r� » ¬ M*¥¼ �
We denote by � * � � _ � ¬¨*���/ �z/ ����� /1¬Oo � {�\V 0�
the list of sets of grid points.ú J ¡ denotes the

� � _ � � dimensional vector space where the components are indexed by � _ and ú�� is
defined as: ú � * _G` å ced�f�

_m°0�
ú J ¡ �

We remark that for
D ùØú�� we write

D * 78889
D �D �
...D _G` å ced�f

:<;;;=
with

D _ ù|ú J ¡ for all ¬ ù � ��/ �z/ ����� /1¬¿o � {v\K K� .
For a list � of sets of the form �È* � � � /k� � / ����� /k� _G` å ced�f �
we say for some index ¼ ù _G` å ced�f�_�°0� � _ :

¼ ù � iff
` ¬ ù � ��/ �z/ ����� /1¬¿o � {�\K K� with ¼ ù � _ �

We define �NC � � � M* � _ C�� _ » ¬ ù � ��/ �z/ ����� /1¬¿o � {�\V 0� �
The cardinality of � is set to � � � * _G` å ced�f¯

_m°0�
� � _ � �

The characteristic vector of � , which we denote by ��� ùØú � , is obtained by setting� �º�* #
1 , if ¼ ù �
0 , else.

For each � _ /1¬ ù � ��/ �z/ ����� /1¬¿o � {v\K K� we define o _ subsets � _Ô / > ù � ��/ �z/ ����� /1o _ � with

� _ * ` ¡�
Ô °0� �

_Ô and
� � _Ô � î � �
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As an example: In Figure 5.2 holds o¹�½* � , oÄ��* � and
� � _Ô � * � for all ¬7/ > . We say that a vectorD ù9ú�� / D î � satisfies the set condition (which is the generalisation of the triangle condition in the

case of polyhedron
� Á

on page 57) if for all ¬Ã*���/ �z/ ����� /1¬¿o � {v\K there exists one > _ ù � ��/ �z/ ����� /1o _ �
such that � ¼ ù � _ �&D _º ©��+�}C�� _Ô ¡ �
In other words, the set condition holds if for all in- and outgoing segments the non vanishing

D � variables
belong to exactly one of the subsets � _Ô . We say that � fulfils the set condition if � � fulfils the set con-
dition.

Now we define a polyhedron
�

by � * � D ù|ú � � P D * a�/ D î �+�F/
where

P ù�ú � , � / a ù�ú � for some finite set
Z

. We will say something about the cardinality of the
set

Z
in the next subsection when we discuss the special structure of the matrix

P
.

Let us remember that we have already defined for
P ùØú � , � withP * , ; _ º 2 i=1,. . . ,m

j=1,. . . ,n

and a subset JçC � ��/ �z/ ����� /1o.� the matrix
PHG

byP-G * , ; _ º 2 _ �W�º � G
Here " * � Z �

and o8* � � �
. Analogously we use for

D ùØú � and a subset JçC � ��/ �z/ ����� /1o.�D G *�, D º 2 º � G �
For � ùØú � with �OC � we define the zero-extension � v ,��W2 ù$ú � of � by

� v ,��W2u* # �V_ , if ¬ ù �ª/
0 , if ¬ ù � c � �

We remark that in the definition of the zero-extension we define
� c � by� c �¶û � � _ c � _ » ¬ ù'� ��/ �z/ ����� /1¬Oo � {�\V 0� �

At the end of this section we define the meaning of �OC �� for two lists � and �� :

Let �È* � � � /k� � / ����� /k� _G` å ced�f �
and ��È* � �� � / �� � / ����� / �� _G` å c×d�f �
two sets (in the sense of this section). We define:�OC �� û � � � C �� �� � C �� �

...� _g` å ced�f C �� _G` å ced�f �
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5.3 The Problem

Using the above notation we are now ready to introduce the polyhedron we are going to investigate in
this chapter. Remember that we want to model the situation that there are ¬¿o ingoing and {�\K outgoing
segments at some node in the gas network. So we consider a polyhedron

�
with the following structure:� * � D ùØú � � P D *+aA/ D î �²/ D satisfies the set conditions � �

We remark that from our introductory examples it is easy to see that this polyhedron in general is not
convex.
The special form of the matrix

P
and the vector a for the general case of polyhedron

�
becomes

P *

78888888888888888888888888888888888888888888889

,�> I ��2 / ,�> I ��2 /
. . . ,�> I �  �2 / ,�> I �  å � 2 / ,�> I �  å ��2 /

. . . ,�> I �  å"!$#&% 2 /,T( � 2 / ��,T( _G` å � 2 /,T( � 2 / � ,T( _G` å � 2 /
...

. . .,T( � 2 / � ,T( _G` å ced�f 2 /,T( � 2 / ��,T( _G` å � 2 /,T( � 2 / � ,T( _G` å � 2 /
...

. . .,T( � 2 / � ,T( _G` å ced�f 2 /
. . .

...
...

...
...,T( _G` 2 / ��,T( _G` å � 2 /,T( _G` 2 / � ,T( _G` å � 2 /

...
. . .,T( _G` 2 / � ,T( _G` å ced�f 2 /,E' � 2 / ,E' � 2 / ����� ,E' _ o02 / ��,E' _G` å � 2 / ��,E' _g` å � 2 / ����� ��,E' _g` å ced�f 2 /

:<;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;=
The entries ( _ ù ú J ¡å /1¬ ùb� ��/ �z/ ����� /1¬¿o � {�\K K� are vectors describing the pressure at the end of

the ingoing and at the beginning of the outgoing segments. Analogously the vectors ' _ ù�ú J ¡å /1¬ ù� ��/ �z/ ����� /1¬¿o � {�\V 0� describe the gas flow in the in- and outgoing segments. These vectors are used to
formulate the mentioned first law of Kirchhoff.
The form of the vector a is aY*(' > I �  å"!$#&%��_G` @ ced�f å �*) �> I � ù�ú,+�- denotes the vector of all ones. In addition > I . denotes the vector of all ones in ú � and ��� the
zero vector in ú � . Let us shortly describe the structure of the matrix

P
more detailed:

The first ¬¿o rows describe the sum of the
D � variables of each ingoing segment. Analogously the next{�\V rows describe the sum of the

D � variables of each outgoing segment. All sums must be one. In
each node there must be a certain pressure. So the rows ¬¿o � {v\K � � up to ¬¿o � ��{v\K describe that
the pressure at the end of the first segment must be equal the pressure at the beginning of the outgoing
segments. The rows ¬¿o � ��{�\V � � up to ,.¬Oo � ��2Ú,E{�\V � ��2W��� describe the same situation for the
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other ingoing segments combined with the outgoing segments. The last row describes the gas flow in
the distinct segments. The gas flow in the outgoing segments is multiplied by ��� because the sum of the
gas flows of the ingoing segments must be equal the sum of the gas flows of the outgoing segments. It is
easy to see that the matrix

P
and the vectors

D
and a are generalisations of the first discussed situation

of one ingoing and one outgoing segment.
As a side remark we want to mention that there are some additional types of segments in a gas network,
for example valves, control valves and connections without pressure loss or fuel gas consumption (i.e.,
there no nonlinear function has to be linearised). In the situation that such an additional segment is an
essential part of a subsystem of the gas network also these types of segments can be modelled. Here the
vectors for the pressure ( or the gas flow ' reduce to vectors that are elements from ú � (In this case the
set of grid points for such a segment consists only of one element. Here it is very important to know that
it is our aim that we want to cut off LP-solutions, so we can set for these types of segments the pressure
and flow values that are calculated in the last iteration. This solution then can be cut off.) because such a
segment can in every LP-iteration be interpreted with constant pressure and constant flow and so can be
modelled via one single

D � variable which then has to be one. So the generality of the model is ensured.
When we do not want to include the first law of Kirchhoff, i.e., the gas flow preservation equation in this
model, we forget about the last line in

P D * a . The rang of the Matrix
P

reduces by one in this case.
We also remark that

� Z � *�¬Oo � ,.¬¿o � ��2e{�\K � �^*�,.¬¿o � ��2Ú,E{�\V � ��2 holds.
For the following considerations it is important to mention that� C ! �-/��H# �
holds, which is easy to see since

D î � and because of the definition of the first ¬¿o � {v\K rows of matrixP
and vector a . So the polyhedron

�
is bounded and we get a non-convex polytop.

5.3.1 The Vertices of the Polyhedron

Let us introduce the idea of calculating the vertices of the polyhedron before we describe the general
situation formally in the case of the polyhedron

�¹Á
: If we want to find a vertex we take one triangle

from the triangulation of the ingoing pipe ((V¬�(ø� � ) and one triangle from the triangulation of the outgoing
pipe ((V¬�(C� � ). To this end we choose some

D � variables from the selected triangles. Due to the triangle
condition the non vanishing

D � variables at a vertex of
�ÂÁ

must belong to exactly one triangle of (V¬m(ø� �
and one triangle of (V¬�(C� � . Concentrating on two triangles we investigate the extreme points for the se-
lected

D � variables that fulfil the remaining properties of
�ÂÁ

, i.e., if the sum of the selected
D � variables

of (V¬�(C� � and the sum of the selected
D � variables of (V¬�(ø� � are equal � , if the pressure equation is fulfilled

and of course all
D � variables we have selected must be nonnegative. We will show that this results in a

vertex. By repeating this procedure for all possible selections of
D � variables we will see that we obtain

all vertices of
�ÃÁ

. Clearly, if the maximum of the pressure values of (V¬�(ø� � is lower than the minimum of
the pressure values of (K¬�(ø� � or the minimum of the pressure values of (V¬�(C� � is greater than the maximum
of the pressure values of (V¬�(ø� � for a special selection of triangles we do not get a vertex.

Now we give the formal algorithm how the vertices of the polyhedron
�

can be calculated: Let us
begin with the following definition (

b ?ø, P 2 denotes the rang of matrix
P

):

Definition 17 We say a subset �OC � is feasible if� � � � 	 b ?ø, P 2 .� � satisfies the set condition.

Algorithm 18

1. Set
q *3� (the list of all vertices of

�
).
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Figure 5.5: Simplified Matrix

P
2. For all feasible subsets �OC � do

(a) Solve
P � D � *+a .

(b) If the system has a unique solution �D � with �D � î � , add the zero-extension of �D � to
q

.

In the following we want to prove that this algorithm runs in polynomial time and computes all vertices
of
�

. As a consequence we obtain that
�

has only polynomially many vertices.
But at first let us make the following

Remark 19 The matrix
P

on page 62 can be simplified to the form in Figure 5.5 and the vector a to

aW* ' > I �  å"!$#&%��_g` å ced�fR) �
From this we conclude that ¬Oo � {�\V �	 b ?ø, P 2½	¶�w,.¬¿o � {�\K 12 �
Before we prove that the algorithm is correct we discuss the following

Lemma 20 The described algorithm reduced by the postulation of the set condition can principally also
be used in order to calculate the vertices of the polyhedron

�
without the set condition.

This lemma is a direct consequence of well known results of linear programming, namely that the
support of a vertex of a polyhedron

� * � � � P �$*+aA/1� î �+� is at most the number of rows of
P

. When
we consider the polyhedron

�
without the set conditions this polyhedron is completely described by (in-

) equalities and thus the above argument applies. The problem in the case of
�

(with set conditions) is
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that we do not know the complete description of the polyhedron in form of equalities or inequalities and
thus this simple argument cannot be used.
In our case we formulate the following

Theorem 21 The above algorithm is correct, i.e., it calculates all vertices of the polyhedron
�

.

For the proof of Theorem 21 we formulate

Lemma 22 Let � satisfy the set condition (which is fulfiled by a feasible set because of Definition 17).
If
P � D � * � � �S� has a nontrivial solution then the zero-extension of a positive solution of

P � D � * a
is not a vertex. Clearly, if � is not feasible then

� � � © b ?C, P 2 and it is well known that in this caseP � D � *�� � �S� must have a nontrivial solution. So we do not get a vertex if � is not feasible.

Proof. Let �D � be a positive solution of
P � D � *+a , i.e., it holds

P � �D � *+a with �D � ©�� � � � �
Let �D be the zero extension of �D � . We will show that �D is a nontrivial convex combination of two other
points in

�
(which are elements of an T�� environment ( TØ© � ) of �D ). This shows that �D cannot be a

vertex. We define for � a vector T ù|ú � with �OC � as follows:

From
P � �D � *+a and the condition

P � , �D � � Tk2¨*+a we get:P � TÆ*+� � �*� �
Obviously �T�* � � � � is a solution. We know from the assumptions of Lemma 22 that

P � T * � � �S� has
a nontrivial solution. Because of this we also know that the set of solutions of

P � T
*�� � �S� is a vector
space (with nontrivial solutions). Therefore, there exists �T M* � � � � such that

P � , �D � � �Tk2$* a , with�D � � �TM©�� � � � and �D � �k�TM©¶� � � � .
Now we built the zero-extension , �D � � �TH2 v ,��²2 of �D � � �T and we get , �D � � �Tk2 v ,��W2 ù �

. Observe
that for � all

D � variables must fulfil the set condition by construction.
Similarly,

P � , �D � �j�TH2Y* P � �D � � P � �TM* P � �D � � � � �S� *�a and hence also
P , �D � �j�TH2 v ,��²2W*�a . We

conclude , �D � �k�T 2 v ,��²2 ù � .
Finally, �� , �D � � �TH2 � �� , �D � �%�TH2¨* �D � �
and �� , �D � � �Tk2 v ,��W2 � �� , �D � �P�TH2 v ,��²2�* , �D � 2 v ,��²2�* �D �
Since �D can be written as a convex sum of two other points of

�
it cannot be a vertex. ·

We use the lemma in the following

Proof. We show Theorem 21 in two steps. At first we show that all calculated points are vertices of
�

and then we show that there cannot exist other vertices of
�

.

1) The calculated points are vertices of
�

.

From the first ¬¿o � {�\K rows of
P

it is clear that for every segment at least one variable must be greater
than zero. We define for a feasible subset �NC � and its characteristic vector �U� the following inequal-
ity: ,4� � 2 / D 	È¬¿o � {�\V �
From the definition of

�
we see that this inequality is valid for

�
since the sum of all

D � variables of a
point in

�
is always equal to ¬¿o � {v\K .
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Let �D * D v ,��²2 ù �
be the zero extension of

D � calculated according the algorithm corresponding
to � . We show the following: � �D �]* �Oo � ,4� � 2 / D *�¬Oo � {�\V 0� �
Since �D ù � by construction and ,4� � 2 / �D * ¬Oo � {�\V by definition of � � , the first inclusion � �D �¢C��o � ,4�V�Ä2 / D *�¬¿o � {�\V 0� is trivial.

Now we show � �D �RW �Oo � ,4�X�Ä2 / D *�¬Oo � {�\V 0� .
Suppose there exists another pointzD ù , �No � ,4� � 2 / D *�¬Oo � {�\V 0�N2 c � �D � �
Observe that zD _ *�� for all ¬<4ù � . This implies that zD is another solution to

P � D � *�a , a contradiction
to the construction of �D .

2) There are no other vertices of
�

.

We have seen in the first part of this proof that the constructed points are indeed vertices of
�

. From
Lemma 22 it is now easy to see that there are no other vertices of

�
. W.l.o.g. we can restrict ourselves

to feasible sets � that produce a positive solution �D � of
P � D � * a which is not unique. In this case we

apply Lemma 22, because in this case
P � D � *+� � �S� must have a non-trivial solution. Let �D ù � be the

zero-extension of �D � . Thus �D ù � cannot be a vertex. ·
From the theorem and its proof above we conclude that the non-convex polyhedron

�
can be writ-

ten as a union of convex polytopes. This can be understood in the following way: In the case of the
polyhedron

�:Á
every selection of a triangle of the ingoing pipe combined with a selection of a triangle

of the outgoing pipe defines a small polyhedron. By the zero-extension we get a polyhedron in the space
of all

D
-variables. The non-convex polyhedron

�¹Á
can evidently be understood as the union of all poly-

hedra in the space of all
D

-variables that arise from all possible combinations of a triangle of the ingoing
pipe and a triangle of the outgoing pipe. It is obvious that this idea can be extended to the general case
of polyhedron

�
.

As a side remark we notice that from this observation we can get an easy algorithm in order to con-
struct valid inequalities for

�
from valid inequalities of the convex polytopes whose union is

�
(see

[27]).
Let

� * � Ô °0�1±&Ï&Ï&Ï ± Û � Ô be the union of } ù 4 convex polytopes.

Lemma 23 Let , ; Ô 2 / D 	óö Ô for >i*���/ ����� /7} be a valid inequality for polyhedron
� Ô .

Then � �*�¯
_m°0� "Ø¬Oo¹,

; �_ / ; �_ / ����� / ; Û_ 2 D _�	È" ; �:,Lö � / ö � / ����� / ö Û 2
is valid for

�
.

Proof. In the case }Ä*�� nothing is to show. In the case }p* � we calculate for all
D ù � � û� �*�¯

_m°0� "Ø¬Oo¹,
; �_ / ; �_ 2 D _�	 � �*�¯

_m°0�
; �_ D _.	�ö � 	È" ; �:,Lö � / ö � 2
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Figure 5.6: Building vertices of the polyhedron
�¹Á

and analogous for all
D ù � � û� �S�¯
_m°0� "Ø¬¿o¹,

; �_ / ; �_ 2 D _ 	 � �S�¯
_m°0�

; �_ D _ 	¶ö � 	È" ; �Ã,Lö � / ö � 2 �
We show the general case by induction over } .
Let

� * � Ô °0�1±&Ï&Ï&Ï ± Û å � � Ô * � Ô °0�1±&Ï&Ï&Ï ± Û � Ô ~ � Û å � � We see at one glance

¾ � �*�_�°0� "Ø¬Oo¹, ; �_ / ; �_ / ����� / ; Û å �_ 2 D _6* ¾ � �*�_�°0� "Ø¬OoZYF, ; �_ / ; �_ / ����� / ; Û_ 2k/ ; Û å �_\[ D _	�" ; � Y ,Lö � / ö � / ����� / ö Û 2k/ ö Û å � [ *�" ; �:,Lö � / ö � / ����� / ö Û å � 2 �
·

It is clear that this idea generally only leads to relatively weak inequalities which we can see from
[28] (there the inequality is given for }6* � ) and from the fact that for increasing numbers of polyhedra
we can define sequences of valid inequalities such that the constructed inequality can become weaker
and weaker.

Let us come back to Algorithm 18 with some examples.

Example 24 We consider a simple example in order to demonstrate the essential parts of the used
notation (not all elements because the notation is much more complex than the idea behind it). Let us
consider the following case of polyhedron

�¹Á
(a picture is shown in Figure 5.6. According to the picture

holds: o � *�o � *�� with
� � �� � * � � �� � * � ): Let the matrix

P
be:

P * 7889 � � � � � �� � � � � ���� ��� ��� �<��� �<��� �M���� � � � � �

:<;;=
with

( � * 79 ���������
:= /
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( � * 79 ���������
:= �

Also

' � *�' � * 79 ���
:= �

The vector a becomes

aW* 7889 ����

:<;;= �
We have already mentioned that if we do not want to model the gas flow preservation the last row of

P
can be omitted. We will do this from now on and in all upcoming examples. Because

b ?ø, P 2¹*+� we take
as a first selection �¨�Æ* � � � /k� � � with � � * � ��� and � � * � � / �y� . Here

P � Ý becomes

P � ÝÂ* 79 � � �� � ���� �<��� �M���
:=

and according to our algorithm we have to solve:

P � Ý D � Ý * 79 � � �� � ���� �<��� �M���
:= 79 D ��D � �D �3

:= * 79 ���
:= �

We get as a unique (and also nonnegative) solution:

D � Ý * 79 � �� ��
:= �

The zero-extension of
D � Ý 78888889

��� ��� ��

:<;;;;;;=
is a vertex of

�:Á
.

