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Summary

Complex formation between macromolecules constitutes the foundation of most cel-

lular processes. Most known complexes are made up of two or more proteins inter-

acting in order to build a functional entity and therefore enabling activities which

the single proteins could otherwise not fulfill. With the increasing knowledge about

noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of

them also need to form a complex to be functional. This functionalization is usu-

ally executed by specific or global RNA-binding proteins (RBPs) that are specialized

binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs

Hfq and ProQ together bind >80 % of the known small regulatory RNAs (sRNAs),

a class of ncRNAs involved in post-transcriptional regulation of gene expression.

However, identification of RNA-protein interactions so far was performed in-

dividually by employing low-throughput biochemical methods and thereby hin-

dered the discovery of such interactions, especially in less studied organisms such

as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the

present thesis aimed to establish high-throughput, global RNA/protein complex-

ome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a

new way to investigate RNA-protein as well as protein-protein interactions in these

two important model organisms.

In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 % of

total) transcripts and 2,145 (∼49 % of total) proteins and with that reproduced

its major ribonucleoprotein particles. Detailed analysis of the in-gradient distri-

bution of the RNA and protein content uncovered two functionally unknown

molecules—the ncRNA RyeG and the small protein YggL—to be ribosome-

associated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic
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protein that drastically increases lag times when overexpressed. YggL was shown to

be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement

of YggL in ribosome biogenesis or translation of specific mRNAs.

S. pneumoniae Grad-seq detected 2,240 (∼88 % of total) transcripts and 1,301

(∼62 % of total) proteins, whose gradient migration patterns were successfully re-

constructed, and thereby represents the first RNA/protein complexome resource

of a Gram-positive organism. The dataset readily verified many conserved major

complexes for the first time in S. pneumoniae and led to the discovery of a specific

interaction between the 3’→5’ exonuclease Cbf1 and the competence-regulating cia-

dependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabi-

lized the former, thereby promoting their inhibitory function. cbf1 was further shown

to be part of the late competence genes and as such to act as a negative regulator of

competence.



Zusammenfassung

Makromoleküle, die Komplexe bilden, sind die Grundlage der meisten zellulären

Prozesse. Die meisten bekannten Komplexe bestehen aus zwei oder mehr Proteinen,

die interagieren, um eine funktionelle Einheit zu bilden. Diese Interaktionen ermög-

lichen Funktionen, die die einzelnen Proteine nicht erfüllen könnten. Wachsende

wissenschaftliche Erkenntnisse über nichtkodierende RNAs (ncRNAs) haben ge-

zeigt, dass, analog zu Proteinen, auch viele ncRNAs Komplexe bilden müssen, um

ihre Funktionen ausüben zu können. Diese Funktionalisierung wird normalerwei-

se von spezifischen oder globalen RNA-bindenden Proteinen (RBPs), die auf eine

bestimmte Klasse an ncRNAs spezialisiert sind, durchgeführt. So binden beispiels-

weise die in Enterobakterien verbreiteten globalen RBPs Hfq und ProQ zusam-

men >80 % der bekannten kleinen regulatorischen RNAs (sRNAs)—eine Klasse der

ncRNAs, die in die posttranskriptionelle Genexpressionsregulation involviert ist.

RNA-Protein-Interaktionen wurden bisher anhand einzelner Moleküle und mit-

hilfe von biochemischen Methoden mit niedrigem Durchsatz identifiziert, was

die Entdeckung solcher Interaktionen erschwert hat. Dies gilt insbesondere für

Organismen, die seltener Gegenstand der Forschung sind, wie beispielsweise gram-

positive Bakterien. Das Ziel dieser Doktorarbeit war es, mittels gradient profiling by se-

quencing (Grad-seq) globale Hochdurchsatzkomplexomdatensätze der RNA-Protein-

Interaktionen in Escherichia coli und Streptococcus pneumoniae zu generieren. Diese

Datensätze ermöglichen es auf eine neue Art und Weise RNA-Protein- und Protein-

Protein-Interaktionen in diesen wichtigen Modellorganismen zu untersuchen.

Die E. coli Grad-seq-Daten beinhalten die Sedimentationsprofile von 4095

Transkripten (∼85 % des Transkriptoms) und 2145 Proteinen (∼49 % des Proteoms),

mit denen die wichtigsten Ribonukleoproteine reproduziert werden konnten. Die
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detaillierte Analyse der Verteilung von RNAs und Proteinen im Gradienten zeig-

te, dass zwei Moleküle, deren Funktionen bisher unbekannt waren—die ncRNA

RyeG und das kleine Protein YggL—ribosomenassoziiert sind. Durch weitere

Charakterisierung konnte gezeigt werden, dass RyeG für ein toxisches Protein mit

einer Länge von 48 Aminosäuren kodiert, das bei Überexpression die Latenzphase

drastisch verlängert. Für YggL konnte eine Interaktion mit der 50S Untereinheit von

70S Ribosomen nachgewiesen werden, was auf eine potenzielle Funktion in der

Biogenese von Ribosomen oder bei der Translation bestimmter mRNAs hindeutet.

Die S. pneumoniae Grad-seq Daten beinhalten 2240 Transkripte (∼88 % des

Transkriptoms) und 1301 Proteine (∼62 % des Proteoms), deren Migrationsprofile

im Gradienten erfolgreich rekonstruiert werden konnten. Dieser RNA/Protein-

Komplexomdatensatz eines grampositiven Organismus ermöglichte erstmalig die

Verifizierung der wichtigsten konservierten Komplexe von S. pneumoniae. Weiterhin

konnte eine spezifische Interaktion der 3’→5’-Exonuklease Cbf1 mit den cia-

dependent sRNAs (csRNAs), die an der Regulation von Kompetenz beteiligt sind,

nachgewiesen werden. Überraschenderweise stabilisiert das von Cbf1 durchgeführ-

te Kürzen der csRNAs die selbigen, was deren inhibitorische Funktion unterstützt.

Darüber hinaus konnte gezeigt werden, dass cbf1 eines der späten Kompetenzgene

ist und als solches als negativer Regulator der Kompetenz agiert.
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Chapter 1

Introduction

1.1 Bacterial complexes

Functional interactions between macromolecules build the foundation of life. By in-

teracting, proteins and RNA are able to carry out functions they would not be able

to do individually. Catalytic pockets are formed, performance of successive reac-

tions is increased by bringing catalytic centers in proximity, membrane pores are

formed and protein activities are modulated, just to name a few functions arising

from complex formation. The overall result of this impressive feat of evolution is

that complexes carry out the most fundamental processes in a cell: In Escherichia coli,

DNA is replicated by the DNA polymerase III holoenzyme, a complex containing

10 different subunits and 17 proteins in total (Fijalkowska et al., 2012). Transcription

of DNA is then performed by RNA polymerase (RNAP) containing 4 core subunits

and whose specificity gets modulated by 7 different σ-factors and the noncoding

6S RNA (Feklístov et al., 2014; Sutherland and Murakami, 2018; Wassarman, 2018).

Following transcription, translation is carried out by the ribosome, the most sophis-

ticated complex in a bacterial cell, which is a ribozyme built up by >50 different

proteins and 3 noncoding RNAs (ncRNAs) (Davis and Williamson, 2017). Not men-

tioning many other essential metabolic pathways in the cell, these three examples

alone show the importance of macromolecules forming higher order interactions to

fulfill their functions.

1
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Apart from protein-protein complexes, which have been studied since the dawn

of biochemistry, bacterial RNA/protein complexes, or ribonucleoprotein particles

(RNPs), have gained much more attention during the last decades. This is in part

due to the innovation of new methodologies with which to study these interactions

and in part due to the appreciation of RNA being more than just the carrier of ge-

netic information. Classic RNPs such as the aforementioned ribosome, the signal

recognition particle (Akopian et al., 2013) or RNase P (Mondragón, 2013) all involve

RNA-binding proteins (RBPs) that specifically bind their target RNAs with special-

ized RNA-binding domains. Similar to protein-protein complexes, the formation of

RNPs allows functionalization of the otherwise inactive subunits. Another important

use bacteria make of RNPs is to rapidly control their gene expression in response

to environmental changes, allowing adaptation and survival (Babitzke et al., 2019;

Holmqvist and Vogel, 2018). This process often involves an RBP that forms a com-

plex with both a small regulatory RNA (sRNA) and its target mRNA in order to

provide a platform for the regulation to happen (Hör et al., 2020b). Thus, RNPs

are of similar importance as protein-protein complexes with which together they

form the whole of the bacterial complexome. Understanding and identification of

both the players within the complexome and the complexome as a whole requires

sophisticated methods to study these intricate cellular machineries.

1.2 Investigation of macromolecular interactions

The analysis and identification of protein-protein interactions (PPIs) and RNPs poses

several challenges. When one or more subunits of a complex are known, many bio-

chemical methods exist that allow the identification of additional subunits. These

methods usually rely on purification of the known subunit under conditions that

allow to wash away non-interacting molecules. Subsequent analysis of the bound

fraction then enables identification of the whole complex. However, de novo identifi-

cation of complexes is more complicated since none of the subunits are known. This

is especially true for understudied organisms that are distant to the most studied

model organisms and are therefore lacking homologs of known complexes. These

circumstances make it highly desirable to introduce new methods that are capable
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of unbiasedly analyzing the complexome of an organism of interest in order to pre-

dict complex formation. The following sections will give an overview of different

types of methods that can be applied to investigate different types of complexes in

bacteria.

1.2.1 Bait-based methods: protein-protein interactions

As stated before, many methods exist to establish the interactome of a protein of

interest. Since specific antibodies are usually not available for bacterial proteins, the

bait protein most of the time is tagged in order to allow purification. One classical

approach is affinity purification followed by mass spectrometry (AP/MS), for which

cells are lysed and the resulting lysates incubated with a matrix allowing immobi-

lization of the bait protein via, e.g., a tag-specific antibody (Kwan and Emili, 2016).

After several washing steps removing unbound molecules, the complexes are eluted

and the bound fraction analyzed by mass spectrometry (MS) (Figure 1.1 A).

Another widely used method to study PPIs is the yeast two-hybrid (Y2H) system

(Koegl and Uetz, 2007; Rajagopala et al., 2012). Y2H takes advantage of a transcrip-

tion factor (TF) that possesses two domains: a DNA-binding domain (BD) and an

activation domain (AD). Usually, the BD binds to an upstream activating sequence

(UAS) of a reporter gene whose transcription can then be activated by the AD. To

study PPIs, the TF is split into its two domains, thereby rendering it inactive when

expressed in yeast. The BD is then fused to a protein of interest (called the bait)

and the AD is fused to proteins (called the preys) whose interactions with the bait

are to be tested. If a sufficiently strong interaction occurs between the bait and the

prey, function of the TF is restored and the reporter gene turned on, indicating a

functional PPI (Figure 1.1 B).

1.2.2 Bait-based methods: RNA-protein interactions

The methods mentioned so far exclusively investigate PPIs. For the global investiga-

tion of the interaction between RNA and protein, there are two different approaches,

which, conceptually, are very similar to AP/MS: pulling down an RBP of interest and

sequencing the bound RNA or pulling down an RNA of interest and identifying the

bound proteins via MS.
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Figure 1.1: Non-global interactome methods. (A) Affinity purification followed by mass spectrometry
(AP/MS). Following lysis of a culture of cells, the protein of interest (POI) is immobilized on a column,
usually by antibody-dependent capture of a tag placed on the POI. Next, proteins that do not bind
the POI are washed away and the complex of the POI and its specific binder(s) is eluted. Identification
of the binders is performed via MS. (B) Yeast two-hybrid (Y2H). Interaction between two proteins is
tested by fusing one to a binding domain (BD) and the other to an activating domain (AD). The two
fusion proteins are expressed in yeast, allowing the proteins to interact. If they do, the BD and AD form
a functional transcription factor (TF) able to bind an upstream activating sequence (UAS), triggering
the expression of a reporter that confirms the interaction. (C) RNA-immunoprecipitation followed by
RNA-seq (RIP-seq). Same procedure as in (A), but the POI in this case is an RNA-binding protein
(RBP). After elution, the RNA targets of the RBP are identified via RNA-seq. (D) MS2 pull-down.
An RNA is tagged with the MS2 aptamer and expressed in vivo. After lysis of the culture, the MS2-
tagged RNA is immobilized by binding to a column-bound MS2-maltose binding protein (MBP)-hybrid
protein. Proteins that do not interact with the MS2-tagged RNA are washed away and the remaining
complexes are eluted. Identification of protein targets of the MS2-tagged RNA are identified via MS.
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1.2.2.1 Protein-centric methods

The most basic method that allows analysis of the interactome of an RBP of interest

is RNA immunoprecipitation followed by RNA-seq (RIP-seq) (Hör et al., 2018). To

allow affinity purification, the RBP is usually tagged, which is preferentially done

on the chromosome to avoid changes in expression, which could otherwise lead to

an altered interactome profile. After harvesting the cells at the desired time point

or condition, a standard affinity purification is performed and the interacting RNA

purified by means of organic phase extraction. The RBP interactome can then be

analyzed by sequencing of the bound RNA and comparing it to the untagged wild

type to exclude unspecifically bound transcripts (Figure 1.1 C).

One of the limitations of RIP-seq is that it enriches full-length transcripts and

therefore gives no additional information about the potential binding site or bind-

ing motif of the RBP within the transcripts. To overcome this, crosslinking im-

munoprecipitation followed by RNA-seq (CLIP-seq, a.k.a. HITS-CLIP) was devel-

oped (Andresen and Holmqvist, 2018; Hör et al., 2018; Lee and Ule, 2018). Here,

irradiation with UV light of 254 nm wavelength is performed before the cells are

harvested, leading to in vivo crosslinking of RNA to their binding proteins. This

covalent bond allows digestion of RNA that is not protected by the RBP using ri-

bonucleases (RNases) during the subsequent affinity purification. It further allows

more stringent washing conditions as compared to RIP-seq, enriching direct targets

of the RBP. After purification of the bound RNA fragments, RNA-seq is performed.

The recovered RNA sequences, so-called peaks, crucially enable the search for po-

tential binding motifs of the RBP, which is extremely valuable for the understanding

of the RBP and which is not possible by RIP-seq.

Furthermore, the crosslinked nucleotide often leads to errors during reverse tran-

scription and therefore allows to estimate which nucleotide within a peak was bound

by the RBP. Many different modifications of the CLIP-seq protocol exist (Lee and Ule,

2018), the most important of which are RNA interaction by ligation and sequencing

(RIL-seq) and UV-crosslinking, ligation and sequencing of hybrids (CLASH), both of

which add a ligation step to the CLIP protocol, allowing the identification of RNA-

RNA interactions formed on or by the RBP (Hör and Vogel, 2017; Kudla et al., 2011;

Melamed et al., 2018). Furthermore, as an alternative to UV irradiation, formalde-
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hyde CLIP-seq (fCLIP-seq) uses formaldehyde to crosslink RNA-protein interactions

in vivo (Kim et al., 2017; Kim and Kim, 2019). This method improves crosslinking of

double-stranded RNA (dsRNA) to dsRNA-binding proteins (Kim et al., 2017; Ricci

et al., 2014) but has the disadvantage of also crosslinking protein-protein interac-

tions, which might cause artifacts (Lee and Ule, 2018).

1.2.2.2 RNA-centric methods

If the objective is to identify RBPs rather than the targets of a known RBP, RNA

can be used as bait and the bound proteins analyzed by MS. Originally developed

to purify eukaryotic RNPs (Bardwell and Wickens, 1990; Bessonov et al., 2008; Zhou

et al., 2002), the most common method to perform RNA-centric pull-downs in bacte-

ria is the MS2 approach (Corcoran et al., 2012; Lalaouna et al., 2015; Said et al., 2009;

Smirnov et al., 2016). For this, the phage-derived MS2 aptamer is added to the 5’ or

3’ end of the RNA of interest and either expressed in vivo or synthesized in vitro and

added to a cell lysate. In the next step, the RNA/protein complexes are captured

by binding of the aptamer to the MS2 coat protein, which is fused to a maltose-

binding protein, allowing immobilization on an amylose resin. After several washes,

the bound proteins are recovered, analyzed by MS and the enrichment compared to

the control (the MS2 aptamer itself) is calculated (Figure 1.1 D). The power of this

approach lies within using many different RNAs, e.g., functionally related ones, for

the pull-down in order to discover potential common or even global RBPs.

1.2.3 Global methods: binary methods

While all of the mentioned protein- and RNA-centric methods give invaluable in-

sight into the interactomes of specific molecules of interest, none of them is suitable

for the description of the whole complexome of a cell. Therefore, several methods

have been developed that analyze the interactions within a cell at a global level.

One option to achieve the global description of the complexome is to scale up

binary methods. One of the most popular methods for the global investigation of

PPIs is Y2H (Brückner et al., 2009). To achieve this, Y2H is performed as previously

described, but instead of only using a limited number of baits and preys, the whole

ORFeome (ORF = open reading frame) of the organism of interest is cloned as both
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Figure 1.2: Global interactome methods. (A) Protein microarray. The proteome of the organism of
interest is immobilized on a chip. Labeled proteins and/or RNAs are added to the chip, followed by
a washing step and detection of the label. Based on the position of the signal on the chip, the target
protein of the labeled molecule can be identified. (B) 2D gel analysis followed by mass spectrometry
(2D-MS). Following lysis of a culture of cells, the lysate is first run on a native gel, separating complexes
and then on a denaturing gel, separating the subunits of the complexes. MS of vertical gel slices
identifies the subunit composition of the complexes. (C) Complexome profiling. Following lysis of a
culture of cells, the lysate is run on a high-resolution native gel, separating complexes by size. The gel
is then cut into horizontal pieces and their protein content identified via MS. (D) Protein correlation
profiling (PCP). Following lysis of a culture of cells, the lysate is run on a gradient, separating the
complexes. The gradient is then fractionated and the protein content of each fraction is identified via
MS.
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bait and prey, allowing an all-against-all analysis of PPIs. Interactions recovered with

both ORFs being used as bait and prey are especially meaningful. Still, this method

has several drawbacks. Firstly, the number of false-negatives is very high (∼70 % in

E. coli (Rajagopala et al., 2014)) due to low assay sensitivity. Secondly, false-positives

can also be an issue and are usually corrected for by not considering proteins with

too many interactions (Rajagopala et al., 2014). Nevertheless, global Y2H provides

a great starting point for more detailed analyses of complexes and can be used for

functional predictions of interactions.

Similar to global Y2H, AP/MS can also be scaled up to include the whole

ORFeome as baits. Different approaches exist, which mostly differ in the way the

tagged proteins are expressed: natively or by overexpression. Both options have

their advantages and disadvantages; e.g., native expression tends to have less false-

positives in exchange for less proteins that can be purified, while overexpression in-

creases the number of baits that can be purified in exchange for more false-positives

(Arifuzzaman et al., 2006; Butland et al., 2005). Global AP/MS is very sensitive and

generally identifies a considerably larger number of interactions than Y2H, mak-

ing it absolutely necessary to further refine the predictions by genomic context or

downstream validations (Rajagopala et al., 2014).

Further, since AP/MS is able to pull-down complexes binding to the bait, it is

not a truly binary method, making it difficult to discriminate between direct and in-

direct interactions. Then again, this property can lead to the purification and thereby

description of whole complexes. In comparison to global Y2H, global AP/MS has

the advantage of being performed in vivo, which eliminates potential issues with,

e.g., protein folding that can arise due to expression in a different species (Berggård

et al., 2007). This allows AP/MS to investigate membrane complexes on a global

scale (Babu et al., 2018), which generally is a difficult task since membrane proteins

often have limited or no solubility.