If we take as a second selection �:�M* � � � /k� � � with � � * � �y� and � � * � � / �y� we have to solve:

P � ß D � ß * 79 � � �� � ���� �<��� �<���
:= 79 D ��D � �D ��

:= * 79 ���
:= �

Here
b ?ø, P � ß 2²*�� and so we know from Theorem 21 that � � does not lead to a vertex, since

� � � � ©+� .
But if we reduce �0� to � 3 * � � � /k� � � with � � * � �y� and � � * � � � we have to solve

P � ç D � ç * 79 � �� ���� �<���
:= ' D ��D � � ) * 79 ���

:= /



CHAPTER 5. CUTTING PLANES AND SEPARATION ALGORITHMS 69

and we get a unique (and nonnegative) solution ' ��]) /
which fulfils all demanded properties that we have pointed out in Algorithm 18. Thus the zero-extension
of this vector 78888889

� �� ���

:<;;;;;;=
yields a vertex of

�¨Á
. We will discuss the general case of

��Á
in the next example in a more detailed

way.

We again consider Algorithm 18 which we apply to polyhedron
�ÂÁ

:

Example 25 We analysise a second time the case of one ingoing and one outgoing pipe described on
page 57. The polyhedron

�
defined on page 62 reduces in this case to the polyhedron

�,�
. We now want

to describe formally the case that we have described numerically in the last example. The form of the
matrix

P
generally reads:

P * 79 ,�> I � 2 / ,�> I � 2 /,T( � 2 / ��,T( � 2 /
:= �

The form of the vectors
D

and a are D * ' D �D � ) /
aW* 79 ���

:= �
It is easy to see that �1	 b ?C, P 2*	 � and

b ?ø, P 2
* � if and only if there exist constants s ��/ s � so that( � * s �x> I � and ( � * s ��> I � . If s � M* s � the polyhedron is empty. In the case s �$* s � we can easily
describe the vertices of

���
. From Algorithm 18 we know that we have to select feasible sets � with� � � � * � � � � * � . All these possible feasible sets lead to a vertex of

�^�
in which the two selectedD � variables in � get the value � (and the not selected

D � variables in
� c � are by construction � ).

Now let
b ?ø, P 2¹* � . So we can select a feasible set � with

� � � � � � � � � 	¶� and there are manifestly the
following three possibilities:� Select one

D � variable from � � and one
D � variable from � � and try to solve the resulting linear

equality system (cf. the case when
b ?ø, P 2<* � above). Here is

� � � � * � � � � * � . The principle
situation is as in Figure 5.7. If ( �� * ( � � we get a vertex for which

D �� * D � � * � and the other
remaining

D � variables are zero, otherwise we don’t get a vertex.� Select the feasible set � such that one
D � variable from the ingoing pipe and two

D � variables
from the outgoing pipe are chosen, i.e., formally it holds

� � � � * ��/ � � � � * � . The situation is
pointed out in Figure 5.8. If ( � � 	 ( �� 	9( �� or ( �� 	 ( �� 	9( � � (see the figure) and ( � � M*�( �� we can
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construct a vertex for which holds (cf. Algorithm 18):D �� * � (5.1)D � � * ( �� �Ø( ��( � � �Ø( �� (5.2)

D �� * ( � � �Ø( ��( � � �Ø( �� (5.3)

The remaining
D � variables are again set to zero.

Proof. This is an easy consequence from our algorithm. The reduced linear equation system
(see

P � D � *+a ) reads D �� * �D � � � D �� * �D �� ( �� � D � � ( � � � D �� ( �� * �
Now we see that under our assumptions

� �� 79 � � �� � �( �� �Ã( � � �¨( ��
:= *X( � � ��( �� M*�� �

And an easy calculation shows that
D �� / D � � / D �� are the unique non-negative solution of the above

linear equation system
P � D � *�a .

Therefore (built again the zero-extension) we have constructed a vertex of
�²Á

. ·

� Select a feasible set � with two selected
D � variables from � � and one

D � variable from � � , in
which case

� � � � *+�z/ � � � � *�� .
The calculation of the non vanishing values of the vertex is analogous to the previous case.

Only these three types of feasible sets � possibly result in vertices of
�,�

because
b ?ø, P 2ª*�� . We will

see an example for a numerical calculation in the next subsection.

One problem while calculating the vertices of polyhedron
P

is that we have to solve linear equation
systems. Because of this we now give a short summary of important cases for which we can give
easy formulas for calculating the vertices. In the following ventilations the type of the in- or outgoing
segments is of no account.

Remark 26 In Example 25 we have classified all cases of the polyhedron
� Á

. We remember that we
got the situation that we could choose the feasible set � such that we selected

(a) one
D

-variable for the in- and one
D

-variable for the outgoing pipe,

(a) one
D

-variable for the in- and two
D

-variables for the outgoing pipe,

(a) two
D

-variables for the in- and one
D

-variable for the outgoing pipe.

We see at one glance that these three cases combined with the formulas for the solution (see (1),(2),(3)
in Example 25) also hold if we take another type of segment instead of pipes since Algorithm 18 works
for arbitrary sets

�
.

Let us consider now
�

again for ¬¿o ingoing and {�\V outgoing segments. We assume matrix
P

to have
full row rank. If we want to guarantee that we can calculate all components of vertices of

�
by such
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formulas we have given in Example 25 matrix
P

must have exactly ¬¿o � {�\K � � rows, i.e., it has the
form

P *

78888888888888889

,�> I � 2 / ,�> I ��2 /
. . . ,�> I �  2 / ,�> I �  å ��2 / ,�> I �  å � 2 /

. . . ,�> I �  å"!$#&% 2 /, 5 � 2 / , 5 � 2 / ����� , 5 _G` 2 / ��, 5 _g` å � 2 / ��, 5 _G` å � 2 / ����� ��, 5 _g` å ced�f 2 /

:<;;;;;;;;;;;;;;;=
For our problem this means if ¬¿o � {v\K î � we get the vertices of polyhedron

�
such that only the first

law of Kirchhoff is modelled. In the case ¬Oo � {�\V Â*�� we also get the polytop which describes the gas
flow preservation of one in- and one outgoing segment and the well known polyhedron

�²Á
. This simple

remark is interesting for us since we can apply the separation algorithm we developed on the basis of
Algorithm 18 for a huger class of situations with very easy instruments.
Let us give the complete formulas for the next complexer situation which apparently occurs when we are
dealing with the situation

b ?C, P 2�*�¬¿o � {�\V � � which means that
P

becomes the form

P *

7888888888888888889

,�> I � 2 / ,�> I �A2 /
. . . ,�> I �  2 / ,�> I �  å � 2 / ,�> I �  å � 2 /

. . . ,�> I �  å"!$#&% 2 /, 5 � 2 / , 5 � 2 / ����� , 5 _ oÄ2 / ��, 5 _G` å � 2 / ��, 5 _G` å � 2 / ����� � , 5 _G` å ced�f 2 /,�_ � 2 / ,�_ � 2 / ����� ,�_ _ o02 / ��,�_ _G` å � 2 / ��,�_ _G` å � 2 / ����� � ,�_ _G` å ced�f 2 /

:<;;;;;;;;;;;;;;;;;=
Matrix

P
again may have full row rank. The most easy and common polyhedron of this type describes

the pressure equality in the node at the endpoint of the ingoing segment and the node at the beginning of
the outgoing segment combined with the first law of Kirchhoff. The other situations that fulfil

b ?C, P 2Æ*¬¿o � {�\V � � are first the sequence of two ingoing and one outgoing segment and second the sequence
of one ingoing and two outgoing segments at each case only the pressure equality in the nodes may be
regarded.
Let us shortly give the formulas in the first case we mentioned for

�
with

P * 7889 ,�> I � 2 / ,�> I � 2 /,T( � 2 / ��,T( � 2 /,E' � 2 / � ,E' � 2 /
:<;;=

with
b ?ø, P 2¹* �

and

aW* 7889 ����

:<;;= �
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We consider the following cases (we remark that we only mention the non-vanishing
D

-variables, see
Algorithm 18):

1. �¥*+� with
� � � � * � � � � *�� . If ( �_ *9( �º and ' �_ *�' �º than we get a vertex with

D �_ * D �º *�� .
2. �¥*+� with

� � � � *���/ � � � � * � . The vertices of this type can be calculated from the vertices of the
polyhedron

�ÃÁ
.

First forget the first law of Kirchhoff. We already know the vertices of the remaining polyhedron�0Á
. If such a vertex fulfils the first law of Kirchhoff we have found a vertex of

�
. Analogously we

now forget the pressure equality condition. We also already know the vertices of the remaining
polyhedron. If such a vertex fulfils the pressure equality condition we have found a vertex of

�
.

3. �¥*+� with
� � � � *+�z/ � � � � *�� . This case can be managed analogously as case � .

4. � * �
with

� � � � *þ�z/ � � � � *þ� . We select the following
D

-variables:
D �_ / D �º / D �Ô / D �Û : FromP � D � *+a we calculate

D �_ * ,T( �Û �$( �º 2Ú,E' �Û �u' �Ô 2¨�¶,T( �Û �$( �Ô 2Ú,E' �Û �u' �º 2,T( �_ �$( �Ô 2Ú,E' �Û �u' �Ô 2:�¶,E' �_ �u' �º 2Ú,T( �Û �$( �Ô 2D �º
*��Y� D �_
D �Ô * ,E' �º �u' �_ 2Ú,T( �Û �$( �º 2 � ,T( �_ �$( �º 2Ú,E' �Û �u' �º 2,T( �_ �$( �º 2Ú,E' �Û �u' �Ô 2:�¶,E' �_ �u' �º 2Ú,T( �Û �$( �Ô 2D �Û *��W� D �Ô

If this solution fulfils �w,La�2 in Algorithm 18 we have found a new vertex (the uniqueness is exactly
the case if ,T( �_ �$( �º 2Ú,E' �Û �u' �Ô 2Ã�¶,E' �_ � ' �º 2Ú,T( �Û �$( �Ô 2 M*�� ).

5. � * �
with

� � � � *���/ � � � � *þ� . We select the following
D

-variables:
D �_ / D �º / D �Ô / D �Û : FromP � D � *+a we calculate D �_ *��D �º<*��M� D �Ô � D �Û

D �Ô * ,T( �_ �$( �º 2Ú,E' �Û �u' �º 2:�¶,T( �Û �$( �º 2Ú,E' �_ �u' �º 2,T( �Ô �$( �º 2Ú,E' �Û �u' �º 2¨�¶,E' �Ô � ' �º 2Ú,T( �Û �$( �º 2
D �Û * ,E' �º �u' �Ô 2Ú,T( �_ �$( �º 2¨�¶,T( �Ô �$( �º 2Ú,E' �_ �u' �º 2,T( �Ô �$( �º 2Ú,E' �Û �u' �º 2:�¶,E' �Ô �u' �º 2Ú,T( �Û �$( �º 2

If this solution fulfils �w,La�2 in Algorithm 18 we have found a new vertex ( the uniqueness is exactly
the case if ,T( �Ô �$( �º 2Ú,E' �Û �u' �º 2Ã�¶,E' �Ô �u' �º 2Ú,T( �Û �$( �º 2 M*�� ).

6. �¥* �
with

� � � � *+�z/ � � � � *�� . Of course this case is principle the same as case � .
In the other two cases the situation is analogous but these are of minor interest.
Complexer situations are perfunctorily for us (and the calculation of the vertices becomes much more
difficult) and so we can implement Algorithm 18 without using a general Gaussian algorithm.

We have already mentioned that the vertices of course can be calculated with the same formulas in
the case that one or more of the segments are (switched on) compressors or pipes. So w.l.o.g. we
sometimes just restricted us to the case of pipes. ·
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Figure 5.9: Example for comparing vertices and facets

5.3.2 The Construction of Cuts and the Separation Algorithm

The algorithm we have described above can now be used to construct cutting planes for our MIP model.
Unfortunately, we do not know the facets that are defining

�
, since they are relatively difficult to de-

scribe even in quite easy situations like the sequence of two pipes described at the beginning of this
chapter.

Here we give a example for this situation. Clearly in more complicated or in realistic situations for
the Transient Technical Optimisation the problem of describing the facets normally becomes bigger and
bigger. As an example let us consider the polyhedron

�ÂÁ
in the case which is described in Figure 5.9.

According to our algorithm it is very easy to calculate the vertices given in the tables on page 75 and 76
(c.f. also Example 25).

After that (see page 77) we give the complete description of polyhedron
�ÆÁ

in this case (the facets
have been calculated with the program Porta Version 1.3, see [6]).

We remember since the structure of the facets is much more complicated than the structure of the ver-
tices and the complexity usually grows with the complexity of the studied polyhedron it is not very
easy to calculate general formulas for some classes of facets which can be useful in a branch-and-cut
algorithm.

We remark that in the complete description the first three equations are equal to the three equations
in the description of

�
. The other inequalities (without the inequalities which define non-negativity

constraints for
D � variables) are inequalities resulting from the set/triangle conditions.
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` aba ` abc ` abd ` aIe ` abf ` abg ` aIh ` abi ` abj ` abak ` aba a ` aba c ` cba ` cbc ` cbd ` cIe ` cbf ` cbg ` cIh ` cbi ` cbj ` cbak ` cba a ` cba c
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3/5 0 0 2/5
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3/ 5 0 0 0 2/ 5
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3/ 5 0 0 2/ 5 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3/ 5 0 0 0 2/ 5 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3/ 5 0 0 2/ 5 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2/ 5 0 0 3/ 5
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2/ 5 0 0 0 3/ 5
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2/ 5 0 0 3/ 5 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2/ 5 0 0 0 3/ 5 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2/ 5 0 0 3/ 5 0 0
0 0 0 0 0 0 0 0 1/ 3 0 0 2/ 3 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1/ 3 0 0 2/ 3 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1/ 3 0 0 2/ 3 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4/ 5 0 0 1/ 5 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4/ 5 0 0 0 1/ 5 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4/ 5 0 0 1/ 5 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4/ 5 0 0 0 1/ 5 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4/ 5 0 0 1/ 5 0 0 0 0 0
0 0 0 0 0 0 0 4/ 9 0 0 0 5/ 9 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 4/ 9 0 0 0 5/ 9 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 4/ 9 0 0 0 5/ 9 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 6/11 0 0 5/11 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 6/11 0 0 5/11 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 6/11 0 0 5/11 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1/ 2 0 0 1/ 2 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1/ 2 0 0 0 1/ 2 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1/ 2 0 0 1/ 2 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/ 2 0 0 0 1/ 2 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/ 2 0 0 1/ 2 0 0 0 0 0
0 0 0 0 0 1/ 4 0 0 3/ 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1/ 4 0 0 3/ 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1/ 4 0 0 3/ 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 3/ 5 0 0 2/ 5 0 0 0 0 0 0
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` aba ` abc ` abd ` aIe ` abf ` abg ` aIh ` abi ` abj ` abak ` aba a ` aba c ` cba ` cbc ` cbd ` cIe ` cbf ` cbg ` cIh ` cbi ` cbj ` cbak ` cba a ` cba c
0 0 0 0 0 1 0 0 0 0 0 0 0 3/ 5 0 0 0 2/ 5 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 3/ 5 0 0 2/ 5 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 3/ 5 0 0 0 2/ 5 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 3/ 5 0 0 2/ 5 0 0 0 0 0 0 0 0
0 0 0 0 1/ 3 0 0 0 2/ 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1/ 3 0 0 0 2/ 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1/ 3 0 0 0 2/ 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 5/ 9 0 0 4/ 9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 5/ 9 0 0 4/ 9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 5/ 9 0 0 4/ 9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 2/ 5 0 0 3/ 5 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 2/ 5 0 0 0 3/ 5 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 2/ 5 0 0 3/ 5 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 2/ 5 0 0 0 3/ 5 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 2/ 5 0 0 3/ 5 0 0 0 0 0 0 0 0
0 0 1/ 3 0 0 2/ 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1/ 3 0 0 2/ 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1/ 3 0 0 2/ 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 2/ 5 0 0 0 3/ 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 2/ 5 0 0 0 3/ 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 2/ 5 0 0 0 3/ 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1/ 2 0 0 1/ 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1/ 2 0 0 1/ 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1/ 2 0 0 1/ 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
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EQUALITIES
( 1) -6

l m	n -8 l m	o+10

l m�p+6

l m	q+4

l m	r+20

l m�s+15

l m	t+12

l m	u+30

l m	mv +26

l m	m m+24

l m	m n -10

l n�p -10

l n	q -10

l n	r -20

l n�s -20

l n	t -20

l n	u -30

l n	mv -30

l n	m m -30

l n	m n = 0
( 2) 30

l m�m+36

l m�n+38

l m�o+20

l m	p+24

l m�q+26

l m�r+10

l m	s+15

l m�t+18

l m�u+4

l m�m m+6

l m�m n -30

l n�m -30

l n�n -30

l n�o -20

l n	p -20

l n�q -20

l n�r -10

l n	s -10

l n�t -10

l n�u = 0
( 3)

l n	m+ l n	n+ l n	o+ l n�p+ l n	q+ l n	r+ l n�s+ l n	t+ l n	u+ l n	mv +

l n	m m+ l n	m n = 1

INEQUALITIES
( 1) -60

l m�p -270

l m�s -135

l mwt -90

l mwu -580

l mwmv -432

l mwm m -378

l mwm n -90

l nwn -90

l nwo +60

l nwr+270

l n�s+210

l nwt+210

l nwu+540

l nwmv +540

l nwm m+580

l nwm n x
0

( 2) -30

l m�p -10

l mwq -110

l m�s -55

l mwt -40

l mwu -265

l mwmv -191

l mwm m -154

l mwm n -20

l nwn -20

l nwo +30

l nwr+110

l n�s+80

l nwt+80

l nwu+220

l nwmv +220

l nwm m+265

l nwm n x
0

( 3) -30

l m�p -10

l m	q -110

l m�s -55

l m	t -40

l m	u -240

l m	mv -176

l m	m m -154

l m	m n -20

l n	n -20

l n	o +30

l n	r+110

l n�s+80

l n	t+80

l n	u+220

l n	mv +220

l n	m m+240

l n	m n x
0

( 4) -30

l m	p -10

l m�q -110

l m	s -55

l m�t -40

l m�u -220

l m�mv -176

l m�m m -154

l m�m n -20

l n�n -20

l n�o +30

l n�r+110

l n	s+110

l n�t+80

l n�u+220

l n�mv +220

l n�m m+220

l n�m n x
0

( 5) -20

l m�p -90

l m�s -45

l m	t -30

l m	u -210

l m	mv -154

l m	m m -126

l m	m n -30

l n	n -30

l n	o +20

l n	r+90

l n�s+70

l n	t+70

l n	u+180

l n	mv +180

l n	m m+210

l n	m n x
0

( 6) -20

l m	p -90

l m	s -45

l m�t -30

l m�u -180

l m�mv -144

l m�m m -126

l m�m n -30

l n�n -30

l n�o +20

l n�r+90

l n	s+90

l n�t+70

l n�u+180

l n�mv +180

l n�m m+180

l n�m n x
0

( 7) -12

l m�p -90

l m�s -45

l m	t -18

l m	u -212

l m	mv -144

l m	m m -126

l m	m n -18

l n	n -18

l n	o +12

l n	r+90

l n�s+42

l n	t+42

l n	u+180

l n	mv +180

l n	m m+212

l n	m n x
0

( 8) -12

l m	q+40

l m�s+15

l m	t+90

l m	mv +70

l m	m m+60

l m	m n -40

l n�s -40

l n	t -40

l n	u -90

l n	mv -90

l n	m m -90

l n	m n x

0
( 9) -24

l m	s - 9

l m�t -70

l m�mv -42

l m�m m -36

l m�m n - 6

l n	p+24

l n	s+54

l n�mv +54

l n�m m+70

l n�m n x

0
( 10) -24

l m	s - 9

l m�t -70

l m�mv -42

l m�m m -36

l m�m n -6 l n�q -6 l n�r+24

l n�u+70

l n�mv +70

l n�m m+54

l n�m n x

0
( 11) -15

l m�s -55

l mwmv -33

l mwm m -27

l mwm n -15

l n�p+15

l n�s+45

l nwmv +45

l nwm m+55

l nwm n x

0
( 12) -15

l m	s -55

l m�mv -33

l m�m m -27

l m�m n -15

l n�q -15

l n�r+15

l n�u+55

l n�mv +55

l n�m m+45

l n�m n x

0
( 13) -10

l m�s -45

l mwmv -27

l mwm m -18

l mwm n -10

l n�p+10

l n�s+30

l nwmv +30

l nwm m+45

l nwm n x

0
( 14) -10

l m�s -45

l m	mv -27

l m	m m -18

l m	m n -10

l n	q -10

l n	r+10

l n	u+45

l n	mv +45

l n	m m+30

l n	m n x

0
( 15) 10

l m�s+30

l m	mv +22

l m	m m+15

l m	m n -10

l n�s -10

l n	t -10

l n	u -30

l n	mv -30

l n	m m -30

l n	m n x

0
( 16) 6

l m	p+16

l m	s+11

l m�t+8

l m�u+26

l m�mv +22

l m�m m+20

l m�m n -6 l n	p -6 l n�q -6 l n�r -16

l n	s -16

l n�t -16

l n�u -26

l n�mv -26
l n�m m -26

l n�m n x
0

( 17) 12

l m�p+42

l m�s+27

l m	t+16

l m	u+72

l m	mv +60

l m	m m+54

l m	m n -12

l n�p -12

l n	q -12

l n	r -42

l n�s -42

l n	t -42

l n	u -72
l n	mv -72

l n	m m -72

l n	m n x
0

( 18) 36

l m	p+136

l m	s+81

l m�t+48

l m�u+246

l m�mv +202

l m�m m+180

l m�m n -36

l n	p -36

l n�q -36

l n�r -136

l n	s -136
l n�t -136

l n�u -246

l n�mv -246

l n�m m -246

l n�m n x

0
( 19) -

l m	o x

0
( 20) -

l m�p x

0
( 21) -

l mwq x

0
( 22) -

l m	s x

0
( 23) -

l mwt x

0
( 24) -

l m�u x

0
( 25) -

l m�mv x

0
( 26) -

l m	m m x

0
( 27) -

l m	m n x

0
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( 28) -

l n	n x

0
( 29) -

l n	o x

0
( 30) -

l n	p x

0
( 31) -

l n	q x

0
( 32) -

l nwr x

0
( 33) -

l n	s x

0
( 34) -

l nwt x

0
( 35) -

l nwu x

0
( 36) -

l n	mv x

0
( 37) -

l n�m m x

0
( 38) -

l n	m n x

0
( 39) 2

l m�o - l m�r x

0
( 40) +

l m	mv -

l n	mv -

l n	m m - l n	m n x

0
( 41) -8

l m�s -3 l m	t -30

l m	mv -18

l m	m m -12

l m	m n -2 l n�p+8

l n�s+18

l n	mv +18

l n	m m+30

l n	m n x

0
( 42) -8

l m	s -3 l m�t -18

l m�mv -14

l m�m m -12

l m�m n -2 l n	p+8

l n	s+18

l n�mv +18

l n�m m+18

l n�m n x

0
( 43) -2

l m�mv -3

l n	s+2

l n�mv x

0
( 44) -3

l mwmv -

l mwm m -2 l n�s+3

l nwmv x

0
( 45) - 8

l m	s - 3

l m�t -30

l m�mv -18

l m�m m -12

l m�m n -2 l n�q -2 l n�r +8

l n�u+30

l n�mv +30

l n�m m+18

l n�m n x

0
( 46) - 8

l m�s - 3

l mwt -18

l mwmv -14

l mwm m -12

l mwm n - 2

l n�p -2 l nwq+8

l n�s+8

l nwt+18

l nwmv +18

l nwm m+18

l nwm n x

0
( 47) -8

l m�s -3 l m	t -18

l m	mv -14

l m	m m -12

l m	m n -2 l n	q -2 l n	r +8

l n	u+18

l n	mv +18

l n	m m+18

l n	m n x

0
( 48) -3

l m	mv -

l m	m m -2 l n	t -2 l n	u+3

l n	m n x

0
( 49) -3

l m�mv -

l m�m m -2 l n	s -2 l n�t+3

l n�mv +3

l n�m m x

0
( 50) -2

l m	mv -3

l n	t -3 l n	u+2

l n	m n x

0
( 51) -2

l m�mv -3

l n	s -3 l n�t+2

l n�mv +2

l n�m m x

0
( 52) 8

l m	o -10

l m�p -6 l m	q -4 l m	r -20

l m�s -15

l m	t -12

l m	u -30

l m	mv -26

l m	m m -24

l m	m n+10

l n�p+10

l n	q+10

l n	r+20
l n�s+20

l n	t+20

l n	u+30

l n	mv +30

l n	m m+30

l n	m n x

0
( 53) -4

l m	q+10

l m�s+5

l m	t+20

l m	mv +16

l m	m m+14

l m	m n -10

l n�s -10

l n	t -10

l n	u -20

l n	mv -20

l n	m m -20
l n	m n x

0
( 54) -4

l m�p -30

l m�s -15

l mwt -6 l mwu -84

l mwmv -56

l mwm m -42

l mwm n -6 l nwn -6 l nwo+4

l nwr+30

l n�s+14

l nwt+14
l nwu+60

l nwmv +60

l nwm m+84

l nwm n x

0
( 55) -4

l m	p -30

l m	s -15

l m�t -6 l m�u -60

l m�mv -48

l m�m m -42

l m�m n -6 l n�n -6 l n�o+4

l n�r+30

l n	s+30
l n�t+14

l n�u+60

l n�mv +60

l n�m m+60

l n�m n x

0
( 56) -4

l m�p -14

l m�s - 9

l mwt -6 l mwu -24

l mwmv -20

l mwm m -18

l mwm n -6 l nwn -6 l nwo+4

l nwr+14

l n�s+14
l nwt+14

l nwu+24

l nwmv +24

l nwm m+24

l nwm n x

0
( 57) -3

l m	p - l m�q -20

l m	s -10

l m�t -4 l m�u -58

l m�mv -38

l m�m m -28

l m�m n -2 l n�n -2 l n�o+3

l n�r+20
l n	s+8

l n�t+8

l n�u+40

l n�mv +40

l n�m m+58

l n�m n x

0
( 58) -3

l m	p - l m�q -20

l m	s -10

l m�t -4 l m�u -48

l m�mv -32

l m�m m -28

l m�m n -2 l n�n -2 l n�o+3
l n�r+20

l n	s+8

l n�t+8

l n�u+40

l n�mv +40

l n�m m+48

l n�m n x

0
( 59) -3

l m�p - l m	q -20

l m�s -10

l m	t -4 l m	u -40

l m	mv -32

l m	m m -28

l m	m n -2 l n	n -2 l n	o+3
l n	r+20

l n�s+20

l n	t+8

l n	u+40

l n	mv +40

l n	m m+40

l n	m n x

0
( 60) -6

l m�p -2 l m	q -16

l m�s -11

l m	t -8 l m	u -26

l m	mv -22

l m	m m -20

l m	m n -4 l n	n -4 l n	o+6

l n	r+16

l n�s+16

l n	t+16

l n	u+26

l n	mv +26

l n	m m+26

l n	m n x

0
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( 61) 4

l m�s+9

l m	mv +7

l m	m m+6

l m	m n -4 l n�s -4 l n	t -4 l n	u -9 l n	mv -9

l n	m m -9 l n	m n x

0
( 62) 4

l m	o+4

l m�p -2 l m	r+14

l m�s+9

l m	t+6

l m	u+24

l m	mv +20

l m	m m+18

l m	m n -4 l n�p -4 l n	q -4 l n	r -14

l n�s -14

l n	t -14

l n	u -24

l n	mv -24

l n	m m -24

l n	m n x

0
( 63) -5

l m�t+10

l m�mv +6

l m�m m -10

l n�mv -10

l n�m m -10

l n�m n x

0
( 64) -10

l m�s - 5

l m	t -2 l m	u -20

l m	mv -16

l m	m m -14

l m	m n +10

l n�s+10

l n	t+10

l n	u+20

l n	mv +20

l n	m m+20

l n	m n x

0
( 65) -5

l mwmv -3

l mwm m -2 l mwm n+5

l nwmv +5

l nwm m+5

l nwm n x

0
( 66) -5

l m	s -15

l m�mv -11

l m�m m -9 l m�m n -5 l n	p+5

l n	s+15

l n�mv +15

l n�m m+15

l n�m n x

0
( 67) -5

l m�s -15

l mwmv -11

l mwm m -9 l mwm n -5 l nwq -5 l nwr+5

l nwu+15

l nwmv +15

l nwm m+15

l nwm n x

0
( 68) -5

l m�s -15

l mwmv -11

l mwm m - 9

l mwm n -5 l n�p -5 l nwq+5

l n�s+5

l nwt+15

l nwmv +15

l nwm m+15

l nwm n x

0
( 69) 5

l m�s -3 l m	u+15

l m	mv +11

l m	m m+9

l m	m n -5 l n�s -5 l n	t -5 l n	u -15

l n	mv -15

l n	m m -15

l n	m n x

0
( 70) +

l n�n+ l n�o+ l n	p+ l n�q+ l n�r+ l n	s+ l n�t+ l n�u+ l n�mv +

l n�m m+ l n�m n x

1
( 71) -3

l m�p - l m	q -20

l m�s -10

l m	t -4 l m	u -58

l m	mv -38

l m	m m -28

l m	m n+2

l n	n+2

l n	o+5

l n�p+2

l n	q+2

l n	r+10

l n�s+10

l n	t+22

l n	u+60

l n	mv +60

l n	m m+42

l n	m n x
2

( 72) -3

l m	p - l m�q -20

l m	s -10

l m�t -4 l m�u -48

l m�mv -32

l m�m m -28

l m�m n+2

l n�n+2

l n�o+5

l n	p+2

l n�q+2

l n�r+10

l n	s+10

l n�t+22

l n�u+50

l n�mv +50

l n�m m+42

l n�m n x
2

( 73) -3

l m�p - l m	q -20

l m�s -10

l m	t -4 l m	u -40

l m	mv -32

l m	m m -28

l m	m n+2

l n	n+2

l n	o+5

l n�p+2

l n	q+2

l n	r+10

l n�s+10

l n	t+22

l n	u+42

l n	mv +42

l n	m m+42

l n	m n x
2

( 74) -6

l m�p -2 l m	q -16

l m�s -11

l m	t -8 l m	u -26

l m	mv -22

l m	m m -20

l m	m n+4

l n	o+10

l n�p+10

l n	q+4

l n	r+20

l n�s+20

l n	t+20

l n	u+30

l n	mv +30

l n	m m+30

l n	m n x
4

( 75) -6

l m	p -2 l m�q -16

l m	s -11

l m�t -8 l m�u -26

l m�mv -22

l m�m m -20

l m�m n+4

l n�n+4

l n�o+10

l n	p+4

l n�q+4

l n�r+20

l n	s+20

l n�t+20

l n�u+30

l n�mv +30

l n�m m+30
l n�m n x

4
( 76) -2

l m�o+16

l m	p+12

l m�q+10

l m�r+26

l m	s+21

l m�t+18

l m�u+36

l m�mv +32

l m�m m+30

l m�m n -10

l n	p -10

l n�q -10

l n�r -20

l n	s -20

l n�t -20

l n�u -30
l n�mv -30

l n�m m -30

l n�m n x
6

( 77) -4

l m�p -30

l m�s -15

l mwt -6 l mwu -84

l mwmv -56

l mwm m -42

l mwm n+6

l nwn+6

l nwo+10

l n�p+6

l nwq+6

l nwr+20

l n�s+20

l nwt+36

l nwu+90

l nwmv +90
l nwm m+66

l nwm n x
6

( 78) -4

l m	p -30

l m	s -15

l m�t -6 l m�u -60

l m�mv -48

l m�m m -42

l m�m n+6

l n�n+6

l n�o+10

l n	p+6

l n�q+6

l n�r+20

l n	s+20

l n�t+36

l n�u+66

l n�mv +66
l n�m m+66

l n�m n x
6

( 79) -4

l m�p -14

l m�s - 9

l mwt -6 l mwu -24

l mwmv -20

l mwm m -18

l mwm n+6

l nwo+10

l n�p+10

l nwq+6

l nwr+20

l n�s+20

l nwt+20

l nwu+30

l nwmv +30
l nwm m+30

l nwm n x
6

( 80) -4

l m�p -14

l m�s - 9

l m	t -6 l m	u -24

l m	mv -20

l m	m m -18

l m	m n+6

l n	n+6

l n	o+10

l n�p+6

l n	q+6

l n	r+20

l n�s+20

l n	t+20

l n	u+30
l n	mv +30

l n	m m+30

l n	m n x
6

( 81) -12

l m�p -90

l m�s -45

l m	t -18

l m	u -212

l m	mv -144

l m	m m -126

l m	m n+18

l n	n+18

l n	o+30

l n�p+18

l n	q+18

l n	r+60

l n�s+60
l n	t+108

l n	u+230

l n	mv +230

l n	m m+198

l n	m n x

18
( 82) -30

l m	p -10

l m�q -110

l m	s -55

l m�t -40

l m�u -265

l m�mv -191

l m�m m -154

l m�m n+20

l n�n+20

l n�o+50

l n	p+20

l n�q+20
l n�r+100

l n	s+100

l n�t+130

l n�u+285

l n�mv +285

l n�m m+240

l n�m n x

20
( 83) -30

l m�p -10

l m	q -110

l m�s -55

l m	t -40

l m	u -240

l m	mv -176

l m	m m -154

l m	m n+20

l n	n+20

l n	o+50

l n�p+20

l n	q+20
l n	r+100

l n�s+100

l n	t+130

l n	u+260

l n	mv +260

l n	m m+240

l n	m n x

20
( 84) -30

l m	p -10

l m�q -110

l m	s -55

l m�t -40

l m�u -220

l m�mv -176

l m�m m -154

l m�m n+20

l n�n+20

l n�o+50

l n	p+20
l n�q+20
l n�r+100

l n	s+100

l n�t+130

l n�u+240

l n�mv +240

l n�m m+240

l n�m n x

20
( 85) -20

l m�p -90

l m�s -45

l m	t -30

l m	u -210

l m	mv -154

l m	m m -126

l m	m n+30

l n	n+30

l n	o+50

l n�p+30

l n	q+30
l n	r+100

l n�s+100

l n	t+120

l n	u+240

l n	mv +240

l n	m m+210

l n	m n x

30
( 86) -20

l m�p -90

l m�s -45

l m	t -30

l m	u -180

l m	mv -144

l m	m m -126

l m	m n+30

l n	n+30

l n	o+50

l n�p+30

l n	q+30
l n	r+100

l n�s+100

l n	t+120

l n	u+210

l n	mv +210

l n	m m+210

l n	m n x

30
( 87) -60

l m�p -270

l m�s -135

l mwt -90

l mwu -580

l mwmv -432

l mwm m -378

l mwm n+90

l nwn+90

l nwo+150
l n�p+90
l nwq+90

l nwr+300

l n�s+300

l nwt+360

l nwu+670

l nwmv +670

l nwm m+630

l nwm n x

90
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In this example we can already see the increasing complexity of the facets of
�²Á

while the complexity
of the vertices increases slower. In realistic cases which have to be examined in our MIP-models the
facets are much complexer even than in this case.
It is clear from this example that we cannot give an example for a realistic situation in a gas network.
The following table gives an impression how the complexity of the vertices and the facets of

�WÁ
in-

creases with the increasing number of grid points.
The first column describes the number of triangles (the sum in the in- and outgoing pipe), the second
column the number of

D � variables, the third column describes the number of vertices, the fourth the
number facet-defining inequalities and the last column the maximal coefficient within the facet-defining
inequalities. The example we have already presented can be found as the case y* D *+� � �y D

vertices facets max. coeff.� ��� ��� �
� ������ ��� ��� ��� ������ �
� � � � � � ���� �
� � � � � ���� � � � ��� ��� �F�N���� ��� � � � ��� � ��� ���F� � �
We remark that in our test calculations we need

�¹Á
with at least y î ��� and

D î ��� . What on earth the
facets in such a situation will look like?
We have tested several other examples and usually we got the situation that if we add to

�²Á
the first law

of Kirchhoff the number of vertices and facets is lower than in the case above but the coefficients of the
facets are getting worse (but this cannot be proved in general).

So we cannot yet calculate the facets until now but –blessing in disguise– we have seen that we can
calculate the vertices of the polyhedron

�
. Now it is on time to show what we can do with them.

In order to use the vertices it is first very important to see that in all interesting cases there are only
polynomially many of vertices which we can calculate algorithmically in addition.

Lemma 27 For the polyhedron
�

(with the usual definitions and notations as used before) exist numbers}e/ s such that the maximal number of vertices of
�

is less than or equal to s } _g` å ced�f .
Proof. Define a number }Ð� as

} � ûT* _g` å ced�fz
º °0� o º (5.4)

where the values o º /O¼|* ��/ �z/ ����� /1¬¿o � {�\K were defined as the number of subsets in which the set ofD � variables of the in- and outgoing segments are divided. It is clear that }Z� is the number of possible
combinations of subsets � _Ô from all in- and outgoing segments were from every segment exactly one
subset according to Algorithm 18 is taken. We remark that in the special case

�²Á
the values o º are the

number of triangles of the triangulation for the in- and outgoing pipe.
It is necessary for a vertex that the non vanishing

D � variables belong to exactly one such subset for
each segment. Let "n	 b ?ø, P 2 be the maximal number of non vanishing

D � variables as it was pointed
out in Algorithm 18 (remark that this number already has been calculated). Only in order to blow up the
notation not too much we define for ¼ ù � ��/ �z/ ����� /1¬¿o � {�\K K� numbers � º� h ¦ :� º� h ¦ ûT*�" ; � � � � º� � / � � º� � / ����� / � � º`<� � � �
Then take for ¼ ùk� ��/ �z/ ����� /1¬¿o � {�\K K� variables � º which can be positive (natural) numbers and after
that define a number s as: s ûT* ¯{ ¡T¢ � �O� ��A| Ý ¦ �~}í� _G` å ced�fz

º °0� ' � º� h ¦� º )
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Figure 5.10: Example for comparing vertices and facets

We remark that by construction ¾ _G` å ced�fº °0� � º î ¬¿o � {�\K .
The interpretation of s is as follows:s is an upper bound for the maximal number of possible vertices for the selection of subsets in (4). This
is clear because we sum over all selections of

D � variables (resp. the chosen subsets in � ) for which the
number of selected

D � variables is not greater than " . Additionally the product of the binomial coeffi-
cients calculates the maximal number of possibilities how we can choose the ¾ _G` å c×d�fº °0� � º D � variables
out of the sets of

D � variables belonging to the selected feasible subsets. We conclude that the number
of vertices cannot be greater than s } � .
Define }0ûT*�" ; � � oÃ��/1oÄ�A/ ����� /1op_G` å ced�fª� �
Summarising our argumentation we finally conclude that the number of vertices cannot be greater thans } _G` å ced�f . ·
Note that a trivial upper bound for s is

s *+� { ¡T¢ � �O� ��A| Ý J �� ��� �
But this value for s is a good deal worse than the (even not quite good) value we have given in the proof
of Lemma 27.

Now let ¬¿o and {�\K be constants. Let also " be a constant which implies (see the last proof) that
also s becomes a constant. Then the upper bound in Lemma 27 only depends on } where } describes
the number of subdivisions of the grid. We see that in the case of polyhedron

�ÆÁ
the polynomiality

of Algorithm 18 follows since " * � . Also the polynomiality of Algorithm 18 in the general case of
polyhedron

�
follows. The estimation in the above lemma will be much bigger than the real number of

vertices in the polyhedron. For the little example in Figure 5.10 we obtain:

s * ' � � ) ' � � ) � ' � � ) ' �� ) � ' �� ) ' � � ) *+�F� �
and }Ä* �

, and thus the maximal number of vertices is �F�J� � � å � * � ��� . Indeed there are only 16 vertices.
Although our estimation is bad it suffices to show that the vertices can be calculated in polynomial time.
The number of vertices is usually noticeable lower than the upper bound calculated in Lemma 27. To
give a reason for this consider the following



CHAPTER 5. CUTTING PLANES AND SEPARATION ALGORITHMS 82

Lemma 28 Let �M/ �� be two feasible sets (of
D � variables) in Algorithm 18 with �^C �� . If both sets

lead to a vertex of
�

according to Algorithm 18 they are identical.

Proof. A vertex of
�

regarding to � is the zero-extension of a unique, nonnegative and not vanishing
solution of

P � D � * a (see the description of the algorithm). The same holds for �� . Adding to the
solution of

P � D � * a the
D � variables of �� _5c � _ for all ¬ ù � ��/ �z/ ����� /1¬¿o � {�\V 0� which we set to zero.