Protein microarrays, and more specifically functional protein microarrays, are a

completely different approach. Here, the interactions are not investigated within a

cell but in vitro on a solid surface like a glass slide (Sutandy et al., 2013). For this,

the whole proteome of the organism of interest is immobilized on a chip, allowing

interaction studies by adding labeled protein or RNA. After washing away unbound



1.2. Investigation of macromolecular interactions 9

molecules, interactions can be detected by scanning the chip for signals of the labeled

molecules (Figure 1.2 A). While protein microarrays are not a truly global method

since all-against-all interaction studies are difficult to perform, they do allow the

de novo investigation of RBP-RNA interactions and with that the discovery of RBPs

(Sutandy et al., 2016). Yet, they suffer from a similar issue as Y2H: proper folding and

function of the purified proteins cannot be guaranteed, increasing the chances for

false-negative results. Production and handling of protein microarrays is expensive

and difficult, which probably is the reason why the only bacterium they have been

used for so far is E. coli (Chen et al., 2008; Thao et al., 2010).

1.2.4 Global methods: non-binary methods

To get a better overview of the complexome of a cell, non-binary methods that can

globally describe intact complexes, rather than only the interactions between their

subunits, have to be used. Apart from the throughput, another major advantage of

a global approach is that tagging of proteins/RNAs is not necessary, which should

reduce biases that may be introduced by the tag. This kind of analysis is rather

simple when investigating a single complex, e.g., to find out more about its subunit

stoichiometry, but gets complicated when the whole complexome of a cell is to be

investigated.

1.2.4.1 2D gel analysis followed by MS (2D-MS)

One solution to tackle this hurdle is to perform a 2D gel analysis of a cell lysate that

first separates the complexes according to the total size on a blue/colorless native gel

and then by size of the subunits using denaturing SDS-PAGE (Lasserre et al., 2006;

Pan et al., 2010, 2011). The resulting gel contains complexes in the x-dimension and

their corresponding subunits in the y-dimension. After identification of a complex

via gel staining, its identity can be revealed using MS (Figure 1.2 B). With that, 2D-

MS allows a rather fast overview of the complexome and even provides a platform

for the analysis of membrane complexes. It is limited, however, in several ways:

Staining can be biased by the properties of individual proteins, making it difficult to

correctly assign spots on the gel to a complex. Moreover, the resolution in the first

dimension is rather low (Lasserre et al., 2006).
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1.2.4.2 Complexome profiling

A similar approach to 2D-MS is complexome profiling. Instead of running a 2D

gel followed by visual identification of complexes by vertical alignment of spots,

complexome profiling omits the second, denaturing dimension and instead runs a

longer, higher resolution native gel (Diéguez-Casal et al., 2014; Gorka et al., 2019;

Rugen et al., 2019; Senkler et al., 2017; Wöhlbrand et al., 2016). In a second step,

the resulting gel is cut into many pieces and each piece is analyzed by MS. This al-

lows the reconstruction of migration profiles of all detectable proteins within the gel

(Figure 1.2 C). The advantage over 2D-MS is that the gel is basically “fractionated”,

achieving much higher resolution. Based on this, predictions can be made about the

composition of complexes or the involvement of individual proteins within com-

plexes based on the “guilt-by-association” logic.

Going one step further, cryo-slicing blue native-MS (csBN-MS) uses cryo-

microtome slicing in order to cut a frozen blue native gel into >200 equal pieces,

which are subsequently analyzed by MS (Müller et al., 2016, 2019). The drastic in-

crease in fraction numbers compared to traditional complexome profiling lets csBN-

MS go close to or even reach the resolution limit of a blue native gel. So far, complex-

ome profiling has not been used to investigate RNPs and it seems difficult to purify

both proteins and RNA from the small pieces of gel generated by the protocol. It

should be possible, however, making complexome profiling an interesting candidate

to globally study RNPs in the future.

1.2.4.3 Protein correlation profiling

Similar to complexome profiling, protein correlation profiling (PCP) makes use

of the “guilt-by-association” logic that identifies interacting proteins based on co-

elution. PCP, however, employs density gradients or size exclusion chromatography

(SEC) instead of gels in order to achieve fractionation (Figure 1.2 D). It was first used

in eukaryotes to assign proteins to specific organelles (Andersen et al., 2003; Foster

et al., 2006), but has been applied to bacteria as well (Carlson et al., 2019). Similar to

complexome profiling, PCP does not require any tagging, thereby enabling the use

of native lysates. Moreover, the use of gradients or SEC greatly simplifies the down-
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stream extraction of macromolecules, which makes PCP a global method that can

analyze RNPs, as was shown in a study using a related method (Rederstorff et al.,

2010; Rederstorff and Hüttenhofer, 2011). Lastly, the combination of several separa-

tion methods can improve the resolution of PCP, though it requires the complexes

to be stable enough to survive the process (Crozier et al., 2017; Gazestani et al., 2016;

Havugimana et al., 2012).

1.2.5 Gradient profiling by sequencing (Grad-seq)

A conceptually similar method to PCP is gradient profiling by sequencing (Grad-

seq) (Smirnov et al., 2016, 2017a), which is the main focus of the present thesis.

In Grad-seq, gradient centrifugation is used to separate the content of a wild-type

lysate. Subsequently, the gradient is fractionated and the RNA and protein content of

each fraction is analyzed by RNA-seq and liquid chromatography-tandem MS (LC-

MS/MS), respectively, allowing the reconstruction of how each detectable molecule

migrated through the gradient. These data then allow the analysis of the complex-

ome of the used organism, since stable complexes are expected to travel through the

gradient as one particle, resulting in congruent migration profiles of their subunits

(Figure 1.3).

The following sections will give a brief historic overview of the development of

gradient centrifugation as a means to separate the cellular content, the theory behind

it and how it is used in Grad-seq.

1.2.5.1 Brief history of ultracentrifugation as a means to purify cellular particles

“The new centrifuge constructed by us allows the determination of particles that can-

not be made visible in the ultra-microscope. In analogy with the naming of the ultra-

microscope and ultra-filtration apparatus we propose the name ultra-centrifuge for

this apparatus.” With this quote from Svedberg and Rinde’s paper, in which they

first described their invention of the ultracentrifuge (Svedberg and Rinde, 1924),

much in the field of biochemistry and cell biology should change in the years to

come. While the authors originally developed the ultracentrifuge in order to study

particles in colloid solutions, it soon became evident that it could also be used for

the separation of the cellular content.
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Figure 1.3: Gradient profiling by sequencing (Grad-seq). Following lysis of a culture of cells, the
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protein content of each fraction is purified, complex spike-ins are added and RNA-seq and MS are
performed for each fraction. Subsequent normalization of the global data allows the reconstruction of
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The first major breakthrough in cell fractionation using ultracentrifugation was

achieved when Albert Claude revolutionized the method of differential centrifuga-

tion (Claude, 1946a,b). This was the first time consecutive centrifugation steps were

applied to fractionate the cytoplasmic content of cells into three major fractions:

“Large granules” (mostly mitochondria), “microsomes” (remnants of the endoplas-

mic reticulum) and “supernate” (the soluble supernatant). Basically, the protocol

consisted of the centrifugation of lysed cells to sediment “large granules” at low cen-

trifugal force, followed by ultracentrifugation of the supernatant at high centrifugal

force in order to sediment “microsomes”, leaving behind the “supernate”.

In this work, the fractions were also characterized according to their specific con-

tent. The author mentions, for example, that RNA and RNPs were mostly present in

the “large granules” and “microsomes” fractions. By improving differential centrifu-

gation, nuclei were isolated for the first time soon after and the RNA content of the

different fractions quantified, revealing that more than 50 % of the total RNA was

present in the “microsomes” (Hogeboom et al., 1948; Schneider, 1948). By nowadays’

standards, this method seems rather unspectacular. However, owing to its simplic-

ity and affordability, it is still widely used for the crude purification of organelles,

which shows the importance and impact of this method, especially considering it

was developed more than 70 years ago.

1.2.5.2 Density gradient centrifugation

An important improvement to cell fractionation was introduced with the develop-

ment of density gradient centrifugation in the early 1950s. Interestingly, this method

originally came from the field of plant virology and was first used to purify potato

yellow dwarf virus from a virus concentrate created by differential centrifugation

(Brakke, 1951). In this important note, the author floated a thin layer of the virus

concentrate on a sucrose gradient, which increased in density down the tube, and

centrifuged the solution so the particles within the concentrate would sediment as

zones within the gradient. Centrifugation was stopped before the particles reached

density equilibria, allowing separation according to the sedimentation rate of the

particles (more on this below). After centrifugation, a clear zone of virus particles

could be detected by means of scattered light and only this zone contained infective
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potential when applied to leaves—the other fractions of the gradient were unable to

cause lesions.

Numerous modifications of this method were developed soon after it was pub-

lished. For sake of simplicity, only the two main categories and their applications

will be highlighted.

1.2.5.3 Isopycnic gradient centrifugation

In isopycnic gradient centrifugation, particles are separated by centrifugation un-

til they reach their isopycnic positions within a density gradient (Brakke, 1961;

Anderson, 1955). This is the position where the opposing processes of sedimentation

and diffusion have reached an equilibrium and the sum of forces on the particle is

zero (Meselson et al., 1957). The density of the gradient is equal to that of the particle

at this position and the separation is solely based on the density of the particle. This

also means that the density of the gradient has to be greater than the density of the

particles to be separated. The major achievement of this method clearly is the formal

proof of the semiconservative DNA replication model. For this, Meselson and Stahl

used self-forming CsCl gradients to separate 14N- and 15N-labeled DNA from each

other, which allowed them to observe 14N incorporation into DNA after a switch

from 15N-containing medium (Meselson and Stahl, 1958).

1.2.5.4 Rate zonal centrifugation

Rate zonal centrifugation is the method of choice for Grad-seq and is also referred to

as gradient differential centrifugation (Brakke, 1961; Anderson, 1955). This variant

separates particles, which are floated on a preformed gradient, into zones. The gra-

dient fulfills the purpose of stabilizing the forming zones by preventing convection

of the particles. Centrifugation is stopped before the particles reach their isopycnic

positions, separating them according to their specific sedimentation rates, which are

based on their masses, sizes and shapes. The relationship between the sedimenta-

tion rate (i.e., the sedimentation velocity) of a particle and its mass, size and shape is

given by the particle’s sedimentation coefficient, which can be calculated using the

Svedberg formula (Svedberg and Pedersen, 1940):
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S =
vt

ω2r
, (1.1)

where S is the sedimentation coefficient (unit Svedberg; 1S = 10−13 s); vt is the

terminal sedimentation velocity of the particle during centrifugation (unit m
s ) and

ω2r is the centrifugal acceleration, where ω is the angular velocity of the rotor (unit
1
s ) and r the distance of the particle to the axis of the rotor (unit m).

The sedimentation rate vt is defined as the terminal velocity the particle reaches

as soon as the centrifugal force is balanced by the friction of the particle within the

fluid:

vt =
M(1− ν̄ρ)ω2r

f
, (1.2)

where M is the mass of the particle (unit kg); ν̄ is the partial specific volume

of the particle (e.g., typically 0.73 cm3

g for proteins and 0.55 cm3

g for DNA); ρ is the

density of the solvent (1.0 g
cm3 for water at 20 °C) and f is the frictional coefficient of

the particle (unit g
s ).

This formula immediately shows that the sedimentation rate is increasing with

the effective mass of the particle in the medium. It also shows why a particle at

isopycnic position has a sedimentation rate of zero: When the density of the particle

(the invers of its partial specific volume) and the density of the medium are equal,

the equation equals zero. To understand how the size and the shape of a particle

influence sedimentation, the frictional coefficient has to be looked at in more detail:

f =
6πη

Rs
, (1.3)

where η is the viscosity of the solvent (0.01 g
cm−s for water at 20 °C) and Rs is the

Stokes radius (unit nm).

The frictional coefficient depends on the Stokes radius, which is the radius of

a smooth sphere that would give the corresponding value for f for the particle

of interest. Since biological molecules like proteins are never perfectly spherical or

smooth, but are rather only approximately globular or even elongated in shape and

their surface is rather rough, Rs will always be larger than the minimal radius of

a sphere that could contain the mass of the particle of interest (Erickson, 2009). To
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put it into other words, Rs considers both the asymmetry of the particle and its

hydration shell (which increases the particle’s effective size). If vt in formula 1.1 is

now replaced by formula 1.2, the resulting formula for the sedimentation coefficient

is

S =
M(1− ν̄ρ)ω2r

ω2r f
=

M(1− ν̄ρ)

f
. (1.4)

With this, it is evident that the sedimentation coefficient is only dependent on

the mass and the frictional coefficient of the particle in the medium. Therefore, an

increase in mass of the particle, as stated before, increases S and an increase in size

or asymmetry (i.e., shape) of the particle decreases S. Rearranging formula 1.1 gives

the final explanation on the relationship between a particle’s sedimentation rate and

its properties:

vt = Sω2r, (1.5)

which shows that the sedimentation rate is dependent on the sedimentation co-

efficient and the applied centrifugal force. In practice, this can easily be observed by

the fact that the 50S large ribosomal subunit will travel further in a rate zonal cen-

trifugation experiment than the 30S small ribosomal subunit because it will reach a

higher velocity. Lastly, it is important to note that the density and viscosity of the

solvent is dependent on the temperature and the type of solvent, leading to changes

in S values. Therefore, S values in the literature are usually given for water at 20 °C

(often depicted as S20
w )(Erickson, 2009).

1.2.5.5 Specific considerations for Grad-seq: gradient preparation

To use rate zonal centrifugation for the analysis of the complexome, several consid-

erations have to be taken.

First, a solute with which the gradient should be formed has to be chosen to

separate the cellular content. It should be chemically and biologically inert, water-

soluble and give solutions of high density and low viscosity. Glycerol and sucrose

both fulfill these criteria and have been in use for rate zonal centrifugation of bio-

logical molecules since its inception (Brakke, 1961). They further stabilize proteins
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and with that complexes, protecting them from denaturation during centrifugation

(Gekko and Timasheff, 1981a,b; Lee and Timasheff, 1981; Timasheff, 1993). For Grad-

seq, glycerol is used, as a 10–40 % (w/v) linear gradient was shown to be suitable to

resolve complexes up to >50S (Smirnov et al., 2016). It further simplifies the down-

stream analyses, especially for proteins (own personal experience).

1.2.5.6 Specific considerations for Grad-seq: gradient resolution

The resolution in a rate zonal gradient is the thickness of the resulting zones and

the distance between them. Narrow zones that are well separated from each other

mean high resolution, which is obviously desirable for Grad-seq. To achieve this,

several factors have to be considered (Brakke, 1961): Firstly, the thickness of a zone

depends on the concentration of the molecules within the zone (they have to “fit”).

Secondly, greater distance available for migration within the tube will allow better

separation between the zones, but is naturally limited by the length of the tube.

Thirdly, the used glycerol gradient is not only a gradient of density, but also one

of viscosity, which is controlled by the steepness of the gradient. As can be seen

from the Svedberg formula (Formula 1.1), an increase in viscosity will slow down

the molecules in the front of the forming zone relative to the same molecules in

the back of the zone, leading to narrower zones (Sharpe, 1988). At the same time,

however, the decrease in sedimentation rate caused by the increasing viscosity leads

to worse separation between zones (Brakke, 1961). Lastly, the temperature at which

the centrifugation is performed influences the viscosity of the gradient and therefore

the points just mentioned.

For Grad-seq, a middle ground has to be used to achieve the best possible reso-

lution, as some of the criteria cannot be changed in order to optimize resolution: The

applied amount of lysate has to be enough to allow downstream analyses, especially

LC-MS/MS, but it should still be as little as possible to achieve narrow zones. The

optimal amount of lysate has to be found empirically. The dimensions of the gradi-

ent tube have to be commercially available and allow downstream analyses, making

high volume (i.e., wide) tubes unsuitable because the fraction volume will increase

too much. Therefore, a rather narrow but long tube is used. Since a lysate, i.e., a

complex sample, is applied to the gradient to perform Grad-seq, the density and
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steepness of the gradient has to allow separation of the soluble cellular complexes.

As mentioned before, a 10–40 % glycerol gradient was found to perform well for this

purpose (Smirnov et al., 2016). The temperature for a Grad-seq experiment has to be

4 °C in order to stabilize complexes and reduce the biological activity of the cellular

content, especially RNases that might otherwise compromise the experiment.

1.2.5.7 Specific considerations for Grad-seq: lysate preparation

To allow analysis of intact complexes by Grad-seq, cell lysis has to be performed

rapidly and at low temperatures in order to conserve the status quo. The preferred

method to achieve this is mechanical lysis using glass beads, as it can be performed

at 4 °C and takes only tens of seconds to a few minutes. The duration and strength

of the mechanical lysis has to be optimized empirically for each organism to prevent

complex dissociation, which can be controlled for using conserved complexes such

as 6S RNA-RNAP (Wassarman and Storz, 2000).

1.2.5.8 Application of Grad-seq

As opposed to the global complexomic methods discussed before, Grad-seq is able

to study not only PPIs but also RNPs. It is performed natively and does not in-

volve tags, making it suitable for the study of genetically intractable organisms. The

high-throughput analyses of RNA and protein from the gradient fractions enables

reconstruction of their migration patterns within the gradient (Figure 1.3). For in-

stance, ribosomal RNAs (rRNAs) are expected to show congruent profiles with their

respective ribosomal proteins, indicating intact complexes.

The main strength of Grad-seq is the global comparative analysis of these pro-

files with the help of dimension reduction methods such as principle component

analysis or t-distributed stochastic neighbor embedding. Especially for RNAs, this is

a unique feature of the method and allows the classification of RNAs into groups of

transcripts with similar gradient profiles, suggesting they are involved in similarly

organized complexes (Smirnov et al., 2017a). In Salmonella, for example, two major

classes of sRNAs were found (Smirnov et al., 2016). One mostly contained sRNAs

known to interact with the global RBP Hfq, which crucially was also co-migrating

in the same fractions, indicating stable interaction. The other class contained sRNAs
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whose functions were largely unknown. Following the “guilt-by-association” logic,

this second class was investigated for common protein binders using the MS2 pull-

down approach (see 1.2.2.2), leading to the identification of several candidates for

each sRNA. However, only ProQ was pulled down by all sRNAs and at the same

time showed highly correlating gradient profiles, which made it a strong candidate

for a new global RBP. Indeed, subsequent protein-centric analyses (see 1.2.2.1) vali-

dated the MS2 results, establishing ProQ as a true global RBP (Bauriedl et al., 2020;

Holmqvist et al., 2018; Melamed et al., 2020; Smirnov et al., 2016).

Given the separation of RNA along the gradient, Grad-seq is able to discriminate

between functional species deriving from the same transcript. This is of particular

interest in the case of sRNAs that need to be processed from 5’ or 3’ untranslated

regions (UTRs) of mRNAs: The functional sRNA is expected to migrate away from

the ribosomal fractions and might show interaction with an RBP like Hfq, whereas

the full-length mRNA is expected to be translated, showing its peak abundance at

the 70S ribosomes (Smirnov et al., 2017a).

At the same time, Grad-seq can also be used to investigate PPIs. While RNAs

can be classified based on the binding of many RNAs to the same hub protein, this

behavior is not expected for proteins. Still, there are several ways the MS data can be

used to guide the analysis of complex involvement of proteins. For example, genes

of subunits of a complex are often organized in an operon within the same mRNA

(Wells et al., 2016), whose translational regulation leads to expression of the subunits

proportional to their stoichiometry (Burkhardt et al., 2017; Li et al., 2014). Grad-seq

can take advantage of this relationship by searching known operons for proteins of

interest that show highly correlating migration profiles, indicating complex forma-

tion. The ever-cheaper cost for RNA-seq has proven particularly helpful for this kind

of analysis, as more and more studies reveal the global operon structures for many

different bacteria such as E. coli (Conway et al., 2014) or S. pneumoniae (Warrier et al.,

2018).

Similarly, proteins of interest can also be investigated according to their general

sedimentation behavior. To do so, the sedimentation coefficient of a protein of inter-

est can be estimated according to its molecular weight (Erickson, 2009). If a protein

in a Grad-seq experiment runs at considerably higher S values than estimated, it is
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likely that it is involved in a complex. As for the RNP discovery discussed above,

downstream analyses have to be performed in this case in order to accurately pin-

point PPIs of the protein in question.

1.2.5.9 Limitations of Grad-seq

As already hinted on, Grad-seq has several limitations, which are mostly represented

by the achievable resolution of the method. The length of the tube, in which the gra-

dient is formed in, as well as the amount of the lysate that needs to be applied,

limit the resolution. Since the tube length cannot be increased indefinitely, an alter-

native would be to use higher volume gradients by using the SW 28 Ti or SW 32 Ti

rotors, which can be operated with gradients of up to 38 ml volume compared to

the SW 40 Ti rotor normally used for Grad-seq. This would allow sharper zones

due to a thinner lysate layer and with that fractionation into more fractions, but has

the downside of diluting the material, meaning that downstream analyses would be

more difficult to perform. In line with this, lower amounts of applied lysate would

generally be favorable for the resolution of the experiment but might also lead to

sensitivity issues downstream, especially for the MS analysis. A different approach

could be to replace the gradient by a different separation method like SEC or ion ex-

change chromatography, which, however, have other limitations such as non-linear

separation in the beginning and at the end of the column (Hong et al., 2012).

The centrifugation time needed for a standard Grad-seq experiment is 17 h,

which means that only stably associated complexes (i.e., the predominant form of an

RNA or protein) have a good chance of surviving the protocol. Consequently, tran-

sient or short-lived interactions cannot be captured unless stabilizing measures such

as crosslinking are considered. Membrane-associated complexes are also difficult or

impossible to capture using Grad-seq since they tend to be poorly soluble, which

could be improved by the use of detergents (Carlson et al., 2019).

Finally, the sensitivity of the RNA-seq and MS analyses limit the detection of

present molecules in a Grad-seq experiment and therefore the reconstruction of their

sedimentation profiles. Especially for the RNA-seq data, this sometimes leads to ar-

tificial peaking of certain transcripts or even whole fractions, which makes manual



1.3. Used model organisms 21

adjustment necessary even though a complex RNA spike-in is used for normaliza-

tion (see 2.3.2).

1.3 Investigating the complexomes of two distant bacterial

model organisms

In the present doctoral thesis, Grad-seq has been used to study the ensemble of cel-

lular complexes in the bacterial model organisms Escherichia coli K-12 MG1655 and

Streptococcus pneumoniae TIGR4, which represent important members of the Gram-

negative and Gram-positive clades of bacteria, respectively. E. coli was used in a first

step to optimize and improve the methodologies employed for the present research.

In a second step, both organisms were used separately to obtain complexomic re-

source datasets, which were finally analyzed in a third step in order to explore

potential new complexes.

1.3.1 Escherichia coli

E. coli is a Gram-negative, rod-shaped, facultative anaerobic, motile γ-

proteobacterium. It generally is a commensal member of the gut microbiota of many

animals including humans, but some serotypes have acquired virulence factors via

horizontal gene transfer enabling them to infect various niches such as the gut, blood

or bladder. The genomes of E. coli strains are extremely diverse, comprising a pan-

genome of >43,000 genes with only ∼870 (∼2 %) of them being considered part

of the core genome (Yang et al., 2019). E. coli carries these genes on a single chro-

mosome and, depending on the strain, none to several plasmids. The most studied

strain, which is also the strain that was used in the present doctoral thesis, is E. coli

K-12 MG1655. It is often called the “workhorse of microbiology” and is probably the

organism we have the most complete understanding of. MG1655 is a derivative of a

non-pathogenic K-12 strain isolated in the 1920s that was cured of the bacteriophage

lambda and the F plasmid. Due to its non-pathogenicity, fast growth and easy han-

dling, it became the most popular bacterium to study and was also one of the first

to be fully sequenced (Blattner et al., 1997).
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In addition to its contributions to the understanding of fundamental biological

processes, E. coli was the model used for the identification of sRNA-mediated regu-

lation in bacteria, the first example being MicF (Inouye and Delihas, 1988). While the

first sRNAs were mostly found by chance (Wassarman et al., 1999), later studies used

computational predictions in order to discover an ever-increasing amount of sRNAs

(Argaman et al., 2001; Chen et al., 2002; Wassarman et al., 2001). Moreover, E. coli Hfq

was used to describe it as a global sRNA-interacting RBP needed for the function

of many sRNAs by facilitating base pairing to their mRNA targets (Babitzke et al.,

2019; Gorski et al., 2017; Holmqvist and Vogel, 2018). Apart from Hfq, E. coli also

contains other regulatory RBPs such as the translation-inhibiting CsrA, the global

RNA chaperone ProQ and cold shock proteins (Babitzke et al., 2019; Holmqvist and

Vogel, 2018). The interactomes of these RBPs have been characterized using several

of the techniques described in 1.2 (Holmqvist et al., 2018; Melamed et al., 2020; Potts

et al., 2017). Therefore, we have a good understanding of RBPs and their interacting

RNAs in E. coli.

Next to the study of RNA-based regulation, E. coli has also been investigated with

regards to its complexome. These studies investigated PPIs using global AP/MS (see

1.2.3) (Arifuzzaman et al., 2006; Babu et al., 2018; Butland et al., 2005; Hu et al., 2009),

global Y2H (see 1.2.3) (Rajagopala et al., 2014) and 2D-MS (see 1.2.4.1) (Diéguez-

Casal et al., 2014; Lasserre et al., 2006; Pan et al., 2010, 2011), leading to comprehen-

sive datasets of the global interactome of proteins.

The ongoing interest in the biology of E. coli has led to the accumulation of a

vast number of databases that are specific to this organism. One of the most im-

portant is EcoCyc, which aims to be a complete source of information about the

molecular catalog of E. coli, i.e., its genes, their functions, genetic context, regulation,

etc. (Keseler et al., 2017). RegulonDB is a resource about gene regulation (Santos-

Zavaleta et al., 2019), GenExpDB is a gene expression database comprised of a large

number of microarray studies1 and EcoliWiki is a community-driven E. coli ency-

clopedia (McIntosh et al., 2012). EcoSal Plus takes a different approach and repre-

sents an ongoing review journal about everything concerning E. coli and the related

1https://genexpdb.okstate.edu/
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Figure 1.4: Model of the competence regulon of S. pneumoniae. The pneumococcal competence reg-
ulon is a quorum sensing system activated by the competence stimulating peptide (CSP). CSP induces
the two-component system (TCS) ComDE, which then activates expression of the early competence
loci comAB, comCDE, comX1 and comX2. This results in a positive feedback loop producing ComC,
which gets processed to CSP and exported by ComAB. ComX1 and ComX2 are paralogous alternative
σ-factors activating the late competence genes responsible for DNA uptake and integration. CiaRH
is a second TCS that is triggered by a variety of environmental signals and induces expression of
the cia-dependent sRNAs (csRNAs), which are regulatory RNAs that inhibit competence by post-
transcriptional repression of comC translation. EC, extracellular. CM, cell membrane. IC, intracellular.
Adapted from Hör et al. (2020a).

Salmonella: from historical perspectives to genomics, from metabolism to systems

biology.

The successes in the investigation of E. coli biology notwithstanding, there still is

a gap in the understanding of its global complexome due to the omission of RNPs

in past studies, thereby making E. coli an interesting model for the application of

Grad-seq. Furthermore, comparison to the previously published Grad-seq dataset

on the closely related Salmonella (Smirnov et al., 2016) would allow the investigation

of the conservation of complex formation.
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1.3.2 Streptococcus pneumoniae

S. pneumoniae, the pneumococcus, is a Gram-positive, facultative anaerobic, non-

motile coccus in the phylum of Firmicutes. Until its renaming, it was called

“Diplococcus pneumoniae” because it is usually found in pairs of two cells. The pneu-

mococcus is one of the major bacterial pathogens, causing a wide range of infectious

diseases such as otitis media, sinusitis, sepsis, meningitis and pneumonia. In chil-

dren below the age of five, it annually causes more than one million deaths—more

than any other infectious disease (Henriques-Normark and Tuomanen, 2013; O’Brien

et al., 2009).

In contrast, it is a commensal colonizer of the upper respiratory tract in the ma-

jority of children and a small percentage of adults, which is the reservoir allowing

it to spread between people. Via unknown mechanisms, events like respiratory tract

infections can trigger the pneumococcus to switch toward becoming an opportunis-

tic pathogen, disseminating to the sinuses, lungs, blood and eventually the brain

(Henriques-Normark and Tuomanen, 2013). The pneumococcal capsule is its major

virulence factor comprising >90 different serotypes, which makes it difficult to con-

tain this pathogen via vaccination (Geno et al., 2015). This is further complicated by

its ability to switch between serotypes.

Similar to E. coli, the pneumococcus has a very plastic genome with up to 13,000

genes making up its pan-genome. Of these, only 400–1,100 genes are considered

part of the core genome (Hiller and Sá-Leão, 2018). Importantly, 224 pneumococ-

cal genes are associated with virulence, separating it from commensal streptococci

(Kilian and Tettelin, 2019). To encode for all these genes, the pneumococcus carries

a single chromosome, which was one of the first bacterial genomes to fully be re-

vealed by sequencing (Tettelin et al., 2001), and no plasmids. An important factor

for this genomic plasticity is the pneumococcus’ natural competence, allowing the

uptake and integration of foreign DNA (Muschiol et al., 2019; Salvadori et al., 2019).

This ability was the foundation to some of the most important studies in the field of

biology, leading to the discovery of genes being made of DNA (Avery et al., 1944;

Griffith, 1928) and paving the way to a new field called “molecular biology”.

Pneumococcal competence is a quorum sensing system activated by secretion

of competence stimulating peptide (CSP), which then activates the two-component
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system (TCS) ComDE leading to expression of the early competence operons comAB

and comCDE. In a second wave, late competence genes, which are required for the

binding and uptake of DNA, get expressed via the paralogous alternative σ-factors

ComX1 and ComX2 (Figure 1.4) (Shanker and Federle, 2017).

The competence regulon is currently also the only pathway in the pneumococ-

cus known to involve sRNAs, namely csRNA1–5 (cia-dependent small RNAs) and

srn206 (Acebo et al., 2012; Halfmann et al., 2007; Laux et al., 2015; Marx et al.,

2010; Schnorpfeil et al., 2013; Wilton et al., 2015). The expression of the highly sim-

ilar csRNAs is triggered by the activation of the TCS CiaRH and leads to post-

transcriptional downregulation of the CSP-precursor mRNA comC, thereby inhibit-

ing competence and increasing the signaling threshold needed for CSP production.

Mutational studies could show that base pairing between csRNAs and their targets is

needed for function, but it remains unclear whether an additional factor like an RBP

is involved in the regulation. Similarly, srn206 is able to downregulate competence,

which might happen through targeting of comD (Acebo et al., 2012).

Apart from the csRNAs and srn206, several studies identified a total of ∼70

experimentally verified sRNAs and an additional ∼100 non-verified sRNAs (Acebo

et al., 2012; Mann et al., 2012; Sinha et al., 2019; Slager et al., 2018; Tsui et al., 2010;

Warrier et al., 2018). The mechanisms and targets of these sRNAs remain unknown,

while a transposon sequencing study showed the involvement of many sRNAs in the

regulation of virulence, to a degree that single knock-outs of some of them led to a

complete loss of pathogenicity in mouse infections (Mann et al., 2012). Interestingly,

all five csRNAs were among the sRNAs whose disruption via transposons caused

reduced fitness in the colonization of mice, highlighting the importance of these

sRNAs on the one hand and of the competence regulon on the other hand (Mann

et al., 2012).

The pneumococcus does not possess any homologs of CsrA, Hfq or ProQ

(Tettelin et al., 2001). Together with the large number of identified sRNAs, this

raises the question whether there is an overlooked regulatory RBP that is involved

in the molecular mechanism of post-transcriptional regulation in the pneumococcus,

thereby making it an excellent Gram-positive model for the application of Grad-seq.
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1.4 Aims of this thesis

The importance of complexes for all living organisms is well established. Many

methods have been developed to analyze the interactions between protein and

RNA in order to understand the targets and functions of these molecules. However,

generic methods to globally and unbiasedly analyze the complexome are still lack-

ing. This thesis aimed to improve Grad-seq as a global complexomic method in

order to make it applicable to any bacterial organism and provide resources for two

important model bacteria. Therefore, three consecutive tasks were studied:

1. Optimization of the existing Grad-seq protocol to make it more generic and

robust.

2. Application of Grad-seq to two distant bacterial species—E. coli and S. pneu-

moniae—to provide global complexome resources for both.

3. Analysis of the datasets with a focus on the identification of putative new

complexes and interactions.

The successful establishment of these datasets would greatly benefit the bacterial

community in studying their own molecules of interest.
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Grad-seq of Escherichia coli

Parts of the results obtained in this chapter were performed in collaboration with

the following people:

• Silvia Di Giorgio (ZB MED, Cologne), Prof. Dr. Konrad U. Förstner (ZB MED,

Cologne) and Dr. Jens Vanselow (Rudolf Virchow Center, Würzburg) per-

formed parts of the high-throughput data analyses.

2.1 Optimization of the Grad-seq protocol

In its original application, Grad-seq was optimized for the γ-proteobacterium

Salmonella (Smirnov et al., 2016). Conceptually, Grad-seq should, however, be ap-

plicable to all bacteria, provided a soluble lysate of intact cellular complexes can be

obtained. In order to maximize the applicability of Grad-seq, almost all steps of the

protocol will be addressed and optimized in the following sections, using E. coli as

a model organism.

2.1.1 Optimization of the loading volume

In the original Grad-seq protocol applied to Salmonella (Smirnov et al., 2016), 200

OD600 nm of cells (∼200×109 cells) was lysed and subjected to gradient centrifuga-

tion. This large amount was necessary in order to allow the downstream analyses

of the protocol. Since then, RNA-seq and MS technologies have become much more

27
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Figure 2.1: Optimization of the loading volume. 450µl (A), 300µl (B) and 150µl (C) of identically
prepared Salmonella lysates were loaded on 10–40 % glycerol gradients and separated via ultracen-
trifugation. The general gradient profiles were monitored using UV measurements (left panels) and
Coomassie-stained gels (right panels). Lower loading volumes result in better separation of the cellular
content. RNA polymerase subunits RpoB and RpoC are marked by a arrows. M, size marker. L, lysate
(input control). P, pellet.



2.1. Optimization of the Grad-seq protocol 29

powerful. This is especially true for the sensitivity of MS detectors, allowing the de-

tection of less abundant peptides than before. Consequently, it should be possible to

lower the number of cells used for centrifugation, which should improve the resolu-

tion of the experiment (see 1.2.5.6). As proof of principle, three Salmonella gradients

were prepared using the original protocol, the only difference being the amounts of

lysate that were layered on top of the gradients: 450µl (Figure 2.1 A), 300µl (Figure

2.1 B) and 150µl (Figure 2.1 C). Importantly, the same number of cells was used for

lysis in the same volume, i.e., the disruption of the cells was not different between

the experiments. The resolution of the gradients was monitored using A260 nm mea-

surements of the gradient fractions (Figure 2.1, left panels) and Coomassie-stained

SDS-PAGE of their protein content (Figure 2.1, right panels).

As expected, the A260 nm values representing the amount of cellular material ac-

cording to the absorbance of nucleic acids decreased with lower lysate volumes. It

was further evident that the three major peaks representing the bulk (small RNPs,

DNA, free RNA) and the 30S and 50S ribosomal subunits became narrower and more

defined when less volume was loaded. The Coomassie-stained SDS-PAGE analyses

confirmed these observations: The more lysate was used, the more protein was visi-

ble on the gel. In agreement with the UV profiles, the sedimentation profiles of the

proteins became better resolved with less input material, as can easily be appreci-

ated by following the migration of RNAP within the gradients (arrows). While the

β- and β’-subunits were detected from fractions 3–20 when 450µl was loaded, they

were only visible in fractions 4–14 with 150µl loading volume. Importantly, not only

was the observed RNAP zone narrower, the peak abundance (fraction 5–7) of the

proteins was also better resolved, which should improve the identification of com-

plex formation by analysis of congruent migration patterns. These results show that

the resolution of Grad-seq can be improved by the application of lower volumes of

lysate.

2.1.2 Optimization of lysis conditions

The optimal lysis conditions for a bacterium of interest have to be found empiri-

cally. They should be performed in a way that allows fast disruption of the bacteria

without damaging the existing complexes (see 1.2.5.7). Originally, a Retsch MM 400
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Figure 2.2: Optimization of lysis conditions. E. coli lysates were prepared by disruption using a
mixer mill for 10 min at 30 Hz (A) or 15 Hz (B) or by 10 cycles of vortexing for 30 s followed by cooling
on ice for 15 s (C). The lysates were separated on 10–40 % glycerol gradients via ultracentrifugation.
The general gradient profiles were monitored using UV measurements (left panels) and Coomassie-
stained gels (right panels). Weaker disruption leads to sharper profiles. RNA polymerase subunits
RpoB and RpoC are marked by a arrows. M, size marker. L, lysate (input control). P, pellet.
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mixer mill was used to disrupt Salmonella cells for 10 min at a frequency of 30 Hz.

To investigate whether these conditions are also suitable for the closely related E.

coli, three different lysis conditions were tested: The original protocol (Figure 2.2 A),

a modified version of the original protocol reducing the frequency to 15 Hz (Figure

2.2 B) and a vortexing method used in E. coli gradient experiments that first showed

the interaction between 6S RNA and RNAP (Figure 2.2 C) (Wassarman and Storz,

2000). The results were monitored by measuring the UV profiles of the gradients

and the position of RNAP on SDS-PAGE (arrows), which should change its position

if dissociated.

The UV profiles revealed that, as expected, the modified Retsch method and the

vortexing method caused weaker disruption, as indicated by lower A260 nm values.

Interestingly, the bulk peak strongly increased with these milder lysis methods and

more closely resembled profiles obtained from Salmonella gradients (Figure 2.1). The

SDS-PAGE analyses did not show any obvious differences between the lysis methods

and RNAP peaked in fractions 5–7 in all cases. Since milder lysis conditions should

generally favor the stability of complexes, the vortexing method was ultimately cho-

sen as the best lysis method for E. coli because it allows cooling throughout the

process of lysis, whereas the mixer mill warms up during the 10 min of lysis.