We get a solution of
P��� D �� *+a . This solution must be the unique solution of

P��� D �� *+a by assumption.
Analogously we argue when we start from a vertex calculated from �� . If there would be a vertex be-
longing to the selection � we can conclude in the same way as above that the vertices must be equal. ·
Lemma 28 has an interesting consequence: If we have found a vertex for a feasible set � (of a se-
lection of

D � variables) it is not necessary to search for vertices in a superset of � . Therefore we can
start with the feasible sets in which we take exactly one

D � variable for each segment, i.e.,
� � _ � *�� » ¬ ù� ��/ �z/ ����� /1¬¿o � {�\V 0� , and then look for “bigger” (with respect to set inclusion) feasible sets of selectedD � variables. In this way we can find all needed vertices in a systematic way.

Another possibility is to start with feasible sets � for which
� � � * b ?ø, P 2 holds. If for such a set a vertex

is found you do not need to search for a vertex in any subset of this set. This procedure starts from the
“biggest” selections whereas the first one starts from the “smallest”. In realistic cases (of course you
can always construct some pathological cases) this strategy will find the vertices much faster as we have
studied in the case of a sequence of two pipes where we modelled the gas flow equation. It turns out that
in data sets from gas networks mostly

b ?ø, P 2Â* b ?ø, P � 2 holds for a feasible set � .

For the polyhedron
�¨Á

Lemma 28 has a nice consequence for the maximal number of vertices:

Lemma 29 An upper bound for the number of vertices of
� Á

is

�:oÃ�íoÄ� �
Proof. We have described the possibilities for constructing vertices of the polyhedron

� Á
. We have

seen that for each choice of two triangles there are � possibilities for the selection of one
D � variable

from the ingoing pipe and one
D � variable from the outgoing pipe, i.e.,

� � � � * � � � � *�� . Now either this
or one of the extensions where we add one

D � variable either in the chosen triangle of the ingoing pipe
or the chosen triangle of the outgoing pipe may result in a vertex, cf Lemma 28. From this argument
directly follows Lemma 29. ·
Note from Lemma 27 we just obtain a bound of �F�0oÂ�íoÄ� , since

s *(' � � ) ' � � ) � ' � � ) ' �� ) � ' �� ) ' � � ) *+�F� �
Let us come back now to our primal aim.
All the previous ventilations give us the possibility to develop the following separation algorithm for�

:
Let 5 ��/ ����� / 5 Ô be the constructed vertices for

�
(in realistic situations they can be calculated very fast

as we have described above).
Let �D be an optimal LP-solution to be cut off. We look for a cut of the form

; / D 	¶ö by solving

S �Y*�" ; � ; / �D � ö% �  � ; / 5 _h	óö for ¬Ã*���/ ����� / > �
We remark that w.l.o.g we can assume ö ù � �-/���/��<��� .
Let ,ª�; /+�ö¨2 be such that �; / �D � �ö * S � .

(a) �; / D 	 �ö is valid for
�

.
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Proof. We know from the theory of linear optimisation that every feasible point of the polytope�
can be combined as a convex combination of its vertices 5 ��/ 5 ��/ ����� / 5 Ô (this is correct although�
is not convex; we have to remember that for a nonconvex polyhedron not every convex combi-

nation of a vertex is a point of
�

but that for every point in
�

there exists a convex combination
of vertices of

�
). That is for

D � ù �
there exist nonnegative real numbers ÷ ��/ ÷ ��/ ����� / ÷ Ô with¾ Ô_m°0� ÷ _6*�� such that: D � * Ô¯

_m°0�
÷ _ 5 _ �

We then calculate:�; / D � * �; / Ô¯
_m°0�

÷ _ 5 _p* Ô¯
_m°0�

÷ _1,ª�; /05 _¿2�	 Ô¯
_m°0�

÷ _x�ö�*i�ö Ô¯
_m°0�

÷ _p*i�ö �
Therefore �; / D 	 �ö is valid for

�
. ·

(b) There exists a violated cut if and only if S �]©�� .
Proof. If S � ©ó� then due to (a) �; / D 	�ö is such a cut. On the other hand, suppose z; / D 	^zö is
a valid inequality violated by �D then S � î z; / �D � �öX©�� . ·

We remark that this algorithm can only separate points outside of RIS �6T�, � 2 . Since in our case generally� | RIS �yT , � 2 (remember that
�

is not convex) we see that we will not be able to cut off all points
that do not fulfil the set conditions. Nevertheless the separation algorithm can be helpful for practical
problems.

Additionally we give an easy application of the last proof. Let us assume that the LP-solution fulfils
the set condition. Of course in this situation we do not need to use our separation algorithm. This is
clear because we know (possibly after a suitable rearrangement of the vertices) that we can write �D in
the form �D * �¯

ÛT°ø`
÷ Û 5 Û

with ��	�o 	�"L	+> and ¾ � Ûg°ø` ÷ Û * � � In the same way as in the last proof we get S � 	�� and so we
have shown that in this case expectedly there cannot be a violated cut.

While using the separation algorithm for our test calculations it turned out to be effective to set ö9*¸� .
So we get a linear program of the form

Í���� ; / �DP ; 	´> I ��� (LP)

where
P

is a matrix whose number of rows is equal the number of calculated vertices of
�

, we may call
it
� � and the number of columns is

� � �
.

If we build the dual linear program we get

Í�Ì��?> I � ���b�õ / P * �D / (DLP)õ î �
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ingoing pipe                                                                                        outgoing pipe
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Figure 5.11: Example for separation algorithm

with suitable õ .
(DLP) is the dual linear program of (LP). From the duality theorem of linear programming we
know that (LP) has an optimal solution iff (DLP) has an optimal solution and then these values are equal.
This fact can be very important for our problem. If

� � is a good deal bigger than
� � �

(DLP) is easier to
solve than (LP).
For ö *�� or ö *���� the situation is analogous.
Let us give an example for the separation algorithm:

Example 30 As an example let us consider the polyhedron
�

for one in- and one outgoing pipe with
pressure equality in the nodes and first law of Kirchhoff. For the set condition which is described in
Figure 5.11 we consider the following polyhedron� *�, D �� � D �� � D �3 � D �� � D �Ç � D �ô *��D � � � D �� � D �3 � D �� � D �Ç � D �ô *����� D �� � � � D �� � ��� D �3 � ��� D �� � ��� D �Ç � � � D �ô *+���í, D �� � D �� � D �3 2 � ���í, D �� � D �Ç � D �ô 2����� D �� � ����� D �� � ����� D �3 � ����� D �� � ����� D �Ç � ����� D �ô *����� D �� � ����� D �� � ����� D �3 � ����� D �� � ����� D �Ç � ����� D �ôD �_ / D �º are nonnegative and satisfy the triangle condition �N2
Suppose we want to separate the point�D / *�,E�-/7� � �����z/7�-/7� � �F���w/7�w/7�-/ �-/ � � �÷�F�F�z/ �-/7� � �w���F�z/7�í/7�w/7�@2
which does not fulfil the set condition (see Figure 5.11).
With the formulas we calculated in Remark 26 we get the vertices

Ingoing pipe Outgoing pipeD �� D �� D �3 D �� D �Ç D �ô D � � D �� D �3 D �� D �Ç D �ô� � � � ��4�� ��4�� � ��4�� � � � ��4��� � � �F4�� �F4�� � �F4�� � � � �F4�� �� �F4�� � � � �F4�� � �F4�� �F4�� � � �� � � � � � � � �F4�� � � �F4��� � � � � � � �F4�� � � �F4�� �� � ��4�� � � �F4�� � � � � � �� ��4�� � � ��4�� � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �
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We set ö�*�� in the separation algorithm. So we have to solve the LP:

" ; � � � ����� D �� � � � �F��� D �3 � � � ���F��� D � � � � � �-����� D �3% �  � �� D �Ç � �� D �ô � �� D �� � �� D �ô 	��
�Õ D �� � Ç Õ D �Ç � � Õ D � � � Ç Õ D �Ç 	��
�Ç D �� � 3Ç D �ô � �Ç D �� � 3Ç D �3 	��
D �ô � 3Ç D �3 � �Ç D �ô 	 �D �Ç � �Ç D �� � 3Ç D �Ç 	 �
�3 D �3 � �3 D �ô � D �3 	 ��� D �� � �� D �Ç � D �� 	 �D �� � D �� 	 �
D �� � D � � 	 �

We get the cut � D �� � � D �3 � D �� � D � � � �3 D �3 	 � �
It is easy to see that this inequality is valid and cuts off �D .

We remark that another possibility for normalisation of a cut of the form a / D 	 ÷ is to divide this
inequality by " ; �Ã,." ; � º °0�1±&Ï&Ï&Ï ± � �S� � a º � / � ÷ � 2 �
So we can look for a cut of the form

; / D 	¶ö by solving

S � *�" ; � ; / �D � ö% �  � ; / 5 _ 	¶ö for ¬:*���/ ����� / >�<�-	 ; º 	 � for ¼�*���/ ����� / � � �
�<�-	¶ö 	 �

This normalisation can be used if no violated cuts are found for the first discussed normalisation of the
right-hand side of the cut. The advantage of this idea is that we do not need to solve a Mixed Integer
Program in some cases (since in the first idea usually a cut with öu*� can be found). A little handicap
is that the problem has one more variable.

Often the solution time of a problem is too long. In this situation we sometimes can accept that the
set conditions are not fulfiled by all pipes or compressors. So we can try to reduce the calculation time
by the following idea: In the case that the difference between the linearised pressure at the end of the
pipe (that means this value in the LP-solution) and the exact pressure at the calculated point ,T( _G` /7'�2 /
of the LP-solution is very small (that means smaller as a value T^©¶� ) we can do without separating the
calculated LP-solution. The handling of a compressor is analogous.
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5.4 Calculation of the Vertices of � in the Case of Flow Preservation
(First Law of Kirchhoff)

As an application of Algorithm 18 we give a little theorem which shows that under certain restrictive
conditions the polyhedron which describes the Kirchhoff conservation law in the case of several in - and
outgoing pipes has only vertices with binary components. We remember that also a compressor could
be taken instead of a pipe. The type of an in- or outgoing segment is of no noteworthy account for the
succeeding calculations which is easy to see. Consider again polyhedron

�
. We only want to model the

first law of Kirchhoff: the gas flow preservation. Clearly in this case the matrix
P

becomes:

P *

78888888888888889

,�> I � 2 / ,�> I ��2 /
. . . ,�> I �  2 / ,�> I �  å ��2 / ,�> I �  å � 2 /

. . . ,�> I �  å"!$#A% 2 /,E' � 2 / ,E' � 2 / ����� ,E' _g` 2 / � ,E' _G` å � 2 / � ,E' _G` å � 2 / ����� ��,E' _G` å c×d�f 2 /

:<;;;;;;;;;;;;;;;=
since we easily can forget the pressure conditions in this case. ¬¿o and {�\K again describe the number of
in - and outgoing pipes. We assume ¬¿o î � and {�\V î � . The vector a becomes

aW* ' > I �  å"!$#&%� ) ù|ú _G` å ced�f å � �
We will assume now that for all pipes the gas flow is discretisised by the same equidistant discretisation.
That means we define for all pipes (in - and outgoing) real numbers

;
and a with aØ© ; î � for the

minimal gas flow
;

, the maximal gas flow a through the pipe and a natural number o such that holds:

' � *�' � * ����� *�' _g` *�' _G` å � * ����� *�' _g` å ced�f * 789 '
...'
:<;=

with a vector ' of the form

'<*
78888888888889

;; � � Ê h`; � � � Ê h`
...; � ¬ � Ê h`
...; � ,.o|����2 � Ê h`a

:<;;;;;;;;;;;;=
We assume the triangulation to be in the form which is shown in Figure 5.2 or 5.3.

Theorem 31 If

o ; � {�\K :� ¬Oo �aÆ� ; ù �
than all vertices of

�
(with matrix

P
and vector a as defined above) are elements of � �-/���� � .
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Proof. For the proof we use our algorithm for the calculation of the vertices of
�

(and of course the
notation we used there).

We can easy calculate
b ?C, P 2 *þ¬¿o � {�\K � � . So we only need to consider feasible sets � with¬¿o � {v\K ½	 � � � 	È¬Oo � {�\V � � . Consequently we examine the following two cases:

First case:
� � � *�¬¿o � {�\V .

We know that if we get a solution of
P � D � * a for every pipe at least one

D
-variable must be greater than

zero. We select ¬Oo � {�\V variables (for each pipe one
D

-variable) and from the definition of
P

it is clear
that all these variables must be � . So if we get a vertex in this case, it is clear that it is element of � �-/���� � .

Second case:
� � � *�¬¿o � {�\V � � .

It is well known that in this case there exists exactly one pipe for which we select two
D

-variables. We
again examine two cases:
In the first case of the situation

� � � *«¬Oo � {v\K � � let w.l.o.g. be the first ingoing pipe that for which
we select two

D
-variables. Here

P � D � * a reduces to:

D �_.Ý ' �_~Ý � D �_.Ý å � ' �_~Ý å � � _G`¯
Ô °C�

D Ô_ æ ' Ô_ æ *
_G` å ced�f¯
Ô °ø_G` å �

D Ô_ æ ' Ô_ æ
with D �_~Ý � D �_.Ý å � *��
and D Ô_ æ *�� » > ù � �z/ ����� /1¬¿o � {�\K K�
where

D Ô_ æ means that we have selected a
D

-variable ¬ Ô for pipe > for that the gas flow value ' Ô_ æ is
equal to

; � ¬ Ô � Ê h` . Note that in the term
D �_.Ý ' �_.Ý � D �_.Ý å � ' �_.Ý å � as a consequence of the structure of the

discretisation ' �_.Ý * ; � ¬1�6� Ê h` and ' �_.Ý å � * ; � ,.¬1� � ��2�� Ê h` must hold since in the case ' �_.Ý *�' �_.Ý å � the
linear equality system

P � D � *«a does not have a unique solution which is easy to see. We can rewrite
the above conditions as

D �_.Ý ' �_.Ý � ,É�Y� D �_.Ý 2e' �_~Ý å � � _G`¯
Ô °C� '

Ô_ æ *
_G` å c×d�f¯
Ô °ø_G` å � '

Ô_ æ �
We get

,E' �_.Ý � ' �_.Ý å � 2 D �_.Ý * _g` å ced�f¯
Ô °ø_g` å � '

Ô_ æ �
_G`¯
Ô °C� '

Ô_ æ �u' �_~Ý å � �
With ' Ô_ æ * ; � ¬ Ô � Ê h` we conclude

, ; � ¬1� aÆ� ;o �¶, ; � ,.¬1� � ��2 a²� ;o 212 D �_.Ý *
_G` å ced�f¯
Ô °ø_G` å � ,

; � ¬ Ô aÆ� ;o 2:� _G`¯
Ô °C� ,

; � ¬ Ô aÂ� ;o 2Ã�ó, ; � ,.¬ � � ��2 a²� ;o 2 �
With a short calculation this equation can be reduced to

� aÆ� ;o D �_ Ý *�, _G` å ced�f¯
Ô °ø_G` å � �W�

_G`¯
Ô °0� ��2

; � aÆ� ;o , _G` å ced�f¯
Ô °ø_G` å � ¬ Ô �

_G`¯
Ô °0� ¬ Ô 2Ã�

aÆ� ;o
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which is apparently equivalent to

D �_.Ý *��Wo ; ,E{�\V Ã� ¬¿o02a²� ; � _G`¯
Ô °0� ¬ Ô �

_g` å ced�f¯
Ô °ø_G` å � ¬ Ô

� � �
Now w.l.o.g. we consider the case of the situation

� � � * ¬¿o � {v\K � � that we have selected twoD
-variables for the first outgoing pipe. The calculation is quite the same as we have done for the first

ingoing pipe. Here
P � D � *+a reduces to:

_G`¯
Ô °0�

D Ô_ æ ' Ô_ æ * D _G` å �_ ¡£¢ � Ý ' _g` å �_ ¡£¢ � Ý � D _g` å �_ ¡T¢ � Ý å � ' _G` å �_ ¡£¢ � Ý å � � _G` å ced�f¯
Ô °ø_G` å �

D Ô_ æ ' Ô_ æ
with D _G` å �_ ¡£¢ � Ý � D _G` å �_ ¡£¢ � Ý å � *��
and D Ô_ æ *�� » > ù � ��/ ����� /1¬¿o¨/1¬¿o � �z/ ����� /1¬¿o � {�\K K�
where again

D Ô_ æ means that we have selected a
D

-variable ¬ Ô for pipe > for that the gas flow value ' Ô_ æ is
equal to

; � ¬ Ô � Ê h` . Of course we get ' _G` å �_ ¡£¢ � Ý * ; � ¬ _g` å �6� Ê h` and ' _G` å �_ ¡£¢ � Ý å � * ; � ,.¬ _G` å � � ��2 � Ê h` . We
conclude as new condition_G`¯

Ô °0� '
Ô_ æ * D _g` å �_ ¡T¢ � Ý ' _G` å �_ ¡T¢ � Ý � ,É�Y� D _G` å �_ ¡£¢ � Ý 2e' _g` å �_ ¡£¢ � Ý å � � _G` å ced�f¯

Ô °ø_G` å � '
Ô_ æ �

With ' Ô_ æ * ; � ¬ Ô � Ê h` we calculate

, ; � ¬¿_G` å � aÆ� ;o ��, ; � ,.¬¿_G` å � � ��2 a²� ;o 212 D _G` å �_ ¡T¢ � Ý *_G`¯
Ô °0� ,

; � ¬ Ô aÆ� ;o 2:� _G` å ced�f¯
Ô °ø_G` å � ,

; � ¬ Ô aÆ� ;o 2Ã�¶, ; � ,.¬¿_G` å � � ��2 a²� ;o 2 �
We get after a longer calculation

D _g` å �_ ¡T¢ � Ý *��Wo ; ,.¬¿o|�u{�\V 72aÂ� ; � _G` å ced�f¯
Ô °ø_G` å � ¬ Ô �

_g`¯
Ô °0� ¬ Ô

� � �
Summarising our last ventilations we see that if

o ; � {�\K :� ¬Oo �aÆ� ; ù �
we get because of �1	 D Ô_ æ 	 � for all > ùj� ��/ �z/ ����� /1¬¿o � {�\V 0� that

D Ô_ æ ùN� �-/���� for every potential
vertex of

�
. In fact we do not get any new vertex in the case

� � � *�¬¿o � {�\V � � and thus our proof is
complete. ·
From Theorem 31 we get the following

Corollary 32 Assume an equidistant discretisation for all segements. Under the requirements of The-
orem 31 holds:� If ¬¿o8*+{v\K than all vertices of

�
are elements of � �-/���� � .



CHAPTER 5. CUTTING PLANES AND SEPARATION ALGORITHMS 89� If
; *�� than all vertices of

�
are elements of � �-/���� � .� If aW*+� ; than all vertices of
�

are elements of � �-/���� � .

Proof. Obvious. ·
Here is a further remark on Theorem 31:

Remark 33 We give a simple example in the case ¬¿o M* {�\V , ; M* � and a M* � ; . Take
; * ���-/ a�*���-/1o *��z/1¬¿o�*���/7{�\V ¹*+� . Here we see

� @ � v @ � � Ê � �Ç v Ê � v * �� . Because of �� � ��� � �� � ��� � � � ����*+��� we see
that we indeed get a vertex whose components are not in � �-/���� .
Lemma 34 We consider polyhedron

�
as defined in this section with

o ; � {�\V Ã� ¬¿o �aÆ� ; ù � �
We define a polyhedron

� � as follows:
The matrix

P
and the vector a have the same form as for polyhedron

�
in this situation. But we define� � so that every gas flow value only exists once for each in- and outgoing segment. We are going to

precise this definition. Formally that means that

' � *+' � * ����� *�' _G` *�' _G` å � * ����� *�' _G` å ced�f *�'
holds with ' being the well known vector of the form

'<*
78888888888889

;; � � Ê h`; � �� Ê h`
...; � ¬x� Ê h`
...; � ,.o|����2�� Ê h`a

:<;;;;;;;;;;;;=
Then the following facts hold:� The vertices of

�
can be calculated directly from the vertices of

� � � Therefore we only need to
take a vertex of

� � and get a new vertex by setting the other
D � variables of

�
to zero. After that

for each in- and outgoing segment alternate set the
D � variables with the same gas flow value to

one and do this procedure over all possibilities for all segments.� Let �; / D 	�ö be a valid inequality of
� � . Then �; / �D 	�ö is a valid inequality of

�
if we define �;

in the following way such that the vector �; is a direct extension of vector �; :
For every segment and for every

D � variable belonging to a special gas flow value the value of �;
is equal to the value of �; , that means �; can be written in the form

�; * 78889 �; �;
...�;
:<;;;=

where the number of vectors �; depends on the set condition.