2.1.3 Optimization of RNA extraction

When applied to E. coli, the original protocol’s hot phenol RNA extraction caused

several unexpected issues. First, after RNA precipitation, the pellets were often in-

soluble leading to loss of RNA. Second, RNA from fractions around the 30S subunit

was sometimes difficult to extract at all, which also led to loss of RNA. To investigate

alternative RNA extraction methods, three different methods were compared: the

original hot phenol method (Figure 2.3 A), hot phenol extraction followed by chlo-

roform extraction (Figure 2.3 B) and phenol/chloroform/isoamyl alcohol (P/C/I)

extraction (Figure 2.3 C). As before, the original hot phenol method showed loss of

RNA around the 30S subunit (fractions 9–12), which inexplicably was not always ap-

parent in a EtBr-stained RNA gels. If followed by chloroform extraction, the method

performed even worse and the majority of RNAs from the ribosomal fractions was

lost. Gel analysis showed that 5S rRNA was still extracted with similar efficiency
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Figure 2.3: Optimization of RNA extraction. E. coli lysates prepared using the 30 Hz mixer mill
protocol (Figure 2.2 A) were separated on 10–40 % glycerol gradients and the RNA content of the
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performed using the vortexing method (Figure 2.2 C). M, size marker. L, lysate (input control). P, pellet.
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(compare intensities of 5S rRNA and tRNA bands in Figure 2.3 A and B) and that

almost all of the 16S and 23S rRNAs was lost. While removal of rRNA from the

gradient should be of no concern, it cannot be excluded that other RNA species got

lost as well, making this method a poor choice. In contrast to the original hot phenol

method, P/C/I extraction led to improved RNA recovery around the 30S subunit

but decreased recovery around the 50S subunit. As for the second method, this was

mainly caused by a loss of 23S rRNA (compare intensities of 5S rRNA and 23S rRNA

bands in Figure 2.3 A and C). Crucially, P/C/I extraction dramatically improved the

solubility of the resulting RNA pellets.

Since P/C/I extraction was the most promising, vortexing steps were introduced

in order to improve the recovery of RNA around the 50S subunit (Figure 2.3 D).

Moreover, DNase I digestion was added to the protocol since its omission caused is-

sues during trial runs of library preparation for the RNA-seq part of Grad-seq (data

not shown). This revealed the sheer amount of DNA that was recovered without

DNase treatment, as shown by the absence of the usual smears in fractions ∼3–

13. This method of RNA extraction turned out to be extremely robust; it was suc-

cessful in the RNA extractions of Grad-seq experiments of many different bacterial

species (e.g., S. pneumoniae; see 3). Together, these results show that P/C/I extraction

followed by DNase I digestion is the preferred way to isolate RNA from glycerol

gradients in a Grad-seq experiment.

2.2 Overview of gradient sedimentation

After establishing the new protocol for E. coli (see 2.1), final gradients were pre-

pared for Grad-seq using E. coli cultures grown to early stationary phase (OD600 nm

of 2.0). The coarse-grained analysis by RNA gels and SDS-PAGE indicated high re-

producibility between the replicates on RNA and protein level (Figure 2.4 A and B).

Further, some of the major RNPs such as 6S RNA-RNAP and the ribosomal subunits

clearly showed congruent profiles of their subunits, suggesting these complexes re-

mained intact during sample preparation. Since the gradient conditions had been

chosen in a way that everything larger than a 50S subunit was pelleted, proteins and

rRNA from both ribosomal subunits, representing whole 70S ribosomes, were found
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Figure 2.4: Overview of gradient sedimentation. (A) Using the optimized Grad-seq protocol, an E.
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in the pellet fraction. While tRNAs were mostly detected in the upper fractions of

the gradient, tmRNA and RNase P RNA showed very similar sedimentation profiles,

which is reminiscent of their discovery in a 10S fraction of E. coli resulting in their

original nomenclatures as 10Sa and 10Sb RNA, respectively (Karzai et al., 2000).

To get a more detailed insight into the distribution of especially ncRNAs, north-

ern blots were performed. Again, replicates showed consistent profiles for the tested

RNAs and confirmed the positions of stable RNAs such as tRNAs, rRNAs, tmRNA

and RNase P RNA as observed in the RNA gel (Figure 2.5 A and B). Together

with western blotting for the β-subunit of RNAP (RpoB) and the major σ-factor σ70

(RpoD), the positioning of 6S RNA provided further strong evidence for an intact

RNAP complex (Figure 2.5 C) (Wassarman and Storz, 2000). As previously shown

for Salmonella (Smirnov et al., 2016), 4.5S RNA, the RNA subunit of the signal recog-

nition particle (Akopian et al., 2013), was present in low molecular weight fractions,

indicating its association with nascent peptides is not stable under the present con-

ditions.

The Hfq-dependent sRNAs GcvB, MicA, CyaR, RprA and Spot 42 all showed

peaks around fraction 5 with most of them having a surprisingly high abundance

in the pellet fraction, which was not the case for ChiX (Figure 2.5 A and B). In con-

trast, mRNAs (cspE, rpoA and rplU) exhibited strong peaks in the pellet, indicating

active translation and 70S ribosome association. cspE further showed a strong signal

throughout the gradient, suggesting lower levels of translation in the present condi-

tions, which, however, is surprising given the high protein copy numbers of CspE

independent of the growth conditions (Li et al., 2014; Schmidt et al., 2016).

To validate the surprising sedimentation behavior of some of the ncRNAs,

polysome gradient analysis was performed (Figure 2.5 D). As observed in the glyc-

erol gradients, 6S RNA, ChiX and CsrB did not show any association with the

polysomes. Strikingly though, both GcvB and Spot 42 were detected in polysomal

fractions, thereby confirming the previous observations. Spot 42 has a conserved

ORF and Shine-Dalgarno (SD) sequence (Yano, Chao and Vogel, unpublished; Gisela

Storz, personal communication), which might explain its polysome association. In

comparison to these Hfq-dependent sRNAs, the sedimentation of cspE could not be

confirmed. It only showed a slight abundance in the bulk of the gradient, with the
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majority of its copies being associated to the polysomal fractions, as is typical for a

translated mRNA like the control lpp. Since the Grad-seq protocol uses a lower con-

centration of Mg2+ ions, 70S ribosomes perhaps were destabilized (Ron et al., 1968)

and therefore release of the cspE mRNA occurred. Together, these results demon-

strate that the optimized Grad-seq protocol is reproducible and that its resulting

sedimentation profiles represent stable in vivo complexes.

2.3 Optimization of the RNA-seq protocol

To further improve the Grad-seq protocol, several changes had to be introduced to

the RNA-seq protocol.

2.3.1 Fragmentation

In the original application, the gradient RNA was sequenced on an Illumina

HiSeq 2000 instrument (Smirnov et al., 2016). Since this platform has mostly been

replaced, a switch to the NextSeq 500 instrument was performed, partially because

it is available at the Core Unit SysMed at the University of Würzburg. In com-

parison to the HiSeq 2000, which tolerates long cDNA fragments, the NextSeq 500

requires shorter cDNA molecules of <600 bp to ensure proper cluster formation

(Fritz Thümmler, Vertis Biotechnologie AG, personal communication). To obtain this

length, fragmentation of the extracted gradient RNA was introduced. In addition,

a gel-based size selection step was added after cDNA preparation and pooling of

the samples. To compensate for the expected flood of rRNA after fragmentation, the

pooling factors for each fraction were chosen according to the rRNA concentration

as estimated from the UV profile.

2.3.2 Use of a complex RNA spike-in allows better normalization

A critical step in the analysis of a global Grad-seq dataset is the normalization of

the read counts to an external standard. With this, differences in library size for

the single fractions can be eliminated and the sedimentation profiles accurately cal-

culated. Originally, a single, 20 nt long spike-in RNA was used for this purpose,



38 Chapter 2. Grad-seq of Escherichia coli

A B
lo

g
 r

e
a
d
 c

o
u
n
t

2

-5

0

5

10

15

20

2R  = 0.94 2R  = 0.91

-5

0

5

10

15

20

lo
g

 r
e
a
d
 c

o
u
n
t

2

2R  = 0.94

-5 0 5 10 15 20

log  RNA concentration [amol/µl]2

2R  = 0.92

-5 0 5 10 15 20

-5

0

5

10

15

20

log  RNA concentration [amol/µl]2

lo
g

 r
e
a
d
 c

o
u
n
t

2

2R  = 0.91

C D

E

Figure 2.6: Performance test of the ERCC spike-in. ERCC spike-in was added to the purified RNA
of fractions 2 (A), 4 (B), 7 (C), 10 (D) and 16 (E) of an E. coli gradient (compare to Figure 2.4). Following
analysis by RNA-seq, the obtained number of reads for the spike-in transcripts were plotted against
the known concentration of the corresponding spike-in transcripts. All tested fractions show excellent
linear correlation between the read counts and the known concentration, indicating that the ERCC
spike-in is a suitable tool for the normalization of a Grad-seq experiment. R2 is the coefficient of
determination.
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which, however, was not performing fully satisfyingly, requiring additional man-

ual normalization (Smirnov et al., 2016). The spike-in developed by the External

RNA Control Consortium (ERCC) (Baker et al., 2005; The External RNA Controls

Consortium, 2005) was chosen as a commercially available replacement. It is made

up of 92 transcripts from 250–2,000 nt in length that span a 106-fold concentration

range and which were counter-selected against several transcriptome databases in-

cluding bacteria. Except for B. subtilis, no homologies to tested bacterial transcrip-

tomes are present in the ERCC spike-in, which should be double-checked when

applying Grad-seq to an understudied organism.

To test the performance of the ERCC spike-in, 5 gradient fractions (fractions 2, 4,

7, 10 and 16; compare to Figure 2.4) including the highest and lowest RNA concen-

trations of the gradient were chosen, the spike-in added and the samples sequenced.

The obtained read counts for the spike-in transcripts should be linearly increasing

with their known physical concentrations. Indeed, a very strong linear correlation

(R2 ≥ 0.91) could be observed in the tested samples, detecting between 64–74 of

the spike-in transcripts and covering a dynamic range of ∼105 (Figure 2.6 A–E). The

complexity of the ERCC spike-in, together with its large concentration span should

be well-suited for the normalization of Grad-seq datasets (Risso et al., 2014), pos-

sibly eliminating the need of manual adjustments. Computational normalization is

achieved by DESeq2 (Love et al., 2014), which considers the spike-in as a set of

“control genes” that do not change in concentration between samples and which

are used to calculate size factors for each fraction. This normalization is built-in

in GRADitude1, a tool specifically designed for the analysis of Grad-seq data (Di

Giorgio, Hör, Vogel and Förstner, unpublished).

2.4 Overview of the E. coli Grad-seq RNA data

2.4.1 Sedimentation profiles of total RNA

Before generation of the libraries for the E. coli Grad-seq data set, capillary elec-

trophoresis was performed to ensure the quality of the RNA (Appendix Figure

7.1 A), showing results comparable to the RNA gel (Figure 2.4). Surprisingly, frac-

1https://foerstner-lab.github.io/GRADitude/
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Figure 2.7: Transcript sedimentation before and after normalization. (A) Average sedimentation pro-
file of all detected transcripts without ERCC-based normalization. An early peak and a peak around
the 30S subunit (fraction 11) are visible. Toward the end of the gradient, the relative abundance in-
creases. (B) Average sedimentation profile of all detected transcripts after ERCC-based normalization.
In comparison to the profile observed in (A), there is no increase in relative transcript abundance at
the end of the gradient. Yet, the peak in the pellet remains and overall is emphasized. Profiles are
normalized to a maximum of 1. Error bars show SD from the mean.

tion 8 seemed to contain almost no RNA, which had not been observed in previ-

ous analyses. Since less RNA was applied to the electrophoresis chip, this could be

caused by detection limits. After fragmentation and cDNA preparation, some strong

bands appeared, which mostly belonged to abundant transcripts (tRNAs, 6S RNA,

5S rRNA) present in the corresponding fractions and which were seemingly left

intact (Appendix Figure 7.1 B).

RNA-seq resulted in ∼433 million reads in total. The relative abundances of

the major RNA classes were expectedly very different between the fractions: while

reads deriving from tRNAs dominated the first fractions, up to ∼97 % of the reads

in fractions 15 and 16 derived from rRNAs (Appendix Figure 7.1 C). However, since

the pooling factors were chosen according to the estimated rRNA abundance, >1

million reads deriving from mRNAs and ncRNAs were sequenced for all fractions

except fraction 2, which had only slightly less. After filtering out low abundance

transcripts (row sum of <100 reads), a total of 4,095 transcripts was detected within

the gradient. Before normalization using the ERCC spike-in, the average sedimen-

tation profile of these transcripts was already reminiscent of the data obtained for

Salmonella (Smirnov et al., 2016), showing the expected peaks in the beginning of the

gradient, around the 30S subunit and in the pellet (Figure 2.7 A).

Yet, the abundance in fractions 17–20 was high, as was the overall abundance

within the gradient. Normalization of the data reversed this observation, leading
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to a strong increase in the average abundance in the pellet fraction (Figure 2.7 B).

Since most of the sequenced transcripts derived from mRNAs (∼90 %), a strong av-

erage association with the 70S ribosome was expected, agreeing with the profiles

obtained after normalization. A small distortion of the normalized average profile

was observed in fraction 6, which showed higher relative abundance than expected.

At this point, no manual adjustment was applied, though, because it was not possi-

ble to judge whether the read counts in fraction 6 were too high or whether the read

counts in fraction 5 were too low.

2.4.2 Sedimentation profiles of different RNA classes

To gain a more detailed overview of the RNA-seq data, the average sedimentation

profiles of different classes of RNA were studied. mRNAs migrated mostly with

the 70S ribosome and less with the 30S subunit and the bulk peak (Figure 2.8 A),

which likely represented active translation. In contrast, ncRNAs, which often bind

to one of the major RBPs (Babitzke et al., 2019; Holmqvist and Vogel, 2018; Hör

et al., 2020b), showed a similar profile but with far higher abundance in the soluble

fractions of the gradient (Figure 2.8 B), especially in the bulk and 30S regions, as



42 Chapter 2. Grad-seq of Escherichia coli

A

C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
ve

a
b

u
n

d
a
n

ce

CsrA-binding ncRNAs (n = 2)

1 2 3 4 5 6 7 8 9 1011121314151617181920 P

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fraction #

R
e
la

ti
ve

a
b

u
n

d
a
n

ce

Hfq-binding ncRNAs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
ve

a
b

u
n

d
a
n

c
e Hfq-binding ncRNAs (n = 124)

ncRNAs

1 2 3 4 5 6 7 8 9 1011121314151617181920 P

Fraction #

ProQ-binding ncRNAs

ProQ-binding ncRNAs (n = 53)

All ncRNAs

Confirmed ncRNAs

B

D

E F

All ncRNAs

Confirmed ncRNAs

All ncRNAs

Confirmed ncRNAs

Figure 2.9: Sedimentation of different classes of ncRNAs. The average sedimentation profiles of
Hfq-binding (A), ProQ-binding (B) and CsrA-binding (C) ncRNAs reveal that Hfq-binding ncRNAs
tend to peak around fraction 4, around the 30S subunit and in the pellet fraction. The same is true for
ProQ-binding ncRNAs, though their early peak is more pronounced. CsrA-binding ncRNAs on the
other hand only show a strong peak around fraction 5. (D, E, F) When only confirmed ncRNAs are
considered, the average gradient profiles tend to show higher abundance in early fractions and lower
abundance around the 30S subunit as well as in the pellet, indicating falsely annotated ncRNAs are
present in the list of all ncRNAs. Profiles are normalized to a maximum of 1. Error bars show SD from
the mean.

observed before using northern blotting (Figure 2.5 A and B). In agreement with the

gradient UV profile, the rRNAs showed peaks at the 30S and 50S regions for the

16S and the 5S/23S rRNAs, respectively (Figure 2.8 C), whereas tRNAs were almost

exclusively found around fraction 3 (Figure 2.8 D).

To refine the profiles of sRNAs, they were further clustered according to their

cognate RBPs (Hfq/ProQ) as identified by CLIP-seq (Michaux, Hör and Vogel, un-

published; Holmqvist et al. (2018)). As shown previously in Salmonella (Smirnov

et al., 2016), Hfq-binding sRNAs showed peaks around fractions 4–6 (Figure 2.9 A),

while ProQ-binding sRNAs peaked earlier and showed higher abundance within
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the gradient (Figure 2.9 B). The CsrA-titrating sRNAs CsrB and CsrC (Romeo and

Babitzke, 2018) on the other hand showed almost no presence in the pellet fraction

(Figure 2.9 C), as revealed by northern blotting before (Figure 2.5 A and B). The E.

coli MG1655 annotation version used for the analysis of the RNA-seq data contained

99 confirmed sRNAs and 188 predicted ones that have not been validated experi-

mentally.

Looking at the differences in sedimentation behavior between all ncRNAs and

only the confirmed ones (Figure 2.9 D), it became evident that the confirmed sRNAs

showed higher average abundance around the bulk peak and less average abun-

dance around the 30S subunit, as was shown for Salmonella sRNAs (Smirnov et al.,

2016). The same was true when only Hfq- or ProQ-binding sRNAs were consid-

ered (Figure 2.9 E and F), indicating there might be false positives, such as UTRs

of mRNAs, within the list of predicted sRNAs. These results demonstrate that the

RNA-seq data of E. coli Grad-seq overall is very similar to the previous work in

Salmonella and that the sedimentation profiles of sRNAs differs depending on the

RBP they are binding.

2.4.3 Manual adjustment of the RNA-seq normalization

While the RNA-seq data fit to the previously published data, they did not fully agree

with the results obtained in the laboratory. Especially the “RNA void” encountered

in fractions 7 and 8 (Figure 2.7 B) was not visible on the northern blots from the same

and other gradients (Figure 2.5 A and B), where the RNAs showed no sudden drop

in abundance in these fractions. Inexplicably, this phenomenon could so far only

be observed for Salmonella and E. coli Grad-seq data, whereas other species did not

show this behavior in the RNA-seq (see, for example, Figure 3.3). In order to more

accurately reflect the underlying laboratory data, the RNA-seq data was adjusted

manually by employing empirically determined size factors using the northern blot

data as comparison. Specifically, the spike-in normalized read counts of fraction 5

were multiplied by 1.5, whereas those of fractions 7 and 8 were multiplied by 4.5

and 28, respectively.

Afterwards, relative normalization to the maximum value for each transcript was

performed as before. While the increase in Spearman’s correlation was only mod-
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Figure 2.10: Manual adjustment of the RNA-seq normalization improves comparability to data
from the laboratory. Comparison of the sedimentation profiles of 6S RNA (A), ChiX (B), cspE (C),
CsrB (D), GcvB (E) and 16S rRNA (F) obtained from northern blots (NB, gray), RNA-seq without
adjustment (blue) and RNA-seq with manual adjustment (orange). Manual normalization increases the
comparability to the northern blot profiles. When available, replicate data is shown for the northern
blots (n = 2). Profiles are normalized to a maximum of 1. Error bars show SD from the mean. r is the
Spearman’s correlation coefficient between the NB data and the standard (blue) or manual (orange)
normalization.
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erate, the manually adjusted RNA-seq data clearly represented the northern blot

data better than the data only normalized by the ERCC spike-in (Figure 2.10 A–F):

6S RNA, for example, had two major peaks in fractions 6 and 9 before the man-

ual adjustment and only one in fraction 7 after adjustment. The northern blot data

showed a similar, wide peak that was almost fully congruent to the adjusted sedi-

mentation profile of 6S RNA. Similar improvements could be observed for all other

tested RNAs, as exemplified by ChiX, cspE, CsrB and GcvB. 16S rRNA, on the other

hand, already agreed well with the northern blot results before the manual adjust-

ment of the RNA-seq, which, importantly, was still the case after adjustment.

Globally, the manual adjustment smoothened the mentioned distortion around

fraction 5 (see 2.4.1), eliminated the “RNA void” of fractions 7 and 8 and generally

displayed a changed profile that did not emphasize the 30S subunit peak as strongly

anymore (Figure 2.11 A–G). These results show that manual adjustment of the RNA-

seq data was necessary in order to accurately reflect the physical distribution of the

RNA molecules within the gradient.

2.5 Optimization of the Grad-seq MS protocol

In addition to the RNA-seq protocol, the MS protocol of Grad-seq was optimized in

order to improve the detection of proteins and the reconstruction of their migration

patterns.

2.5.1 Reduction of samples

Originally, proteins of a Grad-seq experiment were run on an SDS gel, whose lanes

were subsequently cut into 10 pieces each (Smirnov et al., 2016). Each of these pieces

was then subjected to MS, adding up to >200 MS samples and therefore accounting

for a high investment both financially and timewise. Due to the availability of newer

MS systems with higher sensitivity, the MS protocol of Grad-seq was changed to

in-solution digestion as opposed to digestion from a gel, reducing the number of

samples to 22 per gradient (20 fractions, pellet and lysate). A homogenization step

using ultrasound followed by centrifugation to remove insoluble material was in-
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Figure 2.11: Sedimentation profiles of different RNA classes after manual normalization.
Comparison of the average sedimentation profiles of confirmed ncRNAs and mRNAs before (A, C)
and after manual normalization (B, D). While mRNAs still show accumulation around the 30S subunit
and in the pellet after manual normalization, ncRNAs now show a rather wide spread throughout
the gradient with a strong peak around fraction 4 and in the pellet. Average profiles of confirmed
Hfq-binding (E), ProQ-binding (F) and CsrA-binding (G) sRNAs after manual normalization reveal
smoother profiles when compared to the non-adjusted ones (Figure 2.9 A–C). Profiles are normalized
to a maximum of 1. Error bars show SD from the mean.
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Figure 2.12: Performance test of the UPS2 spike-in. UPS2 spike-in was added to the purified pro-
tein of fractions 3 (A) and 20 (B) of an E. coli gradient (compare to Figure 2.4). Following analysis
by MS, the measured intensities of the spike-in proteins were plotted against the known amount of
the corresponding spike-in proteins. Both tested fractions show excellent linear correlation between
the intensities and the known amounts, indicating that the UPS2 spike-in is a suitable tool for the
normalization of a Grad-seq experiment. R2 is the coefficient of determination.

troduced at the same time, which had not been necessary before since the samples

were run on a gel.

2.5.2 Use of a complex protein spike-in allows better normalization

Similar to the RNA-seq part of Grad-seq, the MS data has to be normalized to ac-

count for variation in sample preparation. Instead of normalizing using the inten-

sities of the corresponding lanes of the Coomassie gel (Smirnov et al., 2016), the

commercially available UPS2 spike-in was chosen. It is a complex protein spike-in

containing 48 human proteins covering a dynamic range of 5 orders of magnitude,

which grants the same advantages as described for the ERCC spike-in (see 2.3.2).

To test the performance of the UPS2 spike-in, 2 fractions with added UPS2 were

analyzed by MS. For this, fractions 3 and 20 were chosen since they contained the

highest and lowest protein concentrations, respectively, as judged by Coomassie gel

analysis (Figure 2.4). 18 out of the 48 spike-in proteins were detected in both cases,

covering a dynamic range of 103 (Figure 2.12 A and B). The measured intensities

further showed a strong linear correlation to the amount of protein added (R2 ≥
0.70). Thus, the UPS2 spike-in is well-suited to normalize Grad-seq MS datasets,
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which is performed by an R-script embedded in GRADitude2 (Di Giorgio, Hör, Vogel

and Förstner, unpublished).

2.6 Overview of the E. coli MS data

2.6.1 Sedimentation of proteins and protein complexes

The MS analysis of the E. coli gradient detected 2,145 high confidence proteins, rep-

resenting ∼49 % of the proteome as annotated on UniProt (The UniProt Consortium,

2019). The total E. coli proteome contains ∼56 % and ∼31 % soluble and membrane

proteins, respectively (Figure 2.13 A), whereas the Grad-seq proteome exhibited a

bias towards soluble (∼71 %) versus membrane proteins (∼18 %) (Figure 2.13 B). This

enrichment can be explained by the lysate preparation, which removes insoluble par-

ticles such as membranes, their associated proteins and aggregates by centrifugation

prior to gradient centrifugation. In comparison to the RNA-seq data (see 2.4.1), the

MS data already showed rather smooth profiles before normalization based on the

UPS2 spike-in (Figure 2.13 C). The only exception to that were fractions 10 and 12,

which exhibited lower and higher intensities, respectively, than expected based on

the surrounding fractions. After normalization, this distortion was eliminated, how-

ever, and no manual adjustment of the data was necessary (Figure 2.13 D). This

overview of protein intensities further agreed with the abundance estimates from

the gel analysis (Figure 2.4): most proteins sedimented at the top of the gradient,

whereas overall protein abundance dropped toward higher fraction numbers (Figure

2.13 D).

The E. coli protein-protein complexome has been studied in great detail for

decades, mostly by low throughput biochemical studies. More recently, however,

global studies trying to analyze all PPIs in a single experiment or series of experi-

ments have become powerful tools to provide overviews of possible interactions (see

1.2.3 and 1.2.4). Together, these studies represent an ever-expanding knowledge of

E. coli protein complexes that is collected in databases such as EcoCyc (Keseler et al.,

2017).

2https://foerstner-lab.github.io/GRADitude/
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Figure 2.13: Overview of the MS data. (A, B) Comparison of the total and the Grad-seq proteomes
reveals enrichment of cytosolic proteins in the Grad-seq experiment. Note that the total number of
proteins shown here is different from the number of detected proteins because some proteins have
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This pool of known complexes is well-suited to benchmark the present Grad-seq

dataset. For example, ethanolamine ammonia-lyase (EAL) is an enzyme complex

composed of 6 EutBC heterodimers and a total molecular weight of ∼470 kDa (Akita

et al., 2010). In the Grad-seq data, the subunits of EAL were detected with congruent

profiles peaking in fraction 5, representing an intact EAL (Figure 2.13 E). Similarly,

many other intact complexes were identified. Not all known complexes survived

the Grad-seq protocol, however. For example, the DNA polymerase holoenzyme

(DNAP) did not show congruent sedimentation of its subunits, indicating that the

complex was at least partially disassembled during the experiment. A possible ex-

planation for this is that the DNase treatment of the lysate released DNAP from its

substrate, the DNA.

Other cases are more difficult to evaluate. For example, the RNA degradosome

consisting of the endoribonuclease RNase E, the RNA helicase RhlB, the 3’→5’ ex-

oribonuclease PNPase and enolase (Bandyra et al., 2013; Mohanty and Kushner,

2018) did not co-migrate within the gradient, which was also observed in Salmonella

(Smirnov et al., 2016): while RNase E and RhlB sedimented around the 30S subunit,

PNPase and enolase sedimented toward the top of the gradient. Intriguingly though,

PNPase showed a smaller peak around the 30S subunit too. PNPase is known to ex-

ert functions outside of the RNA degradosome, for example, by forming complexes

with Hfq (Cameron et al., 2018), which peaked in fraction 4 as well. Enolase is ∼20×
more abundant than RNase E and RhlB, ∼5× more abundant than PNPase (Li et al.,

2014) and is, outside of the RNA degradosome, involved in glycolysis (Spring and

Wold, 1971). A small increase in enolase intensity around the 30S ribosome could

be detected. Indeed, the iBAQ values of RNase E, RhlB, PNPase and enolase, which

allow estimation of protein levels (Schwanhäusser et al., 2011), were well within a

log-range for the subunit complexes in fraction 12. Overall, this implies that, even

though the RNA degradosome seemed disassembled at first glance, all available pa-

rameters have to be considered before drawing final conclusions based on Grad-seq

data.

To estimate the intactness of complexes more globally, all heterocomplexes,

for which all subunits could be detected in the MS data, were tested for co-

sedimentation. Of those 107 heterocomplexes, 79 (∼74 %) showed high correlation
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(Spearman’s ≥ 0.7), indicating intact complexes (Figure 2.14 A). An important fea-

ture of Grad-seq is the size range of complexes that can be analyzed. For example,

the succinyl-CoA ligase consisting of SucC and SucD partitioned as a small complex

around fraction 3, whereas the >900 kDa FtsH/HflKC metalloprotease complex, in

agreement with a previous study (Saikawa et al., 2004), sedimented as a particle

of similar size as the 30S subunit, showing the wide range of resolvable complexes

(Figure 2.14 B). In agreement with the UV profile and the RNA-seq data, the 30S and

50S subunit proteins peaked around fractions 11 and 16, respectively. These results

indicate that the majority of PPIs were kept intact during the preparation of the

Grad-seq samples and represent the stable protein complexome of the cell.

2.6.2 Sedimentation of RNA-binding proteins

The vast knowledge on E. coli biology also gives the opportunity to specifically in-

vestigate molecules with a certain property of interest. RBPs, for example, are major

players in many if not most processes within the cell (Babitzke et al., 2019; Holmqvist

and Vogel, 2018). To obtain a bird’s eye view on possible in vivo complex formation of

RBPs, the MS data was filtered for proteins with predicted RNA-binding properties

based on UniProt (The UniProt Consortium, 2019) and Gene Ontology (Ashburner

et al., 2000; The Gene Ontology Consortium, 2019) information (Appendix Figure

7.2). Interestingly, RBPs populated the whole gradient, revealing that some are likely

without stable interacting partners, whereas others are involved in complexes of all

sizes. This rather naïve approach can already yield functional information: while ri-

bosomal proteins had their peak abundances in the pellet fraction, proteins involved

in ribosome maturation were not found in the pellet, showing that the latter are

not involved in actively translating ribosomal complexes but rather dissociate after

fulfilling their respective functions.
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Figure 2.14: Determination of the intactness of complexes. (A) Spearman correlation analysis was
performed for all heterocomplexes listed in EcoCyc (Keseler et al., 2017), for which all subunits were
detected in Grad-seq. The majority of these complexes show high correlation of ≥0.7 and only few
show anti-correlation (r < 0), indicating that most detected complexes survived the Grad-seq protocol.
(B) Heat map of selected intact complexes spanning a wide range of molecular weights (MW). Profiles
are normalized to a maximum of 1.
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Figure 2.15: Overview of conserved RNPs. Heat map showing major stable RNPs of E. coli. Except
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2.7 Combined analysis of RNA-seq and MS data

2.7.1 Overview of conserved RNPs

The possibility of analyzing complex formation of RNAs is one of the main benefits

of Grad-seq compared to other methods (see 1.2.5)(Smirnov et al., 2017a). Similar to

the PPIs described in 2.6.1, the major RNPs of E. coli were analyzed with regards

to their gradient sedimentation. As observed in the laboratory before (Figure 2.5 A

and C), the RNAP consisting of the α-, β-, β’- and ω-subunits (RpoA, RpoB, RpoC

and RpoZ, respectively) co-migrated with 6S RNA (Figure 2.15), which is a neg-

ative regulator of transcription that functions by competing for promoter binding

of RNAP-σ70 (Wassarman, 2018). It is of note, however, that σ70 (RpoD) showed a

second peak around fraction 10, outside of the RNAP, which was not detected by

western blotting (Figure 2.5 C). Detailed analysis of the raw MS data confirmed that

the measured peptides indeed derived from RpoD with high confidence. A similar,

but weaker, secondary peak was also observed for RpoC (Figure 2.15), yet it would

be speculation to interpret this to be a functional form of RpoD without any further

experiments.

Interestingly, while the σ-factors RpoD, σ24 (RpoE) and σ28 (FliA) were detected

to co-migrate with RNAP, this was not the case for the majority of the signal of σ54

(RpoN) or σS (RpoS). Finally, the minor σ-factor σ19 (FecI), which is involved in the

uptake of ferric citrate (Braun et al., 2003), was not detected in the dataset. The ri-

bosomal subunits, the signal recognition particle (SRP) as well as the SmpB-tmRNA

and glycine-tRNA ligase-tRNAGly RNPs are other major RNPs whose subunits were

found to co-sediment within the gradient. In contrast, RnpA (the protein factor of

RNase P) was only detected at very low intensity in the first 3 fractions, making

an estimation of its binding to RnpB (the RNA part of RNase P) difficult. Similarly,

RnpA could not be detected in Salmonella (Smirnov et al., 2016).

The three major known regulatory RBPs of E. coli, CsrA, Hfq and ProQ, are

known to bind specific subsets of sRNAs (Holmqvist et al., 2018; Melamed et al.,

2020; Potts et al., 2017; Tree et al., 2014). CsrA showed a rather wide peak and no

abundance in the pellet fraction. Its main antagonists, the sRNAs CsrB and CsrC,

exhibited a narrower distribution in the gradient with a peak in fraction 5—the
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main peak of CsrA—and no abundance in the pellet, indicating a stable RNP. The

wider peak of CsrA might be explained by binding to mRNAs of all lengths, causing

CsrA-RNA complexes of a wide range of sizes (Romeo and Babitzke, 2018).

Hfq binds more sRNAs than CsrA and is generally thought to be necessary for

the majority of sRNA-based regulation within E. coli (Hör et al., 2020b; Kavita et al.,

2018; Updegrove et al., 2016). In the present Grad-seq data, Hfq showed peaks in

fraction 4 and the pellet. Interestingly, the ribosome association indicated by the

accumulation in the pellet had already been described even before the function of

Hfq was known (Kajitani et al., 1994). On average, this sedimentation was mirrored

by the known Hfq-binding sRNAs (Figure 2.11 E). The individual sRNAs, however,

exhibited sedimentation profiles that strongly differed between each other (Figure

2.15). For example, the abundant ChiX, which is possibly the strongest Hfq binder

(Małecka et al., 2015), showed its peak abundance in fraction 4, with lower levels de-

tected in the pellet as well. RybB, on the other hand, was almost exclusively present

in the pellet fraction, which indicated that it preferentially bound to the ribosome-

associated subpopulation of Hfq.

In comparison to Hfq, a lot less is known about the function of ProQ and its as-

sociated sRNAs. The best understood ProQ-binding sRNAs are probably the wealth

of antisense sRNAs functioning as the antitoxin in type I toxin-antitoxin systems

(Holmqvist et al., 2018; Melamed et al., 2020; Smirnov et al., 2016). In the E. coli

Grad-seq data, ProQ-binding sRNAs showed a higher average abundance toward

the top of the gradient around fraction 4, which is also where ProQ was found to

peak (Figures 2.11 F and 2.15). The ProQ-binding antitoxins SibA, SibB and SibC

(Harms et al., 2018) were found in this region of the gradient as well. In contrast,

RyeA, which is the antitoxin of SdsR (Choi et al., 2018), was shown to bind ProQ

(Holmqvist et al., 2018), but sedimented away from it in the gradient. Interestingly,

similar to Hfq, high levels of ProQ were observed in the pellet fraction, which might

indicate ribosome-association and which could be verified by polysome gradient

fractionation (Appendix Figure 7.3).



56 Chapter 2. Grad-seq of Escherichia coli

A B

Type I toxins

dinQ
hokB
hokC
ibsA
ibsB
ibsC
ibsD
ibsE
ldrA
ldrB
ldrC
ldrD
shoB
tisB

AgrB
SokB
SokC
SibA
SibB
SibC
SibD
SibE
RdlA
RdlB
RdlC
RdlD

OhsC
IstR-1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

P

Type I antitoxins

chpB
hicA
higB
hipA

mazF
mqsR
relE
rnlA

topAI
yafO
yafQ
yhaV
yoeB

chpS
hicB
higA
hipB

mazE
mqsA
relB
rnlB
yjhQ
yafN
dinJ
prlF
yefM

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

P

Type II toxins

Type II antitoxins

0 0.25 0.5 0.75 1
Relative abundance

0 0.25 0.5 0.75 1
Relative abundance

Figure 2.16: Sedimentation of toxin/antitoxin RNAs. (A) Heat map showing the sedimentation pro-
files of type I toxin mRNAs (top) and their corresponding antitoxin antisense RNAs (bottom). The
mRNAs do not accumulate in the pellet of the gradient, indicating that they are not actively translated.
(B) Heat map showing the sedimentation profiles of type II toxin mRNAs (top) and their correspond-
ing antitoxin mRNAs (bottom). In this case, the antitoxins are proteins that need to be translated in
order to inactivate the toxin. Therefore, both the toxin mRNAs and the antitoxin mRNAs accumulate
in the pellet of the gradient, indicating active translation. Profiles are normalized to a maximum of 1.
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2.7.2 mRNAs with peculiar gradient sedimentation

To take advantage of the information about RNA sedimentation, the list of detected

mRNAs was filtered according to their peak abundance. For translated mRNAs, a

peak is expected in the pellet fraction because of the association with ribosomes. 170

(∼4.6 %) mRNAs were found to have a relative abundance of <1 in the pellet frac-

tion, indicating that they might not be efficiently translated or possibly degraded,

moving them away from the pellet fraction. Interestingly, 15 of the 16 detected

type I toxin/antitoxin (TA) system toxin mRNAs were among these 170 mRNAs

(Figure 2.16 A). Type I TA systems consist of a toxic protein, whose expression is

repressed by a noncoding antisense RNA (the antitoxin) that blocks translation of

the toxin (Berghoff and Wagner, 2017; Gerdes and Wagner, 2007; Harms et al., 2018).

In the Grad-seq data, the majority of the antitoxin RNAs sedimented together with

their respective toxin mRNAs (Figure 2.16 A), suggesting formation of translation-

ally inactive complexes. These complexes, however, are rapidly cleaved by RNase III

(Berghoff and Wagner, 2017; Gerdes and Wagner, 2007), making it unlikely they

would survive the Grad-seq protocol. As mentioned before, ProQ is known to bind

many of the antitoxin RNAs (Holmqvist and Vogel, 2018; Melamed et al., 2020;

Smirnov et al., 2016), which explains why some of the antitoxins sedimented around

fraction 4 (compare to Figure 2.15). The only type I toxin mRNA that actually peaked

in the pellet fraction was hokD, which, however, does not possess an antitoxin RNA

(putative “SokD”) on the opposite strand (Pedersen and Gerdes, 1999). In contrast to

type I TA systems, both the toxins and the antitoxins of type II TA systems are pro-

teins (Harms et al., 2018). Consequentially, both mRNA partners of type II TA sys-

tems were found to have their peak abundance in the pellet fraction (Figure 2.16 B).

2.8 RyeG encodes a toxic, prophage-derived small protein

Since the short list of sRNAs is easier to survey than the list of mRNAs, manual

inspection of sRNAs with unexpected (compare to Figure 2.11 B) sedimentation pro-

files was carried out. One of the sRNAs with a particularly interesting gradient

sedimentation was RyeG. It only co-migrated with the 30S subunit and additionally
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showed slight abundance in the pellet (Figure 2.17 A), which, importantly, could be

validated by northern blotting (Figure 2.17 A and B).

2.8.1 RyeG is a prophage-encoded RNA

The ryeG gene is located on the antisense strand between yfdI and tfaS in the cryp-

tic prophage CPS-53 (Figure 2.18 A), which is only present in the genomes of K-12

strains. CPS-53 seems to be in the process of degradation since many of its genes

are pseudogenes and it further is defective for lysis (Panis et al., 2007). Still, it pro-

vides limited functions, such as increasing H2O2 and acid resistance (Wang et al.,

2010) or encoding genes able to inhibit initiation of chromosomal replication when

overexpressed (Noguchi and Katayama, 2016).