CHAPTER 5. CUTTING PLANES AND SEPARATION ALGORITHMS 90� If �; / D 	¶ö is a facet than �; / �D 	¶ö is a facet, too. This means if we know the complete description
of
� � we can calculate the complete description of

�
.

The consequence of this lemma is that for a practical calculation and the use of the separation algo-
rithm we only have to calculate facets or valid inequalities for

� � � But we add that this situation is so
theoretical that it will not be helpful for calculations in real-world cases.

Proof. The proofs of the facts are very simple and so we omit them. ·
We give a short remark for the calculation of vertices that gives additional information for Remark
26 in the case of polyhedron

�¨Á
with flow pressure conservation.

Remark 35 Let us consider polyhedron
� Á

added by the first law of Kirchhoff. We assume that the
in- and the outgoing pipe have the same equidistant discretisation which we have defined in order to
formulate Theorem 31. Then the points calculated in � and � on page 73 do not lead to a new vertex. In
case

�
we may have selected

D �_ / D �º / D �Ô / D �Û as described on page 73. Then we can only get a vertex if( �Û �Ø( �º î � and ( �_ �Ø( �Ô î � with:

D �_ * D �Ô * ( �Û �Ø( �º( �_ �$( �º �$( �Ô � ( �Û /
D �º<* D �Û * ( �_ �$( �Ô( �_ �Ø( �º �$( �Ô � ( �Û �

Thus we can restrict us to 1,2,3 on page 73 in order to calculate the vertices of this polyhedron.
The proofs of these facts are quite simple and analogously to proof 5.4 and so we omit them.



Chapter 6

Cutting Planes via Lifting

6.1 Facets or Valid Inequalities for small Triangulations and Lifting

In order to find a better description of the studied polyhedron we try to lift facets or valid inequalities
of small subproblems to complexer situations. Since the pressure equality at each node for in - and
outgoing pipes which can be described by the polyhedron

�¹Á
is found very often in every model we

have calculated the vertices and facets or valid inequalities in the most important cases for this situation
for small discretisations. These facets or valid inequalities are to be found in the Appendix. In the next
subsections we show in which way we try to find valid inequalities in the case of complexer discretisa-
tions by lifting the calculated facets or valid inequalities.

The following ventilations, formulas and algorithms are applicable to the more general polyhedron
�

.
The valid inequalities and facets for small triangulations have been calculated for the special polyhedron� Á

(see Appendix). So all theoretical results for polyhedron
�

in this chapter can be applied in the case
of polyhedron

�ÃÁ
.

The sense of this chapter is as follows:
Principally we have already developed a suitable branch-and-cut algorithm for the general case of poly-
hedron

�
in the last chapter (for the description of branching see chapter 7) and if we are lucky in this

way we have found a powerful method in order to approximate the nonlinearities of our model. While
solving the LP-relaxation of our problem we are often able to calculate an inequality that cuts of the
solution of the LP-Relaxation. But we do not know anything about the dimension of this inequality
(mostly this cut will not induce a facet). The calculation of facets or valid inequalities for

�
is very

complex (we have seen an example in Chapter 5). Since the knowledge of facets or valid inequalities
of
�

will be very helpful in order to tighten the MIP-formulation of our model (and so to fasten the
calculation) we start with small cases (small triangulations) and lift in the new variables of complexer
situations. The basic foundations of lifting techniques can be found in [32], [48]. Lifting has been
helpful in several practical problems like in the travelling salesman problems or in the optimisation of
Steiner trees (see e.g. [27], [28]).
In our special situation we are dealing with continuous lifting.

6.2 The general Lifting Algorithm for Polyhedron P

Let us first discuss an idea for sequential lifting in the case of polyhedron
�

for which we know the
vertices.
Define a set � of indices of

D � variables of
� C ú J with 4�� � � ��ì � and � | � . We define a

polyhedron
� ë

by � ë * �bo � D _6*�� � » ¬ ù �Ô�
91



CHAPTER 6. CUTTING PLANES VIA LIFTING 92

which roughly speaking means that
��ë

is the polyhedron belonging to a “smaller” set condition that is
contained in

�
defined by its set condition (see page 61). Formally it also holds

� ë C ú J .

For the following ventilations at first let
� � � * � . Let

; / D 	 ö with
; / D ù�ú J with

; � * � be a
facet (or a valid inequality) of

� ë
. We want to lift this inequality to a valid inequality of

�
. In words

that means we look at the “complexer triangulation” (belonging to
�

) which “contains” the “smaller
triangulation” (belonging to

� ë
). We call 5 � b  Ú, � 2�* � D � / D � / ����� � with 5 � b  �, � 2 ì � the set of all

vertices of
�

(where all vertices are elements of ú J ) and analogously 5 � b  �, � ë 2<* � , Díë 2 � /�, Dwë 2 � / ����� �
the set of vertices of

��ë
. We want to “lift the variable

D � ” (in
; / D 	óö ) which formally means:

Calculate a vector a ùØú J with a J�� � *�� � J � Ê � � � ,¿* � � J � Ê � 2 such that

a / D � ; / D 	óö
is valid for

�
.

We remark that
D t � ù ú is the value of the vertex

D t ù 5 � b  Ú, � 2 for which we want to lift in the
only non-vanishing component in a (which is a � ).
Theorem 36 Define

a � * min � ö�� ; / D tD t � � » D t ù 5 � b  �, � 2 with
D t � M*+�+� , if

� � D t ù 5 � b  �, � 2 ��D t � M*+�+� �M*��
and set

a � *�� , if
� � D t ù vert(P)

��D t � M*��+� � *+� �
Then a � î � . The inequality a / D � ; / D 	óö
is valid for

�
.

Proof. Since we know the vertices of
�

this proof is very simple:
We want to calculate a � such that holds:

a / D t � ; / D t *+a � D t � � ; / D t 	¶ö » D t ù 5 � b  Ú, � 2 �
Then we get a valid inequality for

�
. (The proof for this fact is exactly the same as the proof on page 83).

We first examine the case
� � D t ù 5 � b  �, � 2 �&D t � M*«�+� � *«� . Take a

D �t ù 5 � b  Ú, � 2 . Then a � *«� and we
get a / D �t � ; / D �t *+a � D �t � � ; / D �t * ; / D �t 	¶ö �
The last inequality holds because it is easy to calculate that for all

D �t ù 5 � b  �, � 2 also holds
D �t ù5 � b  Ú, � ë 2 �

Now let
� � D t ù 5 � b  �, � 2 �&D t � M*«�+� �.M*�� . We first select a

D �t ù 5 � b  �, � 2 with
D �t � *«� � It is easy to see

that the argumentation is completely analogous as in the situation we discussed above.
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Finally let
� � D t ù 5 � b  Ú, � 2 �&D t � M*��+� ��M*�� and select a

D �t ù 5 � b  �, � 2 with
D �t � M*�� � We calculate

a / D �t � ; / D �t
* a � D �t � � ; / D �t
*�"Ø¬¿o �=� Ê hM� Ó��Ó � � � » D t ù 5 � b  �, � 2 with

D t � M*��+� D �t � � ; / D �t	 � Ê h � Ó���Ó �� � D �t � � ; / D �t
* ö�� ; / D �t � ; / D �t
* ö �

Now the proof is complete.
We remark that a � is really a minimum and not a infimum since

� 5 � b  Ú, � 2 �wì � . ·
From Theorem 36 we get the following

Corollary 37 Is
; / D 	óö a facet of

�<ë
then a / D � ; / D 	¶ö is a facet of

�
.

Proof.
Consider again the case

� � D t ù 5 � b  �, � 2 �&D t � M*þ�+� � * � . It is easy to see that in this case holds5 � b  Ú, � ë 2¹* 5 � b  �, � 2 . So the dimension of
� ë

is equal to the dimension of
�

and so the lifted inequality
is also a facet.

Now let
� � D t ù 5 � b  Ú, � 2 �&D t � M* �+� ��M*�� � In this case we know that there exists a vertex

D �t ù 5 � b  Ú, � 2
such that

a � * ö�� ; / D �tD �t � �
For this

D �t
we calculate

; / D �t � ö�� ; / D �tD �t � D �t � * ; / D �t � ö�� ; / D �t *+ö �
So it is clear that the number of vertices that fulfil the inequality at equality increases at least by one.
In order to show that the facet of

� ë
is lifted to a facet of

�
we notice that the new vertices of

�
are

affinely independent from the (zero-extension of the) vertices of
�ië

. This is sufficient in order to show
that a facet of

� ë
is lifted to a facet of

�
(the dimension of

� ë
and

�
is irrelevant for this fact). ·

Let us marginally describe in the general case of polyhedron
�

a second possibility for a lifting al-
gorithm in the situation that we do not know the vertices of

�
:

Again let
; / D 	óö (belonging to

��ë
) be a facet or a valid inequality of a smaller triangulation

��ë
of
�

.
The further assumptions are quite the same as we have used in Theorem 36. We again want to lift in
variable

D � (which means to calculate a � ). Assume we are able to solve the following LP

S � *�" ; � ; / D
% �  � D ù � �

Theorem 38

(a) If
; / D 	¶ö is valid for

�
we get another valid inequality for

�
of the form; / D � � S � �9ö �&D � 	È" ; � � S � / ö�� �
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(b) If
; / D 	¶ö is not valid for

�
we get a valid inequality for

�
of the form; / D � � S � � ö �&D � 	È" ; � � � S � � ö¹/ ö)� �

The inequality in ,La�2 is weaker than the inequality in , ; 2 .
Proof. We know

D � 	 � .
(a) Is S � î ö we calculate; / D � � S � � ö �&D � 	¶ö � , S � � öÃ2�* S � *�" ; � � S � / ö)� �

Here we used that
; / D 	óö is valid for

�
.

Is S � ì ö we calculate; / D � � S � � ö �&D � 	 S � �¶, S � � ö:2¹*+ö *�" ; � � S � / ö)� �
(b) Is S � î ö we calculate; / D � � S � � ö �&D � 	 S � � , S � � öÃ2�*+� S � �uö *�" ; � � � S � � ö¹/ ö�� �

Remember that
; / D 	¶ö is not valid in this case.

Is S � ì ö we calculate; / D � � S � � ö �&D � 	 S � �¶, S � � öÃ2�*+ö *�" ; � � � S � � ö�/ ö)� �
Additionally we calculate " ; � � � S � �uö�/ ö)� î " ; � � S � / ö��
since from S � î ö follows � S � ��ö î S � and for S � ì ö both maxima are equal to ö and so the
inequality in ,La�2 is weaker than the inequality in , ; 2 . ·
For the calculation of S � we only need to test the vertices of

�
if these are known. It is also possi-

ble to solve the LP for each polyhedron whose union is
�

and then take the minimum of all solutions.
Since Theorem 38 also holds if the vertices of

�
are not known we have formulated Theorem 38 as done

above.

6.3 Example for Lifting

In the situation described by Figure A.5 we select Case ��� (see page 144 in Appendix): We want to
show that we can get the facet

öh_^� ö ÷÷ ,Lö _]�9ö��ç_�2 D �3 � ööh_]�uö8�â_ D �� � _ö � _^� öh_ , D �3 � D �� 2 	 � �
in Case ��� by the lifting algorithm described in Theorem 36: Let us begin with the second facet in Case� of polyhedron

�ÃÁ
according to Figure A.4 (see page 132 in Appendix) as starting inequality for the

lifting process. This inequality reads for polyhedron
�ÂÁ

in Case ��� as

öö � _ª�9ö _ D �� � _ö � _]�uö _ D �� 	 � �
First we want to lift variable

D �3 . According to the lifting algorithm let � be the coefficient of variableD �3 . We want to construct a valid inequality for
�¹Á

of the form

öö � _^� ö _ D �� � � D �3 � _ö � _ª�9ö _ D �� 	 � �
Remember that we have to check the following ��� vertices of the polyhedron

� Á
in Case ��� :
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Ingoing pipe Outgoing pipeD �� D �� D �3 D �� D � � D �� D �3 D ��� � � � � ö � �W� ö �� � � � ö � � �W� ö �� � � � ö � �Y�uö � �� � ÷ �W� ÷ � � � � �
� � ÷ �W� ÷ � � � � �� ò � �W��ò � � � � �� ò � �W��ò � � � � �_ � � �Y��_ � � � � �_ � � �Y��_ � � � � �T �W��T � � � � � � ���T �W��T � � � � � � ���ÿ �Y� ÿ � � � � � � ���ÿ �Y� ÿ � � � � � � ���

Fortunately the calculation for the vertices ��/ �z/ � / �z/k�@/K�z/����-/A����/���� does not lead to any complication
(calculate the value of the left-hand side of the inequality for these vertices). From the calculation for
the vertices �z/ �z/ �z/���� we get from the algorithm that we have to calculate

"Ø¬¿o � ��/ _ö � _^� öh_ /�� � öö _]�9ö8��_ ,É�Y� ÷ 2k/ ��Y� ö ,É� � ööh_]� ö8�ç_ 2K� �
We calculate (compare proof of Lemma 45)_ö � _^� ö _ ì __Nö � _]�uöh_ *�� �
Furthermore it is clear that

��Y� ö ,É� � ööh_]�uö8�â_ 2¨* _ö � _ª�9ö _ �
Since for the polyhedron in Case ��� also ÷ ©j_ must hold we conclude

�Y� ÷ ì �Y��_<� _ � öÆ,É�Y� ÷ 2 ì ö � _ª�9ö _<� _ö � _^� öh_ ì �Y� öÂ,É�ª� ÷ 2ö � _^� öh_ �
Summarising these calculations we get �8* _ö � _]�uö _
and we have calculated a valid inequality of the form

öö � _^� öh_ D �� � _ö � _^� öh_ , D �3 � D �� 2�	 � �
Now we are able to lift in variable

D �3 : Since we have a valid inequality now we notice that we only have
to consider vertices

�
and � . We see at one glance that the lifting coefficient for

D �3 is
� � Ê �I�� Ù � � Ê � Ê � ê . The

new valid inequality therefore is

ö _]� ö ÷÷ ,Löh_]� ö��ç_�2 D �3 � öö _^� ö��ç_ D �� � _ö � _ª�9ö _ , D �3 � D �� 2�	��
which is exactly the facet we wanted to construct by lifting.
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6.4 A Separation Algorithm via Lifting small Facets or Valid Inequalities

In our recent preliminaries we showed how to lift the facets or valid inequalities of smaller triangula-
tions in order to get valid inequalities of complexer triangulations. We can add these inequalities at the
beginning of the calculations in order to tighten the formulation of our model. The better way is to con-
struct the lifted inequalities such that they can be used for a separation algorithm. We get the following
separation algorithm for

�
which is based on simultaneous lifting using our knowledge of the vertices.

In this case simultaneous lifting becomes very easy (see [48]):

Let 5 � b  �, � 2 again be the set of vertices of
�

which we have already calculated.
Let �D be an optimal LP-solution of the relaxation of

�
to be cut off. In this subsection we omit the

assumption of the beginning of this chapter that
� � � *¸� . Let � be a suitable set with

� � �Kì � � � and as
defined before � | � . Let

; � *�� � � � . Informally speaking the variables in � do not “exist” in
� ë

. Let; / D 	�ö be valid for
� ë

(with
; / D ù�ú J as defined before). Let a ù ú J with a J�� � *�� � J � Ê � � � . The

nonzero elements in a (which are the elements of vector a � ) belong to the variables we want to lift in.
Lifting and separating means we look for a cut of the form a / D � ; / D 	¶ö � _ by applying the following
algorithm:

Algorithm 39

1. Select a “suitable” inequality
; / D 	¶ö (perhaps a facet of

� ë
).

2. If the selected inequality is valid for
�

then goto 3. Else calculate_
*�" ; � � ; / D t �9ö � » D t ù 5 � b  �, � 2K� �
The inequality ; / D 	¶ö � _ (6.1)

is valid for
�

.

3. Solve the following LP

S � *ó" ; � �D / a% �  � , D t 2 / aF	¶ö � _^� ; / D t » D t ù 5 � b  Ú, � 2 �
Let �a (from our assumption of course with � a J^� � * � � J � Ê � � � since only the elements of a � are
variable) be such that � a / �D � ; / �D �¶,Lö � _�2�* S � . Then� a / D � ; / D 	¶ö � _ (6.2)

is valid for
�

.

We remark that 6.1 is valid because

» D t ù 5 � b  Ú, � 2²û�ö � _]* ö � " ; � � ; / D t � ö � » D t ù 5 � b  Ú, � 2K� î ö � ; / D t � ö * ; / D t �
We give some facts for Algorithm 39:

(a) � a / D � ; / D 	¶ö � _ is valid for
�

.

Proof. This proof is quite the same as the proof on page 83 in Chapter 5. We know that every
feasible point of the polytop

�
can be combined as a convex combination of a suitable selection

of its vertices
D t ù 5 � b  Ú, � 2 (this is correct although

�
is not convex).
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That is for
D � ù � exist nonnegative real numbers ÷ t for all

D t ù 5 � b  Ú, � 2 and ¾ Ó � � t \ UÉfEÙÅ� ê ÷ t *� such that: D � * ¯
Ó � � t \ UÉfEÙÅ� ê ÷ t D t �

We then calculate: � a / D � � ; / D �
* �a / ¾ Ó � � t \ UÉfEÙÅ� ê ÷ t D t � ; / ¾ Ó � � t \ UÉfEÙÅ� ê ÷ t D t
* ¾ Ó � � t \ UÉfEÙÅ� ê ÷ t , �a / D t 2 � ¾ Ó � � t \ UÉfEÙ � ê ÷ t , ; / D t 2
* ¾ Ó � � t \ UÉfEÙÅ� ê ÷ t , �a / D t � ; / D t 2	ó¾ Ó � � t \ UÉfEÙÅ� ê ÷ t ,Lö � _�2
*�,Lö � _�2w¾ Ó � � t \ UÉfEÙÅ� ê ÷ t
*+ö � _ �

Therefore � a / D � ; / D 	¶ö � _ is valid for
�

. ·

(b) There exists a violated cut if and only if S �]©�� .
Proof. If S �<©�� then due to (a) � a / D � ; / D 	+ö � _ is such a cut. On the other hand, supposez a / D � ; / D 	¶ö � _ is a valid inequality violated by �D then S � î za / �D � ; / D �¶,Lö � _�2²©�� . ·

The problem for this algorithm is point � . The selection of a suitable inequality can be very difficult
and since the complexer discretisation can lead to a very complex polyhedron we do not know what
inequality should be used. However here we give an example of a situation where this algorithm works:

We consider polyhedron
�¨Á

in the case described by Figure A.5 with

( �ced�f * 7889 ����
����� �
:<;;= /E( �_G` * 7889 ������������

:<;;=
We want to separate the point 788888888889

� 3� ���� ���

:<;;;;;;;;;;=
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which is a vertex of the LP relaxation of
��Á

in the described situation but does not fulfil the triangle
condition. From the polyhedron described by Figure A.2 we get from the situation

( �ced�f * 79 ����
�� �
:= /E( �_G` * 79 ���������

:=
the inequality �� D �� � �w, D �� � D �3 2 	 � �
This inequality is not valid for

��Á
in the case of Figure A.5. We calculate _
* �Ç �

According to step � of Algorithm 39 we solve the LP

" ; � 3� D �� � �� D �3 � D ��% �  �3Ç D �� 	 �Ç
3Ç D � � 	 �Ç
3Ç D � � 	 �Ç

D �3 � �Ç D �� 	��
D �3 � �Ç D � � 	��
D �3 � �Ç D � � 	��
�3 D �� � D �� 	 �×Õ� Ç
�3 D �� � D � � 	 �×Õ� Ç

� Õ D �� � Ç Õ D �� � D �� 	 ôÇ
� Õ D �� � Ç Õ D �� � D � � 	 ôÇ

D �� � �� D �� 	 �Ç
D �� � �� D � � 	 �Ç
D �� � �� D � � 	 �Ç

From Algorithm 39 (step � ) we get as new inequality

� � ��� D �� � �� D �� � �w, D �� � D �3 2�	 �� �
This inequality is valid and because of � � ��� � � � ��� *�� � ���i© � � � it cuts off the LP solution.