RyeG itself was first reported as “IS118” in a bioinformatics study predicting

sRNAs in E. coli (Chen et al., 2002) and only one study investigated its function

by overexpression, showing decreased biofilm formation and motility (Bak et al.,

2015). The 199 nt long RNA, which is fully conserved among CPS-53-carrying K-12

strains, is under the control of a σ70 promoter with an extended –10 box close to the

consensus of TGNTATAAT (Burr et al., 2000; Mitchell et al., 2003) but without an

obvious –35 box (Figure 2.18 B). Its annotated transcriptional start site (TSS) could

be confirmed by differential RNA-seq (Thomason et al., 2015). Interestingly, RyeG
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Figure 2.18: RyeG is a prophage-encoded RNA. (A) Locus of the cryptic prophage CPS-53 in the
genome of E. coli K-12 MG1655. ryeG (orange) is encoded on the antisense strand in between yfdI and
tfaS. Genes outside of CPS-53 are shown in gray, genes within CPS-53 are shown in blue. Asterisks
denote pseudogenes. (B) Locus of ryeG. The arrow indicates the transcriptional start site (+1) of ryeG
and is followed by the ryeG sequence in capitals. The upstream sequence of the +1 site (smaller case
letters) includes an extended –10 box (highlighted in gray) and no –35 box. (C) Predicted secondary
structure of RyeG based on RNAfold (Lorenz et al., 2011), illustrated with VARNA (Darty et al., 2009).
RyeG folds into a tight structure with several stem-loops including a ρ-independent terminator. (D)
Northern blot analysis of the expression of RyeG over time in wild-type (wt) E. coli MG1655 reveals
constant expression while the cells are still growing (OD600 nm of 0.4–2.0), whereas its expression is
downregulated in late stationary phase (OD600 nm of 2.0 + 4 h). 5S rRNA served as loading control.
(E) To estimate the RyeG copy numbers per cell, total RNA of a growing culture was compared to
defined amounts of in vitro-transcribed RyeG by northern blotting. This revealed low numbers of
approximately 1–5 copies/cell, depending on the growth phase. 5S rRNA served as loading control.
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is predicted to fold into a highly structured RNA (Figure 2.18 C) with several stem

loops, including a ρ-independent terminator. Reminiscent of highly structured ProQ-

binding sRNAs (Smirnov et al., 2016), RyeG was indeed found to associate with ProQ

(Holmqvist et al., 2018), but also with Hfq (Michaux, Hör and Vogel, unpublished).

In agreement with the predicted transcriptional activation by σ70, RyeG could be

detected in similar quantities throughout growth in rich medium, whereas it showed

strongly reduced expression in late stationary phase (Figure 2.18 D). To quantify

the cellular levels of RyeG over growth, its expression was compared to in vitro-

synthesized RyeG (Figure 2.18 E), revealing low numbers of ∼3–5 copies per cell

during growth and ∼1 copy in late stationary phase.

2.8.2 RyeG associates with 30S subunits and 70S ribosomes

To further investigate the migration behavior of RyeG, the Grad-seq MS data were

searched for proteins deriving from CPS-53 that might explain the observation. With

IntS, YfdH and YfdI, three CPS-53-derived proteins could be detected. Surprisingly,

IntS, which is the integrase of CPS-53 (Panis et al., 2010b), co-migrated with RyeG

and the 30S subunit (Figure 2.19 A). The sedimentation of IntS, however, could not be

confirmed by glycerol sedimentation of a lysate obtained from an intS-3xFLAG strain

(Figure 2.19 B). Therefore, the potential association of RyeG with the 30S subunit

was studied in more detail by heterologously expressing RyeG from a plasmid in E.

coli 536, a uropathogenic strain that does not contain the CPS-53 prophage. Northern

blotting revealed that RyeG also co-migrated with the 30S subunit in E. coli 536,

which eliminated IntS as a potential interactor (Figure 2.19 C).

To experimentally validate binding of RyeG to the ribosome, in vitro recon-

stitution was performed using purified ribosomes from a ∆ryeG strain and in

vitro-transcribed RyeG. The reconstituted complexes were subsequently run on a

polysome gradient to analyze the binding (Figure 2.19 D). Even though the puri-

fied ribosomes contained mostly 70S ribosomes and little 30S subunits, a clear en-

richment of RyeG at the 30S subunit could be detected. However, the majority of

the RyeG signal was detected together with the 70S ribosomes, which might be ex-

plained either by binding to the 30S subunit of the 70S ribosome or by formation of

translating complexes. It is important to note that the purification of ribosomes was
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reveals binding of RyeG to the 30S subunit and 70S ribosomes. L, lysate (input control). P, pellet.
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performed using sucrose cushions that should not let smaller molecules than ribo-

somal subunits pass through, leaving tRNAs in the supernatant (Mehta et al., 2012).

Consequently, formation of translating complexes seemed unlikely. These results

demonstrate that RyeG is able to directly bind to 30S subunits and 70S ribosomes.

2.8.3 Overexpression of RyeG prolongs lag phase

To identify potential functions of RyeG, growth curve experiments were performed

comparing constitutive overexpression of RyeG from a high copy plasmid against the

same strain carrying a control plasmid (Figure 2.20 A). This overexpression resulted

in a strongly increased lag phase and was also true for E. coli 536 and BL21(DE3) as

well as S. Typhimurium (Figure 2.20 B–D), all of which do not encode for CPS-53.

Lag phase is the phase of bacterial growth that prepares the cells for exponential

growth after being transferred to new medium (Bertrand, 2019). During lag phase,

cells do not divide but are metabolically active and grow in size. Increased lag times

can be the result of several underlying causes such as stress or injury of the cells

(Bertrand, 2019), which might be caused by overexpression of RyeG. To test whether

RyeG prolongs lag time by slowing down the growth of cells before the first divi-

sion, a refreshed culture was grown in rich medium for 1.5 h before visualization by

microscopy (Figure 2.20 E and F). Indeed, cells appeared smaller and less dividing

cells were found in the overexpression strain compared to the control. These results

indicate a toxic effect of RyeG.

2.8.4 RyeG contains ORFs and can be translated

The ability of RyeG to bind to 30S subunits and 70S ribosomes indicated that it might

either contain an ORF or that it can bind and potentially modulate the ribosome in

another way. To assess the first option, ORFfinder3 was used to predict all possible

ORFs within RyeG. This search returned five different ORFs (Appendix Figure 7.4 A–

E), of which ORF1 could be excluded immediately since the software assigns this

ORF in a way that it might start upstream of the +1 site of the input sequence.

ORF2 has a GUG start codon at position +23 of RyeG and spans almost the entire

3https://www.ncbi.nlm.nih.gov/orffinder/
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growth is comparable between the controls and the overexpression strains. Error bars show SD from
the mean, n = 3. (E, F) Representative microscopy images of E. coli MG1655 carrying a control or RyeG
overexpression plasmid 1.5 h after refreshing an overnight culture in fresh medium. The overexpression
strain shows smaller cells and less division events, agreeing with the increased lag phase observed in
(A). Scale bars represent 7.5µm.
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RNA. Importantly, a potential ribosome-binding site (RBS) is located 6 nt upstream

of the start codon, which additionally seems accessible based on secondary structure

prediction (Figure 2.18 C). The putative protein encoded by ORF2 is 48 aa in length.

ORF3 starts only 2 nucleotides upstream of ORF2 and contains a UUG start codon. A

second UUG codon is present directly upstream, which, however, is an unlikely start

codon given the short distance of 4 nt to the predicted RBS. This RBS is predicted to

be less accessible than the RBS of ORF2 (Figure 2.18 C) and the ORF codes for a 19 aa

protein. ORF4 and ORF5 do not contain obvious RBSs in the preferred distance of

∼3–7 nt (Chen et al., 1994) upstream of the start codon. While an RBS is not strictly

necessary to allow translation (Omotajo et al., 2015), ORF4 and ORF5 appeared to

be worse candidates than ORF2 and ORF3.

To analyze whether translation initiation can take place on RyeG, toeprinting

assays were performed using in vitro-synthesized RyeG and purified 30S subunits.

If initiation can occur, reverse transcription of an mRNA in presence of 30S and

initiator tRNA fMet-tRNAMet
i leads to a stop at a distance of 14–16 nt downstream

of the +1 site (Hartz et al., 1988), which can be used to identify the start codon.
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addition of 200 ng/ml doxycycline to the medium in which the growth curves were performed. The
results show that the increase in lag phase can only be observed when ORF2 is translatable. Error bars
show SD from the mean, n = 3.

Toeprinting of RyeG revealed a strong toeprint at position +37 in presence of 30S

and fMet-tRNAMet
i but not without the initiator tRNA, indicating assembly of an

initiation complex (Figure 2.21 A). The A nucleotide at position +37 is located 14 nt

and 16 nt downstream of the start codons of ORF2 (Figure 2.21 B) and ORF3 (Figure

2.21 C), respectively, suggesting that both ORFs can potentially be translated.

Since the toeprinting assay did not unambiguously reveal which of the ORFs

is the ORF being translated, three different mutant versions of RyeG were cloned

into a tetracycline-inducible plasmid, which had to be used due to the inability of

cloning certain RyeG versions into a constitutive overexpression plasmid. SD-mut is

a mutant that changes 5 nt in the shared RBS of ORF2 and ORF3 without disruption

of the predicted secondary structure (Figure 2.22 A). If the observed toxicity of RyeG

is dependent on the translation of a small protein, this mutation should render RyeG

non-toxic. Similarly, ORF2-stop and ORF3-stop contain a single nucleotide exchange

introducing a premature stop codon in ORF2 and ORF3, respectively. If one of the

ORFs is responsible for the toxicity of RyeG, the corresponding stop mutant should

render the plasmid non-toxic. As observed before, wild-type RyeG caused a strong
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increase in lag time when expressed from the tetracycline-inducible plasmid (Figure

2.22 B).

This toxicity was mostly remedied by SD-mut, which grew very similar to the

control, even though a slight increase in lag time remained. Interestingly, ORF2-stop

had an even stronger effect and grew without any obvious defect when compared to

the control. In stark contrast to this, ORF3-stop did not decrease the toxicity of RyeG

but instead even slightly increased the lag time compared to wild-type RyeG. Taken

together, RyeG encodes for a 48 aa small protein encoded by an ORF here denoted

as ORF2. Expression of this protein is toxic to the cell and increases lag time in rich

medium. Importantly, all tries to clone or transform inducible or constitutive protein

overexpression plasmids containing ORF2 failed. The strong RBS present on these

plasmids in combination with the overexpression likely led to levels of the protein

that were too high to obtain transformants.

2.9 YggL is a conserved ribosome-binding protein

As shown in 2.6.1, Grad-seq allows the analysis of intact soluble complexes. It is

therefore possible to predict whether a protein is likely involved in a complex, just

based on its positioning within the gradient—the “guilt-by-association” logic. For

example, a <20 kDa protein should sediment around <3S given a slightly elon-

gated shape, meaning it should sediment at the top of the gradient (Erickson, 2009).

Conversely, this implies that a <20 kDa protein, whose peak is detected in higher

fraction numbers, is likely involved in a complex.

2.9.1 Small proteins with unexpected gradient sedimentation

Thus, to predict possible new complexes, the MS data were filtered to only include

proteins <20 kDa that showed their peaks in fractions 4 and above, resulting in a list

of 97 proteins (Figure 2.23). Unsurprisingly, 42 of the 97 small proteins were ribo-

somal proteins with 4 more being known to be ribosome-associated: Hsp15 (HslR),

RsfS, the L31 paralog YkgM and Rmf. Hsp15 and RsfS were co-sedimenting with

the 50S subunit, which was also shown in earlier studies (Häuser et al., 2012; Jiang

et al., 2006, 2009; Korber et al., 2000). YkgM could only be detected in fraction 15
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Figure 2.23: Sedimentation profiles of fast-sedimenting small proteins. Heat map showing the sed-
imentation profiles of 97 proteins with a molecular weight <20 kDa and peaks in fraction 4 or higher.
Many ribosomal proteins (Rpl*, Rpm* and Rps*) are among these proteins as well as several proteins of
unknown function, for example, YggL. All of these proteins are predicted to form complexes. Profiles
are normalized to a maximum of 1.
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and therefore at the 50S subunit. Considering its probable function as an alterna-

tive L31 protein (Hensley et al., 2012), this might be a true interaction rather than

a detection by chance. In contrast, Rmf showed a clear peak in the pellet fraction,

thereby matching its function in the formation of 100S ribosomes (inactive dimers of

70S ribosomes) (Ueta et al., 2005, 2008). Other expected proteins included the RNAP-

interacting proteins RpoZ (the ω-subunit of RNAP) (Mathew and Chatterji, 2006),

GreB (a transcription elongation factor) (Opalka et al., 2003) and CedA (a regulator

of cell division) (Abe et al., 2016), all of which co-sedimented with the RNAP core

enzyme (compare to Figure 2.15).

However, many small proteins of unknown function were also found to sed-

iment in higher fraction numbers of the gradient, implying their involvement in

complexes: YacL, YbdF and YfeD showed similar sedimentation and co-migrated

with the RNAP (Figure 2.23). Others, such as YbcJ and YibL were detected with high

intensities throughout the gradient (average log10 intensity of ∼8.3), showing very

broad distributions without clear peaks, indicating they could be involved in several

different complexes or that they formed artificial aggregates. For YbcJ, several inter-

acting partners like the degradosome or the 50S subunit have been described (Jiang

et al., 2007; Hu et al., 2009) which could explain the observations. In contrast, YibL

was reported to co-migrate with the 50S subunit in sucrose gradients (Jiang et al.,

2006), contrasting the sedimentation shown here.

2.9.2 YggL binds the 50S subunit

Another one of the identified proteins was YggL. YggL is a 108 aa (∼13 kDa) protein

that co-migrated with the 50S subunit and had strong abundance in the pellet as

well, mirroring the sedimentation of other 50S components (Figures 2.23 and 2.24 A).

To verify this observation, a glycerol gradient was run with a lysate obtained from

a yggL-3xFLAG strain followed by western blotting (Figure 2.24 B). Interestingly,

the profile of YggL-3xFLAG supported potential 50S subunit association, while the

abundance in the pellet fraction was not as high as in the MS data. YggL was sug-

gested to be involved in late 50S subunit assembly or final maturation of the 70S

ribosome based on its localization in 50S and 70S fractions in a sucrose gradient

(Chen and Williamson, 2013), which agrees with the data obtained here. Of note,
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Figure 2.24: YggL co-migrates with the 50S subunit. (A) Heat map showing the sedimentation pro-
files of YggL, the 30S subunit (represented by RpsA and 16S rRNA) and the 50S subunit (represented
by RplA and 5S rRNA). YggL co-migrates with the 50S subunit. Profiles are normalized to a maxi-
mum of 1. (B) Glycerol gradient analysis followed by western blotting of a yggL-3xFLAG strain shows
sedimentation of YggL-3xFLAG around fraction 16, where the 50S subunit sediments as well. L, lysate
(input control). P, pellet.

YggL-3xFLAG shows a peculiar smear in western blots of gradient fractions (not

visible in the lysate control), which could indicate phosphorylation or degradation

of the protein. Analysis of the phosphorylation state by phosphatase assays led to

degradation of YggL and could therefore not confirm or disprove phosphorylation

of YggL.

yggL is encoded on the antisense strand in between yggN (a protein of unknown

function) and trmI (a tRNA methyltransferase) (Figure 2.25 A). Differential RNA-

seq (dRNA-seq) (Thomason et al., 2015) revealed 3 potential TSSs and 1 potential

cleavage site upstream of yggL (Figure 2.25 A and B). Of the 3 TSSs, TSS1 and TSS2

are upstream of trmI, but only transcription from TSS2 includes yggL, generating

a bicistronic trmI-yggL mRNA. TSS3 is internal to the trmI coding sequence (CDS),

whereas the cleavage site is ∼70 nt upstream of the yggL start codon. TSS2 and TSS3

both possess predicted σ70-dependent –10 and –35 boxes (Mazumder and Kapanidis,

2019) (Figure 2.25 B). Interestingly, transcription from TSS2 seems to be stronger at

an OD600 nm of 0.4 (exponential growth) than at an OD600 nm of 2.0 (early stationary

phase), while transcription from TSS3 seems to be similar at both points during

growth (Thomason et al., 2015). Moreover, transcription from TSS2 at an OD600 nm
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of 0.4 is stronger than from TSS3, meaning that, during exponential growth, the

bicistronic trmI-yggL mRNA is more expressed than the monocistronic yggL mRNA.

To experimentally validate the transcriptional organization of yggL and how it

is expressed over time, a growing E. coli culture was sampled several times after

dilution from the overnight culture, the RNA isolated and northern blotting per-

formed (Figure 2.25 C). As expected from the dRNA-seq data, three distinct bands

were detected with lengths of ∼1,200, ∼750 and ∼550 nt, which fit to the transcripts

originating from TSS2, TSS3 and the cleavage site, each respectively. As observed

in the dRNA-seq data, the longest band (trmI-yggL) disappeared after the culture

reached an OD600 nm of 2.0, whereas the two shorter bands (yggL and the processed

transcript including yggL) did not change. During late stationary phase (OD600 nm

of 2.0 + 4 h), yggL could not be detected. Taken together, YggL was identified as a

potential binder of the 50S subunit that is expressed in a σ70-dependent manner.

2.9.3 YggL is highly conserved among γ-proteobacteria

YggL is the only member of a family of proteins containing a DUF469 (DUF = do-

main of unknown function), which, according to InterPro, is predicted to function

as phosphotransferase (El-Gebali et al., 2019; Mitchell et al., 2019). To analyze how

conserved YggL is, eggNOG (Huerta-Cepas et al., 2016) was searched for homologs,

revealing 150 species containing yggL, the vast majority of which were represented

by the class of γ-proteobacteria (Figure 2.26 A). A smaller number of homologs could

further be identified in the closely related class of β-proteobacteria, among which

presence of yggL is mostly limited to the orders of Burkholderiales and Neisseriales.

Interestingly, amino acid conservation of YggL among γ-proteobacteria is very high

(Figure 2.26 B), suggesting that its function in these bacteria is conserved as well.

2.9.4 Ribosome-binding properties of YggL

The Grad-seq protocol employed here uses a low magnesium concentration of 1 mM

for both the lysate buffer and the glycerol gradient, which is known to partially dis-

sociate 70S ribosomes into their subunits (Ron et al., 1968). YggL was observed both

at the 50S subunit and in the pellet fraction (Figure 2.24), meaning there are several

options that could have led to this observation: 1) YggL binds to the 50S subunit
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Figure 2.26: Conservation of YggL. (A) Phylogenetic analysis of YggL based on 150 protein sequences
deposited in eggNOG 4.5.1 (Huerta-Cepas et al., 2016) (COG3171). YggL homologs were only found
in γ-proteobacteria (orange) and β-proteobacteria (blue). (B) Multiple sequence alignment of YggL
homologs from E. coli (ECO), Salmonella Typhimurium (STM), Salmonella bongori (SBG), Shigella flexneri
(SFL), Klebsiella pneumoniae (KPN), Enterobacter cloacae (ENT), Citrobacter rodentium (CRO), Pantoea spp.
(PAN) and Yersinia pestis (YPE) using Clustal Omega (Madeira et al., 2019). YggL is highly conserved
on amino acid level between different members of γ-proteobacteria. Residues with ≥50 % identity are
highlighted in a blue gradient. Visualization was performed using Jalview (Waterhouse et al., 2009).
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by itself and to 50S subunits of assembled 70S ribosomes/polysomes. 2) YggL binds

only to the 50S subunit of 70S ribosomes/polysomes and was subsequently detected

at the 50S subunit due to partial dissociation of the whole ribosome. 3) YggL binds

to the 50S subunits that are part of other, higher-order ribosomes such as 100S ri-

bosomes (compare to Rmf discussed in 2.9.1) and was subsequently detected at the

50S subunit due to partial dissociation of the whole ribosome.

To test which of these possibilities is the underlying cause of the observed sed-

imentation of YggL, sucrose polysome gradients at 10 mM magnesium were per-

formed with the yggL-3xFLAG strain. The higher magnesium concentration stabi-

lizes 70S ribosomes and polysomes (Ron et al., 1968), which allows discrimination

between free 50S subunits and ones assembled into 70S ribosomes. Western blot-

ting of the resulting gradient fractions revealed YggL in the 70S monosome fraction

(Figure 2.27 A). Importantly, no signal was detected in polysomal fractions and only

minimal levels were detected in the 50S and bulk fractions. It is of note that the

measured UV absorbance of the 50S subunit of the yggL-3xFLAG strain was higher

than what is usually observed (compare to, e.g., Figure 2.5 D).

To further examine whether YggL binds exclusively to 70S monosomes, in vitro

reconstitution experiments using recombinantly purified YggL and purified ribo-

somes from a ∆yggL strain were performed. For this, 400 pmol of purified ribosomes

were allowed to associate with 100 or 400 pmol of YggL and subsequently run on a

sucrose gradient (Figure 2.27 B). When 100 pmol YggL were used, almost all (∼89 %,

∼89 pmol) of it could be detected at the 70S monosomes with only little signal at the

top of the gradient, where free YggL was expected. No signal was observed at the

50S subunit or the polysomes. 400 pmol YggL showed the same distribution along

the ribosomal peaks, whereas a lot of it was unbound at the top of the gradient. The

bound fraction of YggL in this case was ∼18 % (∼72 pmol), which is very similar to

the results obtained with 100 pmol YggL. These results suggest that YggL only binds

to 50S subunits involved in 70S monosomes and that possibly only a subpopulation

of 70S monosomes allows this association.
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Figure 2.28: AP/MS of YggL-3xFLAG. (A) Coomassie-stained gels after affinity purification (AP) of
E. coli wild type (wt) or yggL-3xFLAG (PD). Several proteins <25 kDa are enriched in the PD compared
to the wt. M, size marker. (B) MS analysis of the proteins enriched in the PD vs. the wt. Apart from
the expected enrichment of YggL, several proteins of the large ribosomal subunit as well as two of the
small ribosomal subunit are enriched.

2.9.5 AP/MS validation of the ribosome-binding properties of YggL

As additional validation of the ribosome-binding properties of YggL, AP/MS (see

1.2.1) assays comparing the wild-type strain against the yggL-3xFLAG strain were

performed. Compared to the wild type, a clear enrichment of small proteins <25 kDa

was observed in the yggL-3xFLAG strain, which fit the size for ribosomal proteins

(Figure 2.28 A). Identification of these proteins was performed by MS analysis, re-

vealing the pull-down of many proteins of the large ribosomal subunit as well as S7

and S9 of the small ribosomal subunit (Figure 2.28 B). The pull-down of mostly 50S

subunit proteins adds to the evidence that YggL specifically interacts with the large

ribosomal subunit.

2.9.6 Deletion of yggL causes an increase in free 50S subunits

Based on its association with the ribosome, it seems obvious that YggL might some-

how be involved in the process of translation. To test the consequences of deleting

yggL, growth curve experiments were performed (Figure 2.29 A). The ∆yggL mutant

did not show any differences in growth in rich media, suggesting that the function

of YggL might either be rather limited or very specialized. Since the yggL-3xFLAG

strain showed an increase in free 50S subunits in a polysome gradient (Figure 2.27 A),

the wild-type, ∆yggL and ∆yggL complementation strains were run on a polysome
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Figure 2.29: Phenotypes of the yggL deletion. (A) Growth curves of E. coli MG1655 wild type and
∆yggL show no growth defect of the knockout mutant. Error bars show SD from the mean, n = 3.
(B) Sucrose polysome gradient analysis of E. coli MG1655 wild type, ∆yggL and a complementation
strain. The knockout shows an increased amount of free 50S subunits, which is not complemented by
constitutive overexpression of yggL. (C) Analysis of the total protein content of E. coli MG1655 wild
type, ∆yggL and a complementation strain by SDS-PAGE. Several proteins are up- or downregulated
in the knockout (highlighted by arrows), which is not complemented by constitutive overexpression of
yggL.
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gradient. As observed before for the yggL-3xFLAG strain, the knockout of yggL

caused an increase in free 50S subunits and even a slight decrease in polysomes

(Figure 2.29 B). This phenotype could, however, not be complemented by constitu-

tive overexpression of yggL.

To test whether the observed differences in ribosome abundance have an influ-

ence on translation of specific proteins, total protein was collected in a time course

experiment and separated via PAGE (Figure 2.29 C). Interestingly, several bands in-

creased or decreased when comparing the wild type to the knockout strain. The

strongest change at early exponential phase (OD600 nm of 0.4) was a single band

at around 55 kDa that disappeared in the knockout. At mid-exponential phase

(OD600 nm of 1.0), a ∼20 kDa band was absent from the wild type but present in

the knockout. In contrast, six proteins at ∼130, ∼125, ∼58, ∼54, ∼45 and ∼36 kDa

were more expressed in the wild type than in the knockout at early stationary phase

(OD600 nm of 2.0). Surprisingly, except for the bands at ∼130 and ∼58 kDa, the same

was observed at late stationary phase (OD600 nm of 2.0 + 4 h), even though yggL is

not expressed anymore at this point of growth (Figure 2.25 C).

Additionally, in all tested conditions, several bands slightly heavier than 35 kDa

were upregulated in the knockout. As observed in the polysome gradient, overex-

pression of yggL could not rescue the phenotype in any of the tested conditions.

Attempts to express yggL from a low copy plasmid under its native promoter did

not show any mRNA expression, possibly due to inhibition by chloramphenicol,

since the same behavior was also observed for the control plasmid (data not shown).

Together, these results show that deletion of yggL increases the number of free 50S

subunits and changes expression of several proteins.

2.10 Discussion

Being the most popular bacterial model organism, a wide array of studies has in-

vestigated the interactome of E. coli using both classical low-throughput and global

high-throughput methods. However, these studies mostly focused on the interaction

between proteins, excluding RNPs from the global approaches. With the introduc-

tion of Grad-seq (Smirnov et al., 2016), it was for the first time possible to obtain
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information about the in vivo complexome of both RNA and protein from a single

experiment.

In this chapter, Grad-seq was employed in order to draft a global map of RNA

and protein interactions in E. coli. After several rounds of optimization (see 2.1),

highly reproducible gradients were obtained (Figures 2.4 and 2.5), whose coarse-

grained analysis using standard biochemical assays already revealed several sur-

prises: Most of the tested sRNAs showed a wide spread throughout the gradient

with peaks around fraction 5 and in the pellet, suggesting Hfq and ribosome as-

sociation, respectively (Figure 2.5 A and B). Importantly, this behavior could be re-

produced using sucrose polysome gradients (Figure 2.5 D) and was further revealed

on a global scale in the RNA-seq data (Figure 2.11 B). Several scenarios can lead to

ribosome association of sRNAs:

1. The sRNA is dual-function RNA, meaning that it has both regulatory functions

as an sRNA and encodes a protein. Translation of the sRNA in this case would

cause ribosome association. The best-studied example of a dual-function RNA

is the quorum sensing-induced Staphylococcus aureus RNAIII, which negatively

regulates translation of several major surface proteins and positively regulates

translation of two more proteins, including α-hemolysin (Bronesky et al., 2016).

At the same time, it encodes the hld gene, the CDS of δ-hemolysin (Bronesky

et al., 2016). In E. coli, the dual-function RNA SgrS encodes sgrT, both of which

act in concert to combat glucose-phosphate stress (Lloyd et al., 2017; Wadler

and Vanderpool, 2007). SgrS was mostly detected in the pellet fraction of the

gradient (Figure 2.15), suggesting that the conditions used here might favor

translation of SgrT. SgrT could not be detected in the MS data, which is not

surprising, however, given that it is only ∼5.3 kDa and small proteins are no-

toriously difficult to detect in MS (in fact, the smallest protein detected here

was RpmH, a ∼5.4 kDa ribosomal protein for which it can safely be assumed

that it is way more abundant than SgrT). Translation activation of yigL by SgrS

(Papenfort et al., 2013; Sun and Vanderpool, 2013) might further cause ribo-

some association of SgrS (see next point).
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2. Binding of the sRNA positively regulates translation of its target, thereby

shifting it to the pellet. A classic example of this type of regulation is DsrA

(Papenfort and Vanderpool, 2015), which functions via an anti-antisense mech-

anism, opening up an inhibitory secondary structure in the 5’ UTR of rpoS

and therefore allowing ribosome binding and translation (Lease et al., 1998;

Majdalani et al., 1998). RpoS is an alternative σ-factor that mediates the tran-

sition from logarithmic to stationary growth in E. coli (Battesti et al., 2011),

meaning that in the conditions used here (early stationary phase), RpoS trans-

lation should be active and indeed, DsrA was mostly detected in the pellet

(Figure 2.15).

3. Binding of the sRNA negatively regulates a cistron within a polycistronic

mRNA, whose other genes still can be translated, causing the sRNA to

co-sediment with the ribosomes. Generally, inhibition of translation of a

cistron leads to the degradation of the whole mRNA (Balasubramanian and

Vanderpool, 2013). This is, however, not always the case: Spot 42, for exam-

ple, specifically downregulates translation of galK within the galETKM mRNA,

which does not cause degradation of the mRNA (Møller et al., 2002). Grad-

seq revealed Spot 42 to be mostly present in the pellet fraction (Figure 2.5 A),

which to some extent can be explained by the described behavior. It has to

be mentioned, though, that Spot 42 also possesses an ORF (Yano, Chao and

Vogel, unpublished; Gisela Storz, personal communication), meaning that it

can be translated, which at least partially should be responsible for its ribo-

some association too.

Other scenarios such as sRNA-dependent target activation via inhibition of

mRNA degradation, e.g., translational activation of cfa by RydC (Fröhlich et al.,

2013), or direct interaction between ncRNAs and the ribosome as observed in eu-

karyotes (Pircher et al., 2014) could also shift an sRNA to the pellet. Crucially, Hfq

is generally needed for the mentioned regulatory mechanisms. In agreement with

this, Hfq exhibited high abundance in the pellet of the gradient too (Figure 2.15). In

Salmonella Grad-seq, both sRNAs and Hfq showed a peak around fraction 5 and an

additional increase in abundance in fraction 20 (Smirnov et al., 2016), showing the
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same trend as observed for E. coli. However, the pellet fraction was not analyzed in

the Salmonella study and the ribosome association of sRNAs and Hfq can therefore

not be safely estimated.

Similar to Hfq, ProQ also was abundant in the ribosome-associated pellet frac-

tion (Figure 2.15). Importantly, in Salmonella, ProQ showed a strong increase in abun-

dance toward the bottom of the gradient as well (Smirnov et al., 2016). Yet, in con-

trast to Hfq-associated sRNAs, the ProQ-associated sRNAs sedimented mostly in

early fractions and less so in the pellet (Figure 2.11 F). Since the exact functions of

ProQ and its associated sRNAs are less understood than those of Hfq, it can only

be speculated what the reason for this observation might be. On the one hand,

ProQ is known to bind and stabilize a large array of often highly structured sRNAs

(Holmqvist et al., 2018; Melamed et al., 2020; Smirnov et al., 2016), explaining its sed-

imentation around fraction 4, where many of its associated sRNAs peaked (Figure

2.11 F) and which was previously observed in Salmonella (Smirnov et al., 2016). On

the other hand, ProQ possibly facilitates base pairing between sRNAs and their tar-

gets, as demonstrated for Salmonella RaiZ inhibiting translation of hupA (Smirnov

et al., 2017b).

As discussed for Hfq-dependent sRNAs above, formation of such ternary in-

hibitory complexes within polycistronic mRNAs could cause ProQ to sediment to-

gether with ribosomes. Although not shown yet, it is possible that ProQ can perhaps

also form translation-permitting complexes with sRNAs and their targets, which

again would cause ribosome association. Finally, ProQ was shown to bind the 3’

UTRs of a vast number of mRNAs and thereby protect them from degradation by

RNase II in Salmonella (Holmqvist et al., 2018) or PNPase in Neisseria (Bauriedl et al.,

2020). Provided continued association to its mRNA targets while upstream transla-

tion is ongoing, this ProQ-dependent protection currently seems the most plausible

option for the observed ribosome association of ProQ. Based on the sedimentation

behaviors of sRNAs and their associated proteins defined in this study, it is now

possible to estimate their preferred macromolecular state, i.e., their most stable com-

plex.

In addition to globally displaying the sedimentation behavior of RNAs of known

function, the Grad-seq data obtained here led to the discovery that the functionally
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unknown sRNA RyeG in fact is a prophage-derived mRNA encoding a toxic small

protein (see 2.8). Most sRNAs showed sedimentation in the early fractions and the

pellet (Figure 2.11 B). RyeG was strikingly different: it co-sedimented with the 30S

subunit and showed some additional abundance in the pellet (Figure 2.17).

The existence of RyeG was first predicted in a biocomputational study and

named “IS118” (Chen et al., 2002). It is encoded in the cryptic (defective) prophage

CPS-53 (a.k.a. KplE1), which is one of 9 prophage regions of E. coli K-12 (Wang

et al., 2010). CPS-53 is defective for lysis but can still perform excisive recombination

(Champ et al., 2011; Panis et al., 2007, 2010b,a, 2012; Puvirajesinghe et al., 2012). Not

much is known about the function of its genes and why it has been kept in the chro-

mosome. Often, domestication of prophages confers positive traits to their hosts, for

instance, stress resistance or resistance against other phages (Bobay et al., 2014). This

is also the case for CPS-53, for which one study showed involvement in resistance

against acid and oxidative stress (Wang et al., 2010). Another study overexpressed

the yfdQRST gene cluster of CPS-53, leading to inhibition of the initiation of chro-

mosomal replication, which was suggested to be beneficial under certain stress con-

ditions (Noguchi and Katayama, 2016). Only one study investigated potential effects

of RyeG so far: its overexpression led to reduction in biofilm production, swarming

and swimming motility as well as type I and curli fimbriae production (Bak et al.,

2015). The authors showed no detailed data on growth defects related to overexpres-

sion of RyeG but it is noteworthy that from the 99 sRNAs they tested, RyeG was the

only one to negatively affect all of the tested processes (Bak et al., 2015).

In the present study, overexpression of RyeG showed toxic effects on cell growth

in both E. coli K-12 as well as other E. coli and Salmonella strains that do not carry

the CPS-53 prophage (Figure 2.20), implying that the observed phenotype is inde-

pendent of other genes of CPS-53. The toxicity manifested itself through drastically

prolonged lag times in all investigated strains. Lag phase is defined as the time it

takes a bacterium until it first divides after being refreshed in new medium, meaning

that it is the phase that prepares for growth (Bertrand, 2019). Increased lag times can

be detrimental to a bacterial culture because it might be less fit and be outcompeted

by other, faster growing bacteria.
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However, increased lag times can also be beneficial: in S. pneumoniae, serotypes

with a greater potential for invasive disease were shown to have longer lag phases,

possibly due to increased immune evasion (Bättig et al., 2006). Further, increased

lag times can confer resistance against antibiotics (Bertrand, 2019), as impressively

demonstrated in a study in E. coli showing that ampicillin-tolerant bacteria were

also tolerant to norfloxacin (whose mode of action is different than that of ampi-

cillin) due to prolonged lag times (Fridman et al., 2014). The authors termed this

phenomenon “tolerance by lag” (Fridman et al., 2014). In the case of overexpres-

sion of RyeG, the bacteria appeared to grow rather normally after overcoming the

lag phase (Figure 2.20 A–D). Together with the increased stress resistance provided

by CPS-53 (discussed above), this toxic effect, i.e., the increased lag phase, of RyeG

might also be beneficial under certain circumstances. However, no conditions were

identified under which such a positive effect could be observed.

As already mentioned, RyeG was of outstanding interest because of its putative

30S subunit association. The only sRNA previously shown to directly interact with

the 30S subunit was the rpoS-activating DsrA (discussed above) (Worhunsky et al.,

2003). However, the interaction of the 30S subunit with RNA generally is thought to

be unique to mRNAs, which interact with 30S subunits in order to form translation

initiation complexes, the first and rate-limiting step in protein biosynthesis (Gualerzi

and Pon, 2015). Since RyeG is specific to E. coli K-12 (discussed above), no predictions

on putative conserved ORFs could be performed and therefore a naïve approach

considering all potential ORFs within RyeG was taken in order to test whether RyeG

is indeed noncoding or whether it actually encodes a protein. 30S toeprinting assays

and mutational studies demonstrated that RyeG includes an ORF here termed ORF2

that encodes a 48 aa long small protein that apparently is solely responsible for the

observed phenotype of RyeG overexpression (Figure 2.22 B).

While this study was still ongoing, others identified ORF2 using a modified ri-

bosome profiling approach and renamed it yodE without investigating its functions

(Weaver et al., 2019). Homology searches for the protein sequence of ORF2/yodE did

not reveal any known similar sequences, which therefore did not allow functional

predictions. The mechanism of action of prolonging the lag phase by RyeG/YodE

will hence need further studies.
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Apart from investigating interactions of RNAs and their cognate RBPs, Grad-

seq also enables the global analysis of stable in vivo PPIs. As discussed in 1.2,

many of the previous studies on the global interactome of E. coli relied on mas-

sive epitope-tagging of single proteins in order to generate binary interactome maps

(Arifuzzaman et al., 2006; Babu et al., 2018; Butland et al., 2005; Hu et al., 2009;

Rajagopala et al., 2014). In contrast, a wild-type strain was used to generate the

Grad-seq maps in this thesis, which revealed the protein interactome based on a

single experiment. Quality control analyses revealed that the subunits of the major-

ity of heterocomplexes, for which all subunits were detected in the MS dataset,

showed high correlation, indicating intact complexes (Figure 2.14 A). This could

further be observed for conserved protein-protein complexes ranging from small

(succinyl-CoA synthetase, ∼140 kDa) to large (50S subunit, ∼1.6 MDa) complexes

(Figures 2.13 E and 2.14 B), demonstrating the large gamut of resolved complexes in

this Grad-seq resource.

However, the predicted cellular localization of the detected proteins also indi-

cated one of the limitations of Grad-seq: Cytosolic proteins were enriched, disfa-

voring membrane-associated proteins (Figure 2.13 A and B, discussed in 1.2.5.9).

In comparison, global AP/MS does not rely on the solubility of the bait proteins

and was recently successfully applied to analyze membrane complexes (Babu et al.,

2018). One option to enable the investigation of such complexes using Grad-seq is

the utilization of detergents that keep membrane complexes in solution, as was re-

cently shown in a study employing gradient-based PCP (see 1.2.4.3; (Carlson et al.,

2019)).

One of the main ways of using Grad-seq as a resource is to look up the sedimen-

tation profile of a protein (or RNA) of interest in order to obtain a quick overview

whether this particular protein might be involved in a complex. The assumption

here is that one can estimate the sedimentation coefficient of the protein of interest

(see 1.2.5.4; (Erickson, 2009)) and therefore predict in which region of the gradient

it should sediment if it would not be involved in a complex (this usually is the very

top of the gradient). To showcase this unique feature of Grad-seq, a search for small

proteins that are highly likely to form complexes was conducted (Figure 2.23). Of
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the 97 identified small proteins, the functionally uncharacterized YggL was chosen

for further evaluation.

YggL sedimented mostly at the 50S subunit and in the pellet fraction, suggesting

ribosome association (Figure 2.24). Intriguingly, the same behavior was previously

observed for Salmonella YggL (Smirnov et al., 2016), which hinted at a conserved

function of the protein. Follow-up experiments then showed that the target of YggL

in fact is the 70S ribosome (Figure 2.27), suggesting that the observed 50S subunit as-

sociation possibly could be attributed to partial disassembly of 70S ribosomes caused

by the low magnesium concentration applied here (Ron et al., 1968). Interestingly,

AP/MS (see 1.2.1) of a yggL-3xFLAG strain resulted in pull-down of 12 strongly

enriched proteins of the large ribosomal subunit, namely L2, L4, L6, L15, L17, L18,

L20, L23, L24, L25, L27 and L30 (Figure 2.28 B). A striking commonality between

these proteins is that, except for L2, all of them are on the cytosolic side of the 50S

subunit, facing away from the inter-subunit interface between the 30S and 50S sub-

units (Nikolay et al., 2015). While it seems unlikely that the rather small (108 aa)

YggL can interact with all of them, this observation provides some evidence that

YggL might bind the cytosol-oriented side of the 50S subunit. Further, L20, L24, L27

and L30 are not found within 50S subunit precursor particles in E. coli (Pokkunuri

and Champney, 2007), which is in agreement with the model that YggL binds to

assembled 70S ribosomes.