Chapter 7

Implementation and Computational
Results

7.1 Introduction

In this chapter we give an outline of some implementation details regarding a new Branch-and-Bound
algorithm since the separation algorithms we have developed yet (see Chapter 5 and Chapter 6) cannot
guarantee that the solution fulfils the set condition. With the additional Branch-and-Bound algorithm
we explain in the next section we can be sure that we finally can calculate a solution which fulfils the
set condition. At the end we give computational results for some test networks.

7.2 Branch-and-Bound for TTO

In this section we first derive a Branch-and-Bound algorithm which works for pipes as well as for com-
pressors. After that we will give some ideas how to fasten this algorithm. We add that the presented
branching algorithms only consider the binary variables which have been introduced for the approx-
imation of nonlinearities. The switching variables of compressors, valves and control valves are not
regarded here. For these variables there exist well known branching algorithms that are implemented in
every state-of-the-art MIP solver.

7.2.1 A Branch-and-Bound Algorithm for Pipes and Compressors

Regrettably the several separation algorithms we have developed cannot guarantee that we are able to
separate LP-solutions that do not fulfil the set conditions. Therefore we have to combine our separation
algorithms with a suitable Branch-and-Bound rule. So let us consider Figure 7.1 which describes the
well known triangulation of the pressure loss of a pipe. � � with

� � � � * o ù 4 stands for the set
of indices of all non-vanishing

D
-variables. Let

D ��/ D ��/ ����� / D ` be the non-vanishing
D

-variables of the
solution of a LP-Relaxation of our problem. Assume some ordering of these variables.
Let � _ denote the neighbours of

D _ , that is the set of indices of
D

-variables that are a corner of a triangle
that contains

D _ as one of its three corners but not ¬ itself.

Consider the following algorithm:

Algorithm 40

(1) For ¬Ã*�� To o Do

(2) If � _�~ � ¬����¶�1� goto (
�
).

(3) End For

99
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λ 1

Figure 7.1: An example for branching (the neighbours of
D � )

(4) Split the problem in the following way:

– First subproblem:

Add the condition ¯
º � J ¡��G� _�� D º *�� �

– Second subproblem:

Add the condition D _6*�� �
(5) End

Lemma 41 Algorithm 40 terminates with two branches in which the LP-solution is not feasible.

Proof. We remark the following facts:
Obviously, in both subproblems the LP-solution is not feasible, since in the first case �$_~ � ¬�� | � �
and in the second case �D _Ã©�� .
One can show (after a somewhat long-winded and boring inspection of all possible cases - we will not
specify these cases in detail) that after the third index latest the condition ( � ) in Algorithm 40 is satisfied
and the algorithm terminates. ·
In the same way (analogously as in the proof of Lemma 41) it is easy to see that in the case we use
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a triangulation in squares or rectangles Algorithm 40 terminates yet after the second index.

We just developed a Branch-and-Bound rule for pipes. If we know that a certain compressor cannot
be switched off it is easy to develop a Branch-and-Bound rule in the case that the approximation of the
fuel gas consumption is done by a triangulation of the domain of function ) in cubes:
We define again �'� as the set of indices of all non-vanishing

D
-variables and we again assume some

ordering of these variables. In this case Algorithm 40 is completely the same. We only have to men-
tion that we must adapt the set � _ of the neighbours of

D _ , that is now of course the set of indices ofD
-variables that are a corner of a cube that contains

D _ as one of its eight corners but not ¬ itself.

One can now easily (analogously as in the proof of Lemma 41) show that in this case Algorithm 40
terminates yet after the second index.

With the developed separation algorithms and the supplementary Branch-and-Bound rules we can guar-
antee that we are able to separate every LP-solution that does not fulfil the set condition without intro-
ducing binary variables!

At the end of this section we remark that we also can apply Algorithm 40 in the situation that we
triangulate each cube in six similar tetrahedra in the case of a compressor (that cannot be switched off)
in order to approximate the fuel gas consumption ) (we have used this way for an effective implementa-
tion of the branching rule since there exist programming tools for such triangulations of cubes). We get
a possible triangulation in the way that is pointed out in Figure 7.2: We intersect the cube along the three
portly drawn lines. It it easy to see that the cube now resolves into � tetrahedra. The first tetrahedron
has as its corners the points ��/ �z/ � / � , the second ��/ �z/ � / � , the third �z/ � / �z/ � , the fourth �z/ � / �z/k� , the
fifth

� / �z/ �z/K� and the sixth
� / �z/k�@/K� . It is clear how to understand the neighbours of a

D � variable in
this situation: The set �½_ of neighbours of

D _ is the set of indices of
D

-variables that are a corner of a
tetrahedron which contains

D _ as one of its four corners but not ¬ itself.

One can show that also in this case Algorithm 40 terminates. The minimal index number after that
the algorithm terminates is four.
We here give an alternative and more theoretical proof of the statement of Lemma 42:

Lemma 42 Algorithm 40 in the case of tetrahedra also terminates with two branches in which the
LP-solution is not feasible.

Proof. We assume � Û ~ � }Ë�RW�� � » }6û D Û ©��
which implies ¯

Ô � J�� � � Û¡� D Ô *�� » }:û D Û ©��
which means we assume that our algorithm does not terminate with two branches in which the LP-
solution is not feasible.
Define B½* � ¬ ��D _¨©��+� .
Let Y�,�Bz2 be the set of all pairs (edges) of non-vanishing adjacent

D � variables in our triangulation.
Let us consider the graph ,�BV/ZY�,�B-212 .
We assume there exist ¬7/O¼ ù B with ,.¬7/O¼@2 4ù Y�,�B-2 that means ¬ /O¼ are in different tetrahedra.
Because of

D _ ©¶� and
D º ©�� and ,.¬7/O¼z2�4ù Y�,�Bz2 we conclude¯

Ô � J ¡¢�G�e¡ � D Ô ì �
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1 2

3 4

5 6

7 8

Figure 7.2: Triangulation of a cube in six similar tetrahedra

(since
D º ©�� with ¼�4ù � _ ) and ¯

Ô � J � �G� º � D Ô ì �
(since

D _¨©�� with ¬]4ù � º ). This is a contradiction to our first assumption and we get

,.¬7/O¼@2 ù Y�,�B-2 » ¬7/O¼ ù B
that means all positive

D � variables must be adjacent and therefore lie in a certain tetrahedron. We also
see that the algorithm terminates after the fourth iteration. ·
This proof also works in the case of triangles we examined first but the argument cannot be used in
our second case of cubes since in a cube not all eight corners are connected. Remember that we already
showed Lemma 42 in this case.

We shortly come back to the problem of ordering the variables.
There are two easy ideas to order the

D � variables. At first we can order the variables such that holdsD � î D � î ����� î D `$©��
or such that holds � ì�D � 	 D �-	 ����� 	 D ` �
We notice as a result of our test calculations that the branching idea we discussed usually produces
shorter computation times in connection with the described separation algorithm for pipes if we use the
order � ìóD � 	 D �-	 ����� 	 D ` �
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7.2.2 Additions to the described Branch-and-Bound Algorithm

The advantage of the described Branch-and-Bound algorithm is that we can guarantee finally to calcu-
late a solution that fulfils the set condition. We give some further ideas which can perhaps sometimes
be helpful to fasten our branching algorithm:

Since we approximate the pressure loss function of a pipe by a set s � of two-dimensional grid points
we argue as follows:
It is sufficient to concentrate on triangulations which have the form shown in Figure 7.3. To generalise
the following arguments is quite easy but this is not necessary to do for our calculations. Let > ù 4 be
the number of values in which we divided the interval between the minimal and maximal pressure at the
beginning of a pipe. Now we define a set � ��¡T¢ * � ( __G`@± Ü7UÉ_ j � ¬]* ��/ ����� / >�� where the values ( __G`@± Ü7UÉ_ j
are the “possible” pressure values at the grid points (w.l.o.g. in ascending order, see as an example 5.3).
Now we define for ¬:*���/ ����� / > sets � _��¡T¢ * � ¼ � ( º _G` *X( __G`�± Ü7UÉ_ j � (see the notation in Chapter 4).
Define now for � ì ¬ ì > % _ h * ¯

º � J ¡À ¡T¢ D º �
Additionally we define for ¬Â© � % _ Û * ¯

º � ¡ ñ Ý£� | Ý J �À ¡£¢ D º
and for ¬ ì > % _U * ¯

º � æ£� | ¡ � Ý J �À ¡£¢
D º �

Here subindex } indicates the sum of the
D � variables on the “left” side,

b
the sum of the

D � variables
on the “right” side and subindex

;
indicates the set of the “actual”

D � variables we just have selected for
branching, see Figure 7.3.
The principle idea is to select a suitable number ¬ such that we can split the problem into two subprob-
lems (here we cannot ensure to calculate two branches in which the LP-solution is not feasible):� First subproblem:

Add the condition

% _ Û � % _ h *�� � (7.1)� Second subproblem:

Add the condition

% _ h � % _U *�� � (7.2)

A prudential criterium for a selection of ¬Ã*+�z/ ����� / >���� is to require

" ; � _m°C�H±&Ï&Ï&Ï ± Ô Ê � !�,É�M�¶,L% _Û � % _ h 212 � ,É�M�¶,L% _h � % _U 212O#
The number �¹�¥,L% _Û � % _ h 2 is a measure of the “value we cut off” in the first subproblem and the number�]�+,L% _h � % _U 2 is a measure of the “value we cut off” in the second subproblem. Our condition means
that we want to maximise the sum of these two values (without any weighting of the two sums). We
calculate " ; � _m°C�H±&Ï&Ï&Ï ± Ô Ê � !�,É����,L% _Û � % _ h 212 � ,É�½�«,L% _h � % _U 212O# * " ; � _�°C�H±&Ï&Ï&Ï ± Ô Ê � !&�
� ��% _h � % _ Û �9% _U #�*
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sl sl sl sa sr sr sr sr

Figure 7.3: An example for horizontal/vertical branching

" ; � _m°C�H±&Ï&Ï&Ï ± Ô Ê � !G�Y�9% _h # since we know % _ Û � % _ h � % _U *�� » ¬:* �z/ ����� / >]� � . Because of �d	ó% _h 	 � » ¬Ã*�z/ ����� / >���� we get

" ; � _m°C�H±&Ï&Ï&Ï ± Ô Ê � !�,É�Y�ó,L% _Û � % _ h 212 � ,É�M�¶,L% _h � % _U 212O#C*�"Ø¬Oo _�°C�H±&Ï&Ï&Ï ± Ô Ê � % _ h �
Considering a certain pipe we can do the same procedure with the gas flow in this pipe. That means we
define a set ��¤Y* � ' _Ü Ue_ j � ¬¨*���/ ����� / >�� where the values ' _Ü7UÉ_ j are the “possible” pressure values at the
grid points (in ascending order). Now we define sets � _¤ * � ¼ � ' º *�' _Ü Ue_ j � .
The rest is quite the same as we described it for the pressure ( _G` at the beginning of the pipe. We leave
the formal description of the complete algorithm in this case.

We add another simple idea: In the case that the difference between the linearised pressure at the end of
the pipe (that means this value in the LP-solution) and the exact pressure at the calculated point ,T(Ã_G`K/7'�2 /
of the LP-solution is very small (that means smaller as a value T
©�� ) we can do without separating or
branching on the calculated LP-solution. The same we can do with a compressor.

7.2.3 Combining the Ideas for Branching

Combining our ideas we get the following branching algorithm for a pipe (for one new branch node):

Algorithm 43

(1) Check, whether the calculated LP-solution does fulfil the set condition. If it does, goto (5).

(2) If there are two branches concerning (p_g` in which the LP-solution is not feasible add 7.1 and 7.2
in this case and goto (5).

(3) If there are two branches concerning ' in which the LP-solution is not feasible add 7.1 and 7.2 in
this case and goto (5).
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(4) Apply Algorithm 40. We have already shown that there are now two branches in which the LP-
solution definitely is not feasible.

(5) End.

We remark that in some cases Algorithm 43 leads to shorter calculation times than Algorithm 40 (the
maximal number of branches for Algorithm 43 then is lower than for Algorithm 40).
The extension of Algorithm 43 for a compressor now is obvious. We only need to remember that for a
pipe we linearised a nonlinear function of the form (6ced�f0*X(øc×d�f1,T(K_g`K/7'F2 . Since the fuel gas consumption) is a function of the form )8*«)¨,T(ø_G`V/E(øc×d�f1/7'�2 we can easily generalise Algorithm 43 to Algorithm 44.
We pass on developing a formal description of the details of the complete algorithm since the idea is
obvious.

Algorithm 44

(1) Check, whether the calculated LP-solution does fulfil the set condition. If it does, goto (6).

(2) If there are two branches concerning (p_g` in which the LP-solution is not feasible add 7.1 and 7.2
for the compressor and goto (6).

(3) If there are two branches concerning (Äced�f in which the LP-solution is not feasible add 7.1 and 7.2
and goto (6).

(4) If there are two branches concerning ' in which the LP-solution is not feasible add 7.1 and 7.2
and goto (6).

(5) Apply Algorithm 40 in the case we described in Figure 7.2. No later than now there are two
branches in which the LP-solution is not feasible.

(6) End.

Summarising all ideas we illuminated here and in Chapter 5 we see that we have developed a complete
Branch-and-Cut Algorithm for the binary variables introduced for the approximation of nonlinearities
of the Mixed Integer Problem we described in Chapter 4.

7.3 Some Computational Results

In this section we finally give calculations for some gas networks. We proceed as follows:
We start with the small test network we discussed in Chapter 4. Here we show in dependency from
the accuracy of the discretisation the computational progress when using our separation algorithm (for
pipes) instead of using binary variables in the traditional formulation we exploited in Chapter 4. In this
calculation the branching routine is not used because branching can become quite inefficient for fine
discretisations. But the table shows us that using the cuts we get quite good solutions for this model and
branching is not necessary.

After that we give some calculations for a somewhat complexer gas network. Here we work with a
constant discretisation and use all developed algorithms. We show the dependency of the solution time
from the input data and we give three tables of the same examples: in the first table we calculate with
separation and branching algorithms, in the second table we only use separation algorithms (that means
we solve the root node) and after that in the third table we only use branching and do not calculate cuts.
For every table we stop if the difference between the linearised pressure and the exact pressure at the
calculated point ,T(K_G`ø/7'F2 / of the LP-solution for every node is smaller than some value T (see the pre-
vious section). Finally we give an example of a simplified real gas network and show that using crude
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Valve

Compressor

control valve

source

sink

Figure 7.4: A simple gas network

compressors ( ·½/1õ ) pipes ( ¥ ) Solution(K_g`@± � (Kced�fE± � 'x� (K_g`@± � '
� CPLEX cuts User cuts Opt val sec� � � � ��� ��� � � � ��� � � ���� � � � � ���÷� � ��� � � ��� � � ���� � � � ��� ��� � � � ��� ����� � �� � � � � ��� � � ��� � � � ��� ��� � �F�

discretisations we are also able to give a reasonable solution. A suitable idea seems to be after that to
calculate the problem now again with a nonlinear optimisation tool since now the binary variables are
fixed and since the global optimum should be found in a neighbourhood of the calculated solution. As
LP-solver CPLEX 8.0 was used. The calculations were done on a 1 GHz Pentium III processor with 1
GB main memory.

7.3.1 Comparison of Binary Variables and Cuts

We have tested our implementation of the algorithm for the polyhedron
�,�

as it was described on page
57 for a gas network which consists of three compressors and ten pipes. This gas network is shown
in Figure 7.4. In our first formulation of the model we used the traditional way of the introduction of
binary variables for modelling piecewise linear functions. That is we introduce for each triangle ¬ ù s a
binary variable õF_ and model the fact that all positive

D � variables must belong to the same triangle. The
computational results for this model are indicated by õ in the table above. The table shows our experi-
ences of the computational progress when incorporating the polynomial separation algorithm instead of
binary variables (here the compressors are still formulated with binary variables but the pipes are using
already the cuts obtained from the separation algorithm).

(V_G`�± � is the number of grid points used for the pressure at the beginning of a compressor. (Ãc×d�fE± �
analogously describes the number of grid points for the pressure at the end of a compressor. '»� is the
number of grid points for the gas flow of the compressor. (Ä_G`�± � is the number of grid points used for
pressure at the beginning of a pipe and '�� means the number of grid points for the gas flow in the pipe.
In the rows in which the number of user cuts (constructed by the separation algorithm) is zero the prob-
lem was calculated by the formulation with binary variables. We see that the use of cuts constructed by
the separation algorithm reduces the calculation time about factor ��� . Column � compares all solution
values of this model for the calculation with binary variables and with the cuts. The differences are
negligible. Only using cuts produces good approximations to the optimal solution.
Let us give a short comment about our implementation: The LP-relaxations are calculated with CPLEX
(we used CPLEX 7.0, for the branching rules CPLEX 8.0 is needed). We are working with the CPLEX
cutcallback functions. Callbacks may be called repeatedly at various points during an optimisation.
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Valve

Compressor

control valve

source
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Figure 7.5: The test model before the separation algorithm for pipes

Valve

Compressor

control valve

source

sink

Figure 7.6: The test model after the separation algorithm for pipes

Here we are looking in each LP-iteration for a cut we have calculated by the separation algorithm. This
cut is added to the LP-relaxation of the problem.

Figure 7.5 shows the situation before using the constructed cuts. The solid lined pipes do not fulfil
the triangle (set) conditions whereas the dotted pipes do. In Figure 7.6 we can see the situation after
the use of the separation algorithm. We see that in Figure 7.6 still one pipe does not fulfil the triangle
condition. The reason for this is that the polyhedron

�ÂÁ
(in general the polyhedron

�
) is not convex. So

in some cases it can be possible that the solution to be cut off lies in the interior of the convex hull of the
polyhedron

�
but not in

�
itself. Such points cannot be cut off by a valid inequality. Here the branching

algorithm of Chapter 7 ensures that we can cut off such points that do not fulfil the set conditions. But
in fact it is not always necessary to fulfil the set conditions for every segment since the solution values
often are good enough and as we stated we have the differences under control.
These first test calculations we presented showed us that the theoretical knowledge of the vertices and

the separation algorithm give us the possibility to extend our Branch-and-Cut algorithm to complexer
gas networks in order to reduce the solution time significantly.

7.3.2 Using Cuts and Branching

Figure A.7 (see page 154) shows a modified and little heightened version of the test model we have
already studied. Let us come to the test model in Figure A.7 now. The complete test data can be found
in the Appendix.
Solving the problem with our implemented Branch-and-Cut algorithm the solution time is �
� � � seconds.
The separation algorithm for polyhedron

�¹Á
(see Chapter 5) produced ����� cuts. The branching routine

was needed for � � times. In this case we use the separation algorithm in all cases and the branching rule
with TÂ*�� � �F� ( T is understood in the sense described above).
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The following table gives an impression of the different behaviour of the model while changing exactly
one value for a single node or segment (while the same discretisations of pipes and compressors are
used; we always calculated with ( _G`�± � *9( ced�fE± � * � /7' � *���� and ( _g`@± � * � /7' � *���� , see page 52):

Node/Segment Value Solution time(sec.) Cuts Branching
C02 n h jª*�� � ��� ��� � ��� �
�F� �
L16

q * �N������� � � � � ��� ����� �
L16 >i*�� � �������F� ��� � � � ����� � �
C03 n h jª*�� � ��� � � � ��� ��� � �
Q03 ' �Â_g` *�� � � �-� � � � ����� ���
A01 '��¹_G`i* � ��� � � �
� � � �
��� ���
A01 '��¹_G`i* � ��� � � ��� � ��� � � � ���
A01 '��¹_G`i* � ��� � � ��� � ��� � �w� �
���
A01 ' �¹_G` *+����� � � ����� � ��� ����� �����
A01 '��¹_G`i*+���w� � � � � � � � ����� ���
A01 '��¹_G`i*+���F� � � ��� � ��� ����� �����
A01 '��¹_G`i*+�-��� � � ����� � ��� ��� � �����
A02 ' �¹_G` *������ � � ��� � ��� � � � �
A03 '��¹_G`i*������ � � � � � ��� �
A04 '�� h ¦ *+����� � � ��� � ��� �-��� �
A04 (V�Â_g`�* � � � � ��� � �F� �
��� �
A05 ' �¹_G` *+����� � � ��� � ��� �-��� ���
A05 (V�Â_g`�* � � � � ��� � ��� ����� �
A06 (V�Â_g`�* � � � � ��� � �w� �
��� �

As a consequence we see that small and unimposing changings of model parameters can lead to signif-
icant changes of the solution of the model. This is a great problem when solving Mixed Integer Linear
Problems with Branch-and-Cut algorithms.

7.3.3 Using only Cuts

Let us give some further calculations for this model:
Here we calculate the solution of the root node.
The solution time of this problem is � � �F�N� seconds and we calculate ��� cuts. The difference to the
solution with branching is only ��� which seems to be justifiable according to the shorter calculation
time.
Here we give the calculations when changing one value for a single segment:
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Node/Segment Value Solution time(sec.) Cuts Branching
C02 n h jª*�� � ��� � � ��� ��� �
L16

q * �N������� � � � � ��� ��� � �
L16 >i*�� � �������F� � � �F� ��� �
C03 n h jª*�� � ��� � � ��� �-� �
Q03 '��Â_g`�*�� � � � � ��� � � �
A01 '��¹_G`i* � ��� � � � � ��� ����� �
A01 '��¹_G`i* � ��� � � � � ��� ���w� �
A01 '��¹_G`i* � ��� � � � � ��� � � �
A01 '��¹_G`i*+����� � � � � �÷� ����� �
A01 '��¹_G`i*+���w� � � � � � ����� �
A01 ' �¹_G` *+���F� � � � � � ��� �
A01 '��¹_G`i*+�-��� � � � � � � �F� �
A02 '��¹_G`i*������ � � � � ��� � � �
A03 '��¹_G`i*������ � � � � ��� ��� �
A04 ' � h ¦ *+����� � � � � ��� ��� �
A04 (V�Â_g`�* � � � � � � ��� � ��� �
A05 '��¹_G`i*+����� � � � � � � ��� �
A05 (V�Â_g`�* � � � � � � ��� ��� �
A06 ( �Â_g` * � � � � � � ��� ����� �

7.3.4 Using only Branching

In the next table we calculate the same situations with Tª*«� � �w� for the branching rule. The separation
algorithm is not used.
The calculation time of the initial problem is about ��� � ��� seconds. The branching routine is used �����
times.

Node/Segment Value Solution time(sec.) Cuts Branching
C02 n h jª*�� � ��� � � ��� � � ���
L16

q * �N������� � � � � ��� � �����
L16 >i*�� � �������F� ��� � ��� � �����
C03 n h jª*�� � ��� � � � � � �����
Q03 '��Â_g`�*�� � � � � � � � � ���
A01 '��¹_G`i* � ��� � � � � ��� � � �
A01 '��¹_G`i* � ��� � � � � �-� � �
A01 ' �¹_G` * � ��� � � � � � � �
A01 '��¹_G`i*+����� � � � � ��� � ���
A01 '��¹_G`i*+���w� � � � � �F� � �
A01 '��¹_G`i*+���F� � � � � �z� � �
A01 ' �¹_G` *+�-��� � � � � ��� � ���
A02 '��¹_G`i*������ � � ��� � � � � � � �
A03 '��¹_G`i*������ � � ��� � ��� � �����
A04 '�� h ¦ *+����� � � � � ��� � �N�F�
A04 ( �Â_g` * � � � � � � ��� � �����
A05 '��¹_G`i*+����� � � ��� � ��� � �����
A05 (V�Â_g`�* � � � � ��� � �÷� � �����
A06 (V�Â_g`�* � � � � ��� � �z� � ���F���
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Figure 7.7: A huge test model, see [21]



CHAPTER 7. IMPLEMENTATION AND COMPUTATIONAL RESULTS 111T %N� s � �?\K É% g b�; o s B ¬¿oC?� � �F� � � � � �� � �F� ��� � � ��� � �� � �w� ��� � � � �������� � �w� � � � � ����� � ���� � ���w� ������� � � � ���������� � ���w� � � � � � ����� ���������� � �����w� � � ��� � � � � ����� �� � �����w� �-��� � � ����� �����F���
Table 7.1: Solution quality depending on accuracy parameter

7.3.5 A Further Example and Concluding Remarks

Figure 7.7 shows a simplification of the complete gas network of the German Ruhrgas AG. First test
calculations showed that the developed algorithms give us the possibility to calculate the stationary case
of this gas network in a justifiable time. A big problem is that the solution time of this model extremely
depends on the input data. Here more research work in order to get rid of this problem is necessary.

One important positive result of our test calculations is that for not too small T the implemented branch-
ing algorithm only rarely has to be used and that the most important improvements of the LP-solutions
are achieved by the separation algorithm.

A further analysis of the test calculations shows us that the difference of the objective value when using
separation and branching algorithms or only the separation or the branching algorithm is usually small.

The following calculations show that the constructed cuts usually lead faster to a solution than the only
use of the branching algorithm. Here we calculated the second test example for different values of T
first only with the separation and second only with the branching algorithm. T is understood in the sense
described above. The table �-\V 1% shows how often the separation algorithm is used where the tableg b�; o s B ¬¿oC? shows how often the branching heuristic was needed.T %N� s � �?\K É% g b�; o s B ¬¿oC?� � �F� � � � � �� � �F� ��� � � ������� �� � �w� ��� � � � � �������� � �w� ��� � �F� ���F����� �� � ���w� ������� � � � ���������� � ���w� ��� � ��� �����F� �� � �����w� � � ��� � � � � ����� �� � �����w� ��� � ��� � � ��� �
In the table above in the rows where no branching was used we only solved the root node. This can be
done in a justifiable time. For the sake of completeness we give the same table (see Table 7.1) calculated
with a so called cut-and-branch algorithm. The difference to the branch-and-cut idea is that we here only
use cuts in the root node and then proceed by branching. Clearly the calculation time now increases but
we see that using cuts is better than only using branching.
Taking our experiences into account the following strategy may be useful: The combination of all de-
veloped algorithms cannot in all situations guarantee to calculate the optimum in a short time. So, if
we want to calculate the optimal solution for a more complex or real-world situation we first should
try either the separation or for a not too small T the branching algorithm. After that a use of a quick
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Compressor Pipe Solution, TÆ*�� � �F� Solution, TÂ*+� � �w�(K_g`@± � (Kced�fE± � 'x� (V_G`�± � '
� Opt. val. sec Opt. val. sec.� � � � � � � � �-� � � � ��� � � � �-� � � � � �� � � � � � � �����F� � � ��� � � ������� � � ���� � � � � � � ���F�-� � � �÷� � � ���F��� ��� � �� � � � ��� � � �z� � � � � � � � � � ��� ��� � ���� � ��� � ��� � � ����� � ��� � � � � ������� � � � �� � ��� � ��� � � ���-��� ��� � ��� � � ���-� � ��� � ���� � ��� � ��� � � ������� ��� � ��� � � ���-� � ��� � �
�� � ��� � ��� � � ���-��� ��� � �F� � � � �N�F� ����� � �-�� � ��� � ��� � � �-����� ��� � ��� � � ������� �F� � �w�
Table 7.2: Solution qualities depending on grid sizes

nonlinear optimisation tool in the neighbourhood of the calculated solution could be helpful in order to
calculate the real (global) optimum (remember that we know the values of switching variables now so
that we have a typical nonlinear optimisation problem with a good starting value).

Nevertheless, already these few test calculations show us that our separation algorithm and thus our
understanding of the properties of polyhedron

�
from Chapter 5 is subtotal.

The following table illustrates that the solution time usually extremely increases in dependency of the
used grids (the table considers the second test model in a special situation with different grids, we used
branch-and-cut with TÂ*�� � �F� ):

Comprerssor Pipe Solution(V_G`@± � (øc×d�fE± � 'v� (V_G`�± � '
� Opt. val sec� � � � � � � ���-��� � � � �� � � � � � � �����F� � � ���� � � � � � � � � � � ��� � �� � � � ��� � � �z����� � � ���� � ��� � ��� � � ������� �
� � � �� � ��� � ��� � � �z����� ��� � ���� � ��� � ��� � � ������� ��� � � �� � ��� � ��� � � �����F� �F� � ���� � ��� � ��� � � � ����� ��� � � ���� � ��� � ��� � � ������� �F��� � �F�
Table 7.2 shows the previous calculations with TÂ*+� � �F� and TÂ*+� � �w� using cut-and-branch.
At the end let us give Table 7.3 with selected calculations for the three test networks (here we used the
same grid for every segment and cut-and-branch with T
*� � �F� and T
* � � �w� ). Cut-and-branch seems
to conclude to good solutions even for bigger gas networks (here branch-and-cut usually will be more
time consuming). Generally we notice that the calculation time for our MIP-Problems is usually quite
longer than the calculation time for a nonlinear solver (with fixed binary variables) but until now to the
best of our knowledge no suitable nonlinear solver with binary variables (that would be able to solve the
problems we studied here) has been developed and so our idea to approximate the nonlinear problem by
a linear MIP-Problem seems to be a prudential approach. However, our results show that a solution of
the problem in its whole difficulty will require further research.
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Pipes Compressors Total length of pipes Time ( T²*�� � �F� ) Time ( TÂ*+� � �w� )
11 3 920 1.23 sec 1.99 sec
20 3 1200 1.17 sec 9.89 sec
31 15 2200 11.5 sec 104.4 sec

Table 7.3: Cut-and-Branch for different gas networks

As a consequence we see the following facts:� We developed a flexible model regarding to the complexity of the used test network.� The quality of approximation is algorithmically manageable.� The calculation times increase moderately in dependency of the used test model but little dif-
ferences of test data and the used grids can lead to quite huge differences in calculation time
(compare the last two tables).



Concluding Remarks

At the end of such time-consuming work everyone should be harsh on himself:

The aim of the work presented in this thesis was to develop and solve a mixed integer model for the
optimisation of gas networks. How far we have been able to achieve this aim?

We have been able to develop a model for the stationary case and a separation and branch-and-bound
algorithm in order to get rid off binary variables and to fasten our calculations. But we have also seen
that the force of our algorithms depends on the used discretisation. Using very fine approximations par-
ticularly the branching algorithms is very time-consuming. So we need to restrict ourselves to certain
approximations of the problem. Under these conditions our algorithms seem to work pretty well since
the quality of approximation is algorithmically manageable and in our test examples we got quite good
solutions. However, it seems to be very complicated to approximate such a complex nonlinear optimi-
sation problem with binary variables by a MILP; but we have already mentioned that there is still no
optimisation tool for such complex nonlinear optimisation problems.

It is a little unfortunate that the model we developed only considers the stationary case. But our im-
plementation and first tests of the transient model showed that from the beginning there was no prospect
of solving the full problem in an acceptable time range.

Comparing our ideas and algorithms - although they must be called premature - with the attempts that
already have been done on the problem of the Transient Technical Optimisation we risk the bold state-
ment that our ideas and attempts after some further analysis and development could make a reasonable
contribution to this very complex problem. For our justification we add that our ideas are quite general
and can be used for other problems, too.

The necessary further research work especially the analysis of the complete time depending model will
be part of the work on another graduation thesis in the research group of the tutor of this thesis. Time
will show if this work will come to a good end - and as Shakespeare said:

All’s Well That Ends Well.
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Appendix A

Facets or Valid Inequalities for small Triangu-
lations of ¦ §
A.1 General Remarks

In our considerations on developing a lifting algorithm our focus was on the equality of the pressure at
the end of a pipe and the beginning of the following pipe. In every gas network this case is very common.
In our discussion of the facets and valid inequalities of small triangulations we did not consider the
gas flow. In the case of one ingoing and one outgoing pipe often also the facets or valid inequalities
calculated here may be used for lifting which is easy to see since we formally have the same problem
in this situation. The problem when we are considering the gas flow is that because of the first law of
Kirchhoff the situation in the case of several ingoing and several outgoing pipes is much more difficult
because here we have to consider the equality of sums of gas flows. We tried to calculate facets and
valid inequalities for small cases considering the Kirchhoff law in more complicated situations as one
ingoing and one outgoing pipe. Unfortunately the complexity is to big to find general formulas. If we
want to model gas flow preservation we have to go back to our first algorithm for the calculation of the
vertices of such polytopes. Then we can use the separation algorithm we have presented in the Chapter
5.

A.2 Facets and Valid Inequalities

This part of the appendix belongs to Chapter 6. We consider the already known polyhedron
�WÁ

in the
following form: �¨� *�, � � Ó ÝÓ ß�
 � ¾ º D �º *��¾ _ D �_ *��¾ º ( �ced�fE± º D �º * ¾ _ ( �_G`@± _ D �_D � / D � î �D � / D � satisfy the triangle condition �N2
with D � * 79 D ��D ��D �3

:= / D � * 79 D � �D ��D �3
:= /E( �ced�f * 79 ( �ced�fE±&�( �ced�fE± �( �ced�fE± 3

:= /E( �_G` * 79 ( �_G`�±&�( �_G`�± �( �_G`�± 3
:=

where ( �ced�f /E( �_G` ùú 3 are the two vectors of pressure values at the grid points described by the
D

-
variables

D � / D � .
In the following tables we first specify the vertices of the studied cases and after that we give the non-
trivial facets (of the convex hull) of

� Á
(under a nontrivial facet we understand the facets that are not

part of the original description of the polyhedron). The values ö¹/ ÷ /Éò0/K_�/MT�/ ÿ depend on the pressure
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Figure A.1: Building vertices and facets of the polyhedron
�ÂÁ

values (( �ced�f /E( �_G` ) and can be calculated very easy in the way of Example ��� in Chapter 5. We note that
the inequalities can also be interpreted independent from the pressure values since our calculations only
use the structure of the vertices.

As an example: Let in the table (w.l.o.g. ¼ ì > ) for a vertex
D �_ * ��/ D �º * ö¹/ D �Ô * ���óö . Then

we know from Algorithm � in Chapter 5 for the calculation of the vertices of
�ÆÁ

:

ö�* ( �_ ��( �Ô( �º ��( �Ô �
Analogously let in the table (w.l.o.g. ¼ ì > ) for a vertex

D �_ *«ö¹/ D �º * �ª�9ö¹/ D �Ô *¸� . Then we know
from our algorithm for the calculation of the vertices of

�ÂÁ
:

ö�* ( �Ô �$( �º( �_ �$( �º �
We remark that we did not concentrate on finding the complete description of the polyhedron.

We first consider the situation which is described in Figure A.1.
General Assumption: ( �� *9( �3 /E( � � ì ( �� /E( �� ì ( �� /E( �� © ( �3 .
Case � : ( �� ©�( �� /E( �3 ì ( � �

Ingoing pipe Outgoing pipeD �� D �� D �3 D � � D �� D �3� ö �Y� ö � � �� ÷ �W� ÷ � � �� ÷ �W� ÷ � � �ò � �W��ò � � �_ � �W�â_ � � �_ � �W�â_ � � �
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Figure A.2: Building vertices and facets of the polyhedron
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Figure A.4: Building vertices and facets of the polyhedron
�ÂÁ
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Finally we consider
�ÃÁ

in the situation which is described in Figure A.4.
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Ingoing pipe Outgoing pipeD �� D �� D �3 D � � D �� D �3� ö �Y� ö � � �� � � � ÷ �Y� ÷� � � ÷ � �Y� ÷ò �M��ò � � � �
÷

,Lö�����2Ú, ÷ ����2 D �3 � �÷ ��� D �3 	��<�
We remark that it is unfortunately not easy to simplify this classification of the facets. Here we consider
a simple example: For Figure A.1, Case � the vertices

Ingoing pipe Outgoing pipeD �� D �� D �3 D � � D �� D �3ò � �W��ò � � �ò � �W��ò � � �_ � �W�â_ � � �
lead to the facet

�_^��� D �3 � ò��ç__^��� , D �� � D �3 2ú	 �<� �
In Figure A.2, Case � the same vertices lead to the facet

�_^��� D �3 � ò��ç__^��� , D �� � D �3 2 î �<� �
We see that we need all vertices in the particular situations in order to define the vertices and not only
the vertices that fulfil the facets at equality.
Let us give a little

Lemma 45 The inequalities we have given in Cases ��/ �z/ ����� /���� for each of the four situations (which
have been defined by Figures ��/ �z/ �z/ � ) are indeed facets of

�¹Á
in the special situation.

Proof. The principle idea of the proofs is very simple:
We have already seen that in order to show the validity of the inequalities it is sufficient to show that the
vertices fulfil the inequality.
Moreover we know that the dimension of the considered polyhedra can be maximal � which is easy to
see. The polyhedra are a subspace of ú ô and every point of each polyhedron is defined by � equalities.
So the maximal dimension of the polyhedra can be ���X�i*�� . Here it is important to know that in the
situations we discussed the three equalities that are defining the polyhedron

�ÆÁ
are linearly independent.

For every polyhedron we can show that at least � vertices fulfil the inequality at equality. Now it is clear
that we have found a facet of the polyhedron.

As an example we prove Case � and Case ��� for the triangle combination defined by Figure � , the
other proofs are in a analogous manner:

Remember that we get in Case � the following vertices:
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Ingoing pipe Outgoing pipe Nr.D �� D �� D �3 D � � D �� D �3� � � ö �Y� ö � �� � � ö � �W� ö �� � � ÷ �Y� ÷ � �� � � ÷ � �Y� ÷ �
ò �M��ò � � � � �ò �M��ò � � � � �� _ �Y�ç_ � � � �� _ �Y�ç_ � � � �

First consider the inequality: ÷ � öö���� D �3 � �ö���� , D �� � D �3 2´	 �<� �
Calculation for point � and � :

� � �ö��È� ,É�Y�9ö:2�*��<� �
Calculation for point � and

�
: ÷ � öö���� � �M� ÷ö��È� * �M� öö���� *��<� �

Calculation for point � and � :
� � �ö���� *�� ��W� ö ì �<��/

since � ì ö ì � .
Calculation for point � and � :÷ � öö���� ,É�6� _�2 � �ö���� *

÷ � ÷ _^� ö � öh_ � �ö8�¶� *��<� � ÷ � ÷ _ � öh_ö8��� *��<�6� ÷ ,É�Y�ç_�2 � öh_�W�9ö ì �<� �
For the last estimate remember ÷ ©��-/K_½©¶�-/ ö ì � .
Let us consider now the second inequality:÷÷$� _]� ÷ _ D �3 � _÷�� _^� ÷ _ , D �� � D �3 2Þ	 � �
We remark that � ì ÷ ì � and � ì _ ì � implies ÷$� _^� ÷ _½©È� .
Calculation for point � and � :

� ì öh_ �X÷ ,É�Y�ç_�2i� _ª�9ö _ ì ÷Ø� _]��_ ÷ � _÷�� _^� ÷ _ ,É�M� ö:2 ì � �
Calculation for point � and

�
:÷÷�� _ª� ÷ _ � _÷$� _^� ÷ _ ,É�M� ÷ 2�* ÷Ø� _@,É�M� ÷ 2÷Ø� _^� ÷ _ *�� �

Calculation for point � and � :
� � _÷$� _^� ÷ _ ì _÷ _ � _^� ÷ _ * _ _ *�� �
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This is clear because of � ì _ ì � and � ì ÷ ì � .
Calculation for point � and � : ÷÷�� _^� ÷ _ ,É�M�ç_N2 � _÷$� _^� ÷ _ *�� �
We have shown that the two inequalities are indeed facets!