Knockout of yggL did not cause any growth defect but instead led to an increase

in free 50S subunits (Figure 2.29 A and B). A previous study implicated YggL in

70S ribosome assembly (Chen and Williamson, 2013), suggesting that the increase in

free 50S subunits might be due to decreased assembly of 70S ribosomes. If true, this

should also result in higher amounts of free 30S subunits, which could not be ob-

served. At the same time, lower amounts of 70S ribosomes and/or polysomes would

be expected. Indeed, a slight decrease in polysome levels was measured in the yggL

knockout but it remains unclear whether this difference is meaningful. Importantly,

the 50S subunit peaks fully overlapped in the wild type and the knockout strain,

indicating that fully assembled subunits accumulated since precursor particles such

as the 45S precursor exhibit slower sedimentation in the gradient (Jomaa et al., 2014).

Attempts to complement this phenotype from a plasmid failed, which could be due
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to polar effects of the knockout strain. However, to exclude polar effects, the yggL

knockout was carefully designed to only delete the N-terminal half of the gene,

keeping all TSSs of this complex locus (Figure 2.25 A) intact. It is therefore possible

that the stoichiometry of YggL within the cell is an important factor to ensure its

proper function (more on copy numbers below).

Transcription of yggL occurs in a σ70-dependent manner (Figure 2.25 B and C),

which might point toward a function in the assembly of ribosomes as discussed

above or a function that is related to translation of specific proteins. In the latter

case, proteins such as elongation factor P, which is essential to prevent translational

stalling caused by polyproline stretches (Doerfel et al., 2013; Ude et al., 2013), are

involved in aiding translation of certain proteins or amino acid sequences that could

otherwise not be translated optimally. Of such proteins, the chaperone trigger factor

is the most-studied one that binds to the cytosol-facing side of the 50S subunit—

the predicted binding site of YggL—and which is involved in binding and fold-

ing of nascent polypeptide chains exiting the ribosome (Bhandari and Houry, 2015;

Hoffmann et al., 2010).

YggL expression ranges from ∼1,300–6,700 copies per E. coli K-12 cell (Li et al.,

2014; Schmidt et al., 2016), which face ∼8,000–70,000 ribosomes per growing cell

(Bremer and Dennis, 2008). Based on this ∼10-fold excess of ribosomes over YggL,

a general function like the one of trigger factor therefore seems unlikely and might

explain the narrow spectrum of bacterial species harboring the yggL gene (Figure

2.26 A). Still, inspection of the total protein content of a yggL knockout strain high-

lighted several changes in the abundance of proteins when compared to the wild

type (2.29 C).

Homology searches of YggL did not result in any hits with known function. In

fact, YggL forms its own protein family possessing the DUF469 (El-Gebali et al.,

2019), thereby preventing functional predictions. In the future, cryogenic electron

microscopy of YggL-70S ribosome complexes will be helpful to pinpoint the binding

site of YggL and with that build the foundation of understanding its exact molecular

function.

In summary, the results of this chapter provide a valuable RNA/protein com-

plexome resource for E. coli MG1655 that adds confidence to the wealth of previous
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binary interactome studies (Arifuzzaman et al., 2006; Babu et al., 2018; Butland et al.,

2005; Hu et al., 2009; Rajagopala et al., 2014). The dataset should lend itself to the

analysis of related bacteria as well, many of which are important human pathogens

(Kersters et al., 2006; Rizzatti et al., 2017). Furthermore, the optimized Grad-seq

protocol presented here should generally be applicable to other bacteria and even

eukaryotes, making Grad-seq an excellent option to obtain a quick overview of

the complexome. Finally, based on the unique features offered by Grad-seq, two

ribosome-associated molecules, RyeG and YggL, were detected and established as a

prophage-derived toxic mRNA and a 50S subunit-binding protein, respectively.
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• Lisa Marie-Hack performed parts of the experiments surrounding the charac-

terization of Cbf1 during her Master’s thesis and subsequent employment as

technical assistant under supervision of Jens Hör and Prof. Dr. Jörg Vogel.

3.1 Grad-seq can be applied to a Gram-positive organism

Gram-positive bacteria, many of which are important pathogens (Woodford and

Livermore, 2009), make ample use of post-transcriptional gene regulation by sRNAs

(Brantl and Brückner, 2014; Desgranges et al., 2019; Quereda and Cossart, 2017;

Wagner and Romby, 2015; Wassarman, 2018). Yet, in comparison to Gram-negatives,

the molecular mechanisms of these processes remain largely unknown. This is es-

pecially true for organisms like the clinically highly relevant pneumococcus, which

does not possess homologs of the well-known global regulators CsrA, Hfq or ProQ

(Tettelin et al., 2001). Therefore, the pneumococcus was chosen as a model Gram-

positive bacterium for the application of Grad-seq in order to learn more about its

complexome and potentially identify novel RBPs. The results of this study should

further be applicable to related organisms.

To test whether Grad-seq can be used for the pneumococcus, the optimized

Grad-seq protocol (see 2.1) was applied to a culture of strain TIGR4 grown to mid-

exponential phase in rich medium (OD600 nm of 0.5). The only difference to the E. coli

protocol was the lysis conditions, which had to be changed in order to allow proper

lysis of the Gram-positive pneumococcus. The UV profile of the gradient (Figure

3.1 A) closely resembled the E. coli profile (Figure 2.4), revealing an early bulk peak

and two peaks for the 30S and 50S subunits. Interestingly, RNA extraction from

fractions around the 50S subunit did not cause any distortions, leading to an RNA

concentration profile that was fully congruent with the UV profile (Figure 3.1 A).

Next, RNA gel analysis was performed to test whether the observed peaks fit

with their corresponding house-keeping ncRNAs (Figure 3.1 B). As expected, tRNAs

and the 16S and 5S/23S rRNAs were detected around fractions 3, 11 and 15, respec-

tively, confirming that the peaks observed in the UV profile derived from these abun-

dant ncRNAs. Several additional abundant bands were visible in the RNA gel, which

could be attributed to M1 RNA (the RNase P RNA (Mondragón, 2013)), tmRNA
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Figure 3.1: Overview of S. pneumoniae Grad-seq. (A) The general gradient profile monitored by UV
measurement and the RNA concentration after RNA purification show congruent profiles and reveal a
bulk peak and two peaks for the 30S subunit (around fraction 10) and the 50S subunit (around fraction
15). (B) RNA gel analysis reveals that the obtained RNA is of high quality and that several classes
of abundant ncRNAs are readily visible. (C) SDS-PAGE of the protein content of the gradient reveals
specific sedimentation patterns for all proteins and shows that the ribosomal proteins migrate in the
same fractions as their corresponding rRNAs (shown in (B)), indicating intact complexes.
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Figure 3.2: Overview of the sedimentation of specific molecules. (A) Northern blot analysis of dif-
ferent pneumococcal ncRNAs reveals different sedimentation profiles for many of them. Interestingly,
the competence-inhibiting csRNAs all co-migrate and peak around fraction 3. (B) Western blotting of
GAPDH shows a peak in fraction 3 and no signal toward the bottom of the gradient.

and 6S RNA. Similar to the RNA gel, the protein content of the gradient was ana-

lyzed by SDS-PAGE to get a rough overview of the protein sedimentation (Figure

3.1 C). RNAP sedimented as a particle of similar size as observed for E. coli (Figure

2.4), fitting with the profile of 6S RNA as its interacting RNA (Figure 3.1 B and C)

(Wassarman, 2018). Finally, the ribosomal proteins could readily be detected in the

fractions expected according to the UV and RNA analysis (Figure 3.1 A–C).

To gain a more detailed insight into the sedimentation behavior of ncRNAs,

complementary northern blots were performed, revealing vastly different profiles

for different classes of ncRNAs (Figure 3.2 A). Importantly, the previously observed

patterns of tmRNA, 6S RNA, M1 RNA, tRNAs and 5S rRNA could be verified. The

functionally redundant cia-dependent sRNAs (csRNAs) (Laux et al., 2015) are highly

similar in sequence and structure but span a length from 93 nt (csRNA1) to 148 nt

(csRNA5), meaning that their molecular weights drastically differ. Intriguingly, they

still co-migrated within the gradient and peaked in fraction 3 as well as the pel-

let, indicating they could be associated to the same RBP (Smirnov et al., 2017a).

The functionally unknown F41 had its peak abundance around fraction 3 as well,
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Figure 3.3: Sedimentation profiles of different pneumococcal RNA classes. The average sedimen-
tation profiles of mRNAs (A), ncRNAs (B) and primary sRNAs (C) reveal that different RNA classes
show different gradient sedimentation behavior. Profiles are normalized to a maximum of 1. Error bars
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whereas F45, whose function is also unknown, formed a particle of similar size

as the tmRNA RNP. Finally, western blotting revealed glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) to peak around fraction 3 (Figure 3.2 B). Taken together,

these results demonstrate that Grad-seq is able to resolve complexes from the Gram-

positive pneumococcus without major changes to the protocol.

3.2 Overview of the pneumococcus Grad-seq data

3.2.1 Overview of the RNA-seq data

RNA-seq of the 20 fractions plus the pellet resulted in 2,240 transcripts passing

the filter of ≥100 reads over all fractions. This accounted for ∼88 % of the anno-

tated transcriptome and included 1,987 mRNAs, 141 ncRNAs, 42 riboswitches as

well as all tRNAs and rRNAs. Similar to what was observed for E. coli (Figure

2.11 D), mRNAs populated the whole gradient and peaked in the pellet, where 70S

ribosomes were found (Figure 3.3 A). ncRNAs on the other hand sedimented more

broadly than the mRNAs (Figure 3.3 B), which is in contrast to the E. coli ncRNAs,

which mostly peaked in early fractions (Figure 2.11 B). The annotation of S. pneu-
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Localization of the S. pneumoniae Grad-seq proteome
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Figure 3.4: Grad-seq enriches cytosolic proteins. (A, B) Comparison of the total and the Grad-
seq proteomes reveals enrichment of cytosolic proteins in the Grad-seq experiment. Note that the
total number of proteins shown here is different from the number of detected proteins because some
proteins have more than one localization assigned. Localization prediction is based on BioCyc (Karp
et al., 2019).

moniae used here (Warrier et al., 2018) contains ncRNAs from several independent

studies and many of them were only predicted and not validated (Acebo et al., 2012;

Kumar et al., 2010; Mann et al., 2012), meaning that some of them might not be true

ncRNA candidates.

To test whether a subset of true sRNAs shows a different average profile than

what was observed for all ncRNAs (Figure 3.3 B), a dRNA-seq dataset that al-

lows the identification of primary transcripts (collaboration between the Vogel

and Henriques-Normark laboratories, unpublished) was used to identify indepen-

dently transcribed sRNAs. All of the 27 identified primary sRNAs contained strong

TSSs and ρ-independent terminators and were therefore considered true sRNAs.

Interestingly, these 27 sRNAs showed an average sedimentation profile with a peak

around fraction 3 that suggested their involvement in small complexes (Figure 3.3 C)

and which was reminiscent of the data obtained for the E. coli ncRNAs (Figure

2.11 B). Conversely, this implies that many of the 141 ncRNAs found in the pneumo-

coccus dataset might not represent true sRNAs or that they are involved in RNPs of

greatly differing sizes, causing them to spread throughout the gradient.

3.2.2 Overview of the combined RNA-seq and MS data

Parallel MS analysis of each fraction detected 1,301 proteins within the gradient, rep-

resenting ∼62 % of the proteome as annotated in UniProt (The UniProt Consortium,
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2019). As observed for E. coli (Figure 2.13 B), the Grad-seq protocol enriched solu-

ble pneumococcal proteins in comparison to the total proteome (Figure 3.4 A and

B). This enrichment of cytosolic proteins could be attributed to a depletion of

membrane-associated proteins as well as proteins with no information about their

localization based on BioCyc predictions (Karp et al., 2019). Consequently, pneumo-

coccal proteins with unknown cellular localization are likely membrane-associated,

form aggregates or are lowly expressed in the conditions used here.

To find out more about the potential involvement of RBPs in stable cellular com-

plexes, the MS dataset was cross-referenced with a list of 78 RBPs as predicted

by UniProt (The UniProt Consortium, 2019). 77 of the 78 proteins were detected

in the gradient and were assigned to functional classes of RBPs (Figure 3.5). As

expected, proteins involved in tRNA modification such as aminoacyl-tRNA syn-

thetases (e.g., TyrS) or the CCA-adding enzyme (Cca) co-migrated with tRNAs. In

contrast, RNases did not show a common profile in the gradient and RNA modifi-

cation enzymes showed a trend of co-migration with ribosomal subunits. SP_0776

is the KhpA subunit of the KhpA/B heterodimeric RBP discovered to bind mRNAs,

sRNAs and tRNAs in the pneumococcus (Winther et al., 2019; Zheng et al., 2017).

While SP_0776 (KhpA) was among the predicted RBPs, SP_2040 (KhpB) was not in

this list and therefore added to Figure 3.5 for clarity. They both exhibited congruent

gradient profiles and peaked around fraction 3, indicating they indeed form a com-

plex and that they might further form stable complexes with tRNAs and primary

sRNAs, which were found to show similar sedimentation (Figures 3.1 B and 3.3 C).

While the knowledge on pneumococcal complexes is inferior to the knowledge

on E. coli complexes, there still are many conserved multimeric enzymes present.

The cytosolic F1 complex of the ATP synthase, for example, is a five-subunit com-

plex (Junge and Nelson, 2015) that was readily reproduced by Grad-seq (Figure

3.6 A). The subunits also showed elevated abundance in the pellet fraction, suggest-

ing that it partially precipitated with the membrane-bound F0 complex which it is

in contact with (Junge and Nelson, 2015). Other examples of intact complexes in-

cluded carbamoyl-phosphate synthase, glutamyl-tRNAGln amidotransferase (which

co-migrated with tRNAs) and ribonucleoside-diphosphate reductase.
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In comparison to Gram-negative organisms, Gram-positives contain a very dif-

ferent set of RNases (Durand and Condon, 2018). Similar to the enterobacterial RNA

degradosome mentioned in 2.6.1, Gram-positives have been suggested to form RNA

degradosomes too (Cho, 2017; Durand and Condon, 2018). In Bacillus subtilis, it con-

sists of the RNA helicase CshA, enolase (Eno), phosphofructokinase (PfkA), the

3’→5’ exonuclease PNPase (Pnp), the 5’→3’ exonucleases RNase J1 (RnjA) and J2

(RnjB) as well as the endonuclease RNase Y (Rny) (Cho, 2017; Durand and Condon,

2018). The pneumococcus encodes for homologs of all of these proteins but their

interactions have not been studied so far.

In the current Grad-seq dataset, all of the potential subunits were detected

and, similar to what was observed for E. coli (Figure 2.13 E), no immediate co-

sedimentation was found (Figure 3.6 A). However, all components except for PNPase

and the two metabolic enzymes Eno and PfkA showed a peak around fractions 12–

13. PNPase did not peak in these fractions but still exhibited high abundance (∼50 %

of its peak intensity). Finally, for CshA and the four RNases, a strong intensity was

detected in the pellet fraction. Especially RNase Y, which, similarly to RNase E in

Gram-negatives (Mohanty and Kushner, 2018), is membrane-anchored and is as-
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sumed to be the scaffolding protein in a potential degradosome complex (Cho, 2017;

Durand and Condon, 2018), had its strongest abundance in the pellet fraction. This

suggests that RNase Y might have precipitated or aggregated and was therefore

found on the bottom of the gradient, potentially together with other components of

the degradosome. While no direct proof, this result could be a starting point for the

investigation of the existence of a degradosome complex in the pneumococcus.

As discussed in 1.2.5, Grad-seq not only allows the investigation of PPIs but

also of RNPs. While the pneumococcus does not encode for any known global reg-

ulatory RBPs, it does contain universally conserved RNPs that are fundamental to

the cell’s functions. For example, the RNAP consisting of the α-, β-, β’- and ω-

subunits (RpoA, RpoB, RpoC and RpoZ, respectively) co-migrated with 6S RNA

(Figure 3.6 B), which was previously shown to bind RNAP in the Gram-positive B.

subtilis (Burenina et al., 2014; Cavanagh et al., 2012; Trotochaud and Wassarman,

2005). The δ-subunit of RNAP, somewhat confusingly encoded by rpoE, is a subunit

mostly found in low-GC Gram-positives such as Bacilli and Streptococci that is in-

volved in regulating gene expression (Jones et al., 2003; Rabatinová et al., 2013; Xue

et al., 2010). As expected, the δ-subunit was detected with the other core components

of RNAP, indicating that it is a stable subunit in this essential complex.

Finally, the major σ-factor of the pneumococcus, σA (SigA), could also be detected

together with the RNAP. The only other σ-factors encoded by the pneumococcus are

the paralogous ComX1 and ComX2 (Tovpeko et al., 2016), which are exclusively

expressed upon entering the competent state (see 1.3.2) and were therefore not de-

tected in the dataset. Other major RNPs of the pneumococcus are represented by

the SRP, the SmpB-tmRNA RNP, tRNA ligases and the ribosomal subunits, all of

which showed excellent correlation in the gradient (Figure 3.6 B). Together, these re-

sults demonstrate that pneumococcus Grad-seq readily detects major stable protein-

protein complexes as well as RNPs.
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Figure 3.7: Grad-seq predicts complex formation. (A) Heat map showing the sedimentation profiles
of 102 proteins with a molecular weight <20 kDa and peaks in fraction 4 or higher. Many ribosomal
proteins are among these proteins as well as many proteins of unknown function. All of these proteins
are predicted to form complexes. (B) Heat map showing the sedimentation profiles of selected operons
that were predicted in a previous study (Warrier et al., 2018). Operons often encode for the subunits of
a complex (Wells et al., 2016), making this approach a valuable resource for the prediction of functional
interactions. Profiles are normalized to a maximum of 1.
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3.3 Grad-seq assists in the characterization of protein func-

tions

As shown for E. coli (see 2.9), Grad-seq can be used to predict whether a protein

is likely involved in a complex. To test whether this assumption can be applied to

the pneumococcus as well, the MS data were filtered for proteins <20 kDa that had

their peak intensities in fraction 4 and above, resulting in a list of 102 proteins with

these properties (Figure 3.7 A). As expected, 46 ribosomal protein were among these

proteins. Ribosome-binding factor A (RbfA) and ribosomal silencing factor (RsfS) co-

sedimented with the 30S and 50S subunits, respectively, which agrees with previous

findings that these proteins bind to non-assembled subunits (Häuser et al., 2012;

Shajani et al., 2011). Further expected small proteins with peaks in high fraction

numbers are RpoZ, SmpB and RnpA (the protein subunit of RNase P), all of which

are involved in larger complexes and which were correctly identified by the applied

filtering method.

The wealth of uncharacterized small proteins in this list of fast sedimenting pro-

teins can be used as a starting point to predict their domain-based functions. For

example, SP_1969 is annotated as a homolog of the 16S rRNA methyltransferase

RsmD of E. coli (Lesnyak