As a second example let us sketch the proof in Case ��� :
Ingoing pipe Outgoing pipe Nr.D �� D �� D �3 D � � D �� D �3� � � ö � �Y� ö �� � � ö �Y� ö � �� ÷ �Y� ÷ � � � �� ÷ �Y� ÷ � � � �

ò �Y��ò � � � � �ò �Y��ò � � � � �_ � �Y�ç_ � � � �T �Y��T � � � � �
Let us consider the first inequality:

��Y�ç_ D �3 � _,É�Y� öÃ2Ú,É�M�ç_�2 , D �� � D �3 2´	 � �
The calculations are quite simple. Only the calculation for the point � and

�
is interesting:

�W� ÷�Y��_ � _,É�ª�uö:2Ú,É�ª�ç_�2 * ,É�Y� ÷ 2Ú,É�M� öÃ2Ã�ç_,É�Y� öÃ2Ú,É�M�ç_�2 �
We know _÷ ©��
and from � ì ö ì � concludes � Ê �� ì � and so it holds_÷ © ö8�È�ö �
Now we can easily conclude_Nö¥© ÷ ,Lö8�¥��2�� �²�uö|�'_ � öh_½© �²� ö|�'_ � ÷ ö�� ÷ � ,É�W� öÃ2Ú,É�W� _�2W© ,É�Æ� ÷ 2Ú,É�W�uöÃ20�'_ �
In summary we get ,É�Y� ÷ 2Ú,É�M� öÃ2Ã�ç_,É�Y� öÃ2Ú,É�M�â_N2 ì � �
Let us consider the second inequality:

öö �X÷ �9ö ÷ D �3 �
÷

ö �X÷ �9ö ÷ , D �� � D �3 2´	 � �
Only the calculation for point � is new and nontrivial:

öö �X÷ �uö ÷ ,É�Y�ç_�2�* öÆ,É�M�ç_�2öÆ,É�M� ÷ 2 �9÷ ì öÆ,É�Y�ç_�2öÆ,É�Y� ÷ 2 � ö ÷ *��W�ç_ ì � �
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Figure A.5: Building vertices and facets of the polyhedron
�ÂÁ

In this way all proofs in all other cases can be managed and we do not need any new idea for the proof
of the other facets. ·
Small tests showed that it is not sufficient to know the facets in the cases we have already examined.
So we look at some complexer cases which are shown in Figure A.5. We only have to remark that now
holds

D � * 7889 D ��D ��D �3D ��

:<;;= / D � * 7889 D � �D ��D �3D ��

:<;;= /E( �ced�f * 7889 ( �ced�fE±&�( �ced�fE± �( �ced�fE± 3( �ced�fE± �

:<;;= /E( �_G` * 7889 ( �_G`�±&�( �_G`�± �( �_G`�± 3( �_G`�± �

:<;;=
where ( �ced�f /E( �_G` ùú � are the two vectors of pressure values at the grid points described by the

D
-

variables
D � / D � . Since the description of the problem even in this case is quite complex we restricted us

on the calculation of valid inequalities. In the several cases it is easy but longwinded to control whether
the calculated valid inequalities are indeed facets.

General Assumption: ( �� ©�( �� /E( �3 ©�( �� /E( �� ì ( �3 /E( �� ì ( �� /E( � � *9( �� /E( �3 *9( �� /E( � � ì ( �3 /E( �� ì ( �� .
Case � : ( �� ì ( � � /E( � � ì ( �3 ì ( �3 /E( �� ì ( � �
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Case
�
: ( �� ì ( � � /E( �3 © ( �3 /E( � � ì ( �� ì ( �3

Ingoing pipe Outgoing pipeD �� D �� D �3 D �� D � � D �� D �3 D ��� � � � � ö � �Y� ö� � � � ö � � �Y� ö� � � � ö � �Y� ö �� � ÷ �Y� ÷ � � � �� � ÷ �Y� ÷ � � � �� ò � �Y��ò � � � �� ò � �Y��ò � � � �_ � � �M�ç_ � � � �_ � � �M�ç_ � � � �T � �Y��T � � � � �T � �Y��T � � � � �ÿ � �W� ÿ � � � � �ÿ � �W� ÿ � � � � �
ö÷ ,Lö�����2 D �3 � D �� � ��Y� ö D �3 � D �� 	 �

��Y�9ÿ D �3 � ��W��ò D �� � ÿ<��Tÿ
��� , D �3 � D �� 2Þ	 �
if öÆ,Lÿ �©Tk2 � T¹� ÿV,É� � òp2�	�� and ò¨,É�Y� ÷ �©Tk2 � T � ÿV, ÷ ����2�	��÷ � ö ÷$� öÄò,Lö��È��2 ÷ ,~ò|����2 D �3 � ��Y��ò D �� � ò,Lö8�¶��2Ú,~ò$����2 , D �3 � D �� 2Þ	 �
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Lemma 46 The inequalities we have given in Cases ��/ �z/ ����� /��
� in the situation of Figure A.5 are indeed
valid inequalities (facets) of

��Á
in this special situation.

Proof. The idea behind the proofs is principle the same as in the previous proofs. Because of this we
only give an interesting example and omit the other tiring and long winded calculations. Via the vertices
of the polyhedra it can be calculated that the inequalities are indeed valid inequalities (even facets). We
have only proven that all inequalities are valid which is sufficient for our lifting algorithms since we
only need some special kinds of valid inequalities.
Let us show the inequality

ö _^� ö ÷÷ ,Löh_]� ö��ç_�2 D �3 � öö _]� ö8�ç_ D �� � �ò ,É�Y�ó,É�Y��òp2Ú,É� � öpò,~ò$�uöÃ2Ú,Löh_
� ö��ç_�2 212 D �� �_ö � _^�uöh_ D �3 � ,É� � öpò,~ò$� öÃ2Ú,Löh_
�uö��ç_N2 2 D �� 	 �
in Case ��� . We remember the vertices of the polyhedron

� Á
in this case:



APPENDIX A. 147

Ingoing pipe Outgoing pipe Nr.D �� D �� D �3 D �� D � � D �� D �3 D ��� � � � � ö � �Y� ö �� � � � ö � � �Y� ö �� � � � ö � �W� ö � �� � ÷ �W� ÷ � � � � �
� � ÷ �W� ÷ � � � � �� � � � � ò � �W��ò �� � � � ò � � �W��ò �� � � � ò � �Y��ò � �_ � � �W�ç_ � � � � �_ � � �W�ç_ � � � � ���T �Y�ªT � � � � � � ���T �Y�ªT � � � � � � ���

The calculations for the points �z/ �z/ �z/k�@/K�z/����-/�����/���� are almost trivial or a consequence of the calcula-
tion of the other points and so we omit them.

Calculation for point � :
� ööh_]�uö��ç_ � ö ò ,É�²�È,É�Æ��òÄ2Ú,É� � öÄò,~òØ� öÃ2Ú,Lö _<� ö��â_N2 212 � ,É� � öpò,~ò�� öÃ2Ú,Löh_
� ö��ç_�2 2Ú,É�²��öÃ2¹*

� öö _^� ö��ç_ � ö ò � ,É�Y�9ö8� öò ,É�Y�9ö:212Ú,É� � öpò,~ò$�9ö:2Ú,Löh_
�uö��ç_�2 2�*
� öö _^� ö��ç_ � ö ò � ò$� öò � ò�� öò öÄò,~ò$� ö:2Ú,Löh_
� ö���_�2 * òò *�� �

Calculation for point � :
In this case obviously holds ò¥©�ö , since ( �� ì ( �� . Because of � ì ö ì ��/7� ì ò ì ��/7� ì _ ì � we
get ö _]� ö8�ç_ ì � and so we get öÄò,~òØ� öÃ2Ú,Lö _]� ö��ç_�2 ì �
and thus ,É�Y��òp2Ú,É� � öpò,~ò$�9ö:2Ú,Löh_]� ö��ç_�2 2 ì �
and so we get ö ò ,É�Y�ó,É�Y��òp2Ú,É� � öpò,~ò�� öÃ2Ú,Löh_
� ö��ç_�2 212²©�� �
Now we calculate (consider the calculation for point � ):

� ööh_^� ö8�ç_ � ,É� � öÄò,~òØ� öÃ2Ú,Lö _]� ö��ç_�2 2Ú,É�Y�9ö:2 ì
� ööh_]�uö��ç_ � öò ,É�0��,É�0�iòÄ2Ú,É� � öÄò,~òØ� öÃ2Ú,Lö _<� ö��â_N2 212 � ,É� � öÄò,~ò$� öÃ2Ú,Lö _
�9ö��ç_�2 2Ú,É�0��öÃ2�*�� �
Calculation for point

�
:

Because of ò ©¶ö we get _z,~ò$� öÃ2 � öX©�� and thus_�ò$�ç_Nö���ò � öX© �²ò+� öÂ,Q_]����2Ú,~òØ� öÃ2 � öÄò�©¶� �
Now we can calculate the value of the inequality for point

�
:

öh_ª�9ö ÷÷ ,Lö _]� ö���_�2 ÷ � öö _^� ö��ç_ ,É�Y� ÷ 2 � � � öÄò,~òØ�uö:2Ú,Löh_
� ö��ç_�2 *



APPENDIX A. 148

öÆ,Q_]�È��2ö _]�uö��ç_ � öÄò,~òØ� öÃ2Ú,Lö _]� ö��ç_�2 � �^* öÂ,Q_]�È��2Ú,~ò|� öÃ2 � öÄò,~ò$� ö:2Ú,Löh_
� ö8�ç_�2 � � ì �
because of our preliminary calculation.

Calculation for point � :
� ööh_ª�9ö8�â_ ,É�Y�â_N2 � � � öÄò,~òØ� ö:2Ú,Löh_
�uö��ç_�2 * ,Löh_]� öÃ2Ú,~òØ�9ö:2 � öpò,~ò��9ö:2Ú,Löh_
� ö��ç_�2 � �

* öÆ,Lö � _@,~òØ� öÃ212,~ò$� öÃ2Ú,Löh_]� ö��ç_N2 � � ì � �
The inequality is fulfiled at equality at points ��/ �z/ �z/ �z/���� . So the inequality is valid. With an easy
calculation we can calculate the dimension of the polyhedron and in this way we can test whether we
indeed have found a facet. ·
We add the following

Remark 47 Even in the considered situations the calculated inequalities are not sufficient in order to
separate all LP-solutions that do not fulfil the triangle conditions. From this fact we conclude that in
the case that the valid inequalities are indeed facets we can not guarantee to calculate the complete
description of

�ÃÁ
even in this small cases.

Let us consider Case � for Figure A.5 with

( �ced�f * 7889 ������������

:<;;= /E( �_G` * 7889 ������� �� �

:<;;=
Let the calculated LP-solution be 788888888889

�� �� �� �� �� ��

:<;;;;;;;;;;= �

It is easy to see that the calculated inequalities do not cut off this point since the calculated valid
inequalities are

�<��� D �3 �9� D �� � ����� �3 � ��� D �� 	 �M�D �� � � D �3 � D �� 	 ��M� D �3 � � D �� � ��� D �3 � � D �� 	¶���� D �3 � � D �� �¶��� D �3 ����� D �� 	¶���� D �3 � ��� D �� �¶��� D �3 ����� D �� 	 ��� �
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Let the calculated LP-solution be 788888888889
�� ��� �� �� ��

:<;;;;;;;;;;= �

In this case it is easy to see that the calculated inequalities cut off this point because we get in the second
inequality �� � � � �� � �� © � �
For the use of separation algorithms as described in Chapter 6 we have to mention the problem that
every more complicated discretisation graph induces new classes of valid inequalities and facets. These
new classes of inequalities of course cannot be calculated via lifting from known inequalities of smaller
discretisation graphs.
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Figure A.6: Nodes and segments of used test model

A.3 Complete Data of Test Models

Figure A.6 shows a small gas network that we used for the first test calculations. In the following tables
we give the data of all segments and nodes.

Pipes (length
q

, diameter
r

, pipe roughness > ):

q r >
LtA1 ����������� � � � � � �������w�
LtB1 ����������� � � ��� � � �������w���
LtB2 ��������� � � ��� � � �������w���
LtB3 ����������� � � � � � �������w���
LtB4 ��������� � � � � � �������w���
LtC1 ����������� � � � � � �������w���
LtC2 ��������� � � � � � �������w���
LtC3 ����������� � � ��� � � �������w���
LtC4 ��������� � � ��� � � �������w���
LtC5 �N������� � � � � � �������F�
LtD1 ����������� � � � � � �������w�
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Nodes (minimal pressure (C�¹_G` , maximal pressure (ø� h ¦ ):( �Â_g` ( � h ¦
Qu1 ��� ���
Qu2

� � ���
Ab1

� � �N�
Ab2

� � � �
Ab3 ��� ���

VdAein
� � �N�

VdAV
� � �N�

KnB1
� � �N�

KnB2
� � �N�

VdBein
� � �N�

VdBaus
� � �N�

KnC1
� � �N�

KnC2
� � �N�

KnC3
� � �N�

VdCein
� � �N�

VdCV
� � �N�

VdCaus
� � �N�

Compressors (adiabatic efficiency n hkj , specific heat rate a , minimal power ���¹_G` , maximal power ��� h ¦ ):n h j a ���Â_g` � � h ¦
VdA � � � ��������� ��������� ���������
VdB � � ��� �����N��� ������� � �������
VdC � � ��� ��������� ������� � �������

Segments (minimal gas flow 'A�¹_G` , maximal gas flow '�� h ¦ , here given in the dimension !G��������"�3A4 B # ):
'��¹_G` '�� h ¦

LtA1 � �������
LtB1 � �������
LtB2 � �������
LtB3 � �������
LtB4 � �������
LtC1 � �������
LtC2 � �������
LtC3 � �������
LtC4 � �������
LtC5 � �����
LtD1 � �������
VbA1 ����� �����
VbB1 � �����
VdA � �������
VdB � �������
VdC � �������
ByA � �������
ByB � �������
ByC � �������

VnBQ �M����� � ���
Rg1 � ���
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Minimal gas flow '��¹_G` and maximal gas flow '�� h ¦ for gas delivering nodes (
� \:��/ � \ø� ) and sinks

(
P aA��/ P aÚ�z/ P aÚ� ), here given in the dimension !G��������" 3 4 B # :

' �¹_G` ' � h ¦
Qu1 ������� �������
Qu2 ����� �����
Ab1 ��� ���
Ab2 ��� ���
Ab3 ������� �������

Control valve (minimal pressure reduction (Äj � � ¡£¢ , maximal pressure reduction (pj � � ��� ):
(Kj � � ¡T¢ (Kj � � ���

Rg1 � ���
Summary of all important non-vanishing solution-values:

' ¤ f � � : 1469.355096' ¤ f�«:� : 948.531826' ¤ f�«p� : 914.869159' ¤ f�« 3 : 817.121561' ¤ f�«C� : 800.784229' ¤ fV�0� : 910.052683' ¤ fV�C� : 910.052683' ¤ fV� 3 : 802.503450' ¤ fV�ø� : 742.503450' ¤ fV� Ç : 60.000000' ¤ fÅÖÂ� : 1650.000000' � � � � : 300.000000'x�Ä`I«	¬ : 33.662668%��p`b«�¬ : 1.000000' Ð Ü�� : 60.000000% Ð Ü�� : 1.000000' � j � : 1769.355096� � j � : 11037.569472) � j � : 3.701709% � j � : 1.000000' � j « : 1715.653388� � j « : 9472.041959) � j « : 3.097255% � j « : 1.000000' � j � : 1652.556133� � j � : 7258.807864) � j � : 2.556133% � j � : 1.000000'K¬pd�� : 1469.355096("¬pd�� : 70.013250'K¬pd�� : 300.000000( ¬pd�� : 59.013250' � � � : 50.000000( � � � : 64.150565
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' � � � : 60.000000( � � � : 50.013250' � � 3 : 1650.000000( � � 3 : 51.013250( � j � \ _G` : 59.013250( � j � h dA§ : 71.013250("Æ`b«:� : 64.150565( � j « \ _G` : 59.916834( � j « h dA§ : 69.865576( Æ`��0� : 61.465123("Æ`��C� : 60.925951("Æ`�� 3 : 50.925951( � j � \ _g` : 56.733354( � j � h dN§ : 63.980631
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Figure A.7: Nodes and segments of modified and heightened test model
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Figure A.7 shows a modified and little heightended version of the used test model. Here we give the
data of this second model and give show how the solution time depends on the initional conditions. First
we give the data of the standard situation:

Pipes (length
q

, diameter
r

, pipe roughness > ):q r >
L01 ��������� � � � � � �������w�
L02 ��������� � � � � � �������w�
L03 ��������� � � � � � �������w�
L04 ��������� � � � � � �������w�
L05 ��������� � � � � � �������w�
L06 ��������� � � � � � �������w�
L07 ��������� � � � � � �������w�
L08 ��������� � � � � � �������w�
L09 ��������� � � � � � �������w�
L10 ��������� � � � � � �������w�
L11 ��������� � � � � � �������w�
L12 ����������� � � � � � �������w���
L13 ��������� � � � � � �������w���
L14 ����������� � � ��� � � �������w���
L15 ��������� � � ��� � � �������w���
L16 ��������� � � � � � �������w�
L17 ��������� � � � � � �������w���
L18 ��������� � � � � � �������w�
L19 ��������� � � � � � �������w�
L20 ��������� � � � � � �������w�
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Nodes (minimal pressure (C�¹_G` , maximal pressure (ø� h ¦ ):
(K�¹_G` (V� h ¦

Q01 ��� ���
N01

� � �N�
Q02

� � ���
N02

� � �N�
Q03

� � �N�
N03

� � �N�
A01

� � �N�
N04

� � �N�
N05

� � �N�
N06

� � �N�
A02

� � �N�
N07

� � �N�
A03

� � �N�
N08

� � �N�
N09

� � �N�
N10

� � �N�
N11

� � �N�
N12

� � �N�
A04

� � �N�
N13

� � �N�
N14

� � �N�
N15

� � �N�
N16

� � �N�
A05

� � ���
A06

� � ���
Compressors (adiabatic efficiency n hkj , specific heat rate a , minimal power ���¹_G` , maximal power ��� h ¦ ):

n hkj a � �¹_G` ��� h ¦
C01 � � � ��������� ������� ���������
C02 � � � �����N��� ������� � �������
C03 � � � ��������� ������� � �������
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Segments (minimal gas flow 'A�¹_G` , maximal gas flow '�� h ¦ , here given in the dimension !G��������"�3A4 B # ):
' �¹_G` ' � h ¦

L01 � �������
C001 � �������
L02 � �������
L03 � �������
L04 � �������
L05 � �������
L06 � �������
C01 � �������
V01 � �������
L07 � �������
L08 � �������
L09 � �������
L10 � �������
L11 � �������
C02 � �������
V02 � �������
L12 � �������
L13 � �������
L14 � �������
L15 � �������

CV01 � �������
L16 � �������
L17 � �������
C03 � �������
V03 � �������
L18 � �������
L19 � �������
L20 � �������

Minimal gas flow '��¹_G` and maximal gas flow '�� h ¦ for gas delivering nodes (
� \:��/ � \ø� ) and sinks

(
P aA��/ P aÚ�z/ P aÚ� ), here given in the dimension !G��������"�3N4 B # :

' �¹_G` ' � h ¦
Q01 ������� �������
Q02 ����� �������
Q03 ����� �������
A01 ��� �������
A02 ����� �������
A03 ����� �������
A04 ��� �����
A05 ����� �����
A06 ����� �����

Control valve (minimal pressure reduction (Äj � � ¡£¢ , maximal pressure reduction (pj � � ��� ):
(Kj � � ¡£¢ (øj � � ���

CV01 � ���



Bibliography

[1] I.R. de Farias A.B. Kehe and G.L.Nemhauser. Models for representing piecewise linear cost func-
tions. Technical report, CORE, 2002.

[2] Ruhrgas AG. WWW Page: http://www.ruhrgas.com.

[3] Ruhrgas AG. Nonpublished.

[4] E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical programming system
for non-convex problems using ordered sets of variables. Proceedings of the Fith International
Conference on Operations Research, Tavistock Publications, pages 447 – 454, 1970.

[5] I.N. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik. Verlag Harri Deutsch, Thun
und Frankfurt/Main, 1987.
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la-Neuve, Belgium, 1999.

[28] H. Marchand, A. Martin, R. Weismantel, and L.A. Wolsey. Cutting planes in integer and mixed
integer programming. Discrete Applied Mathematics, 123/124:391 – 440, 2002.
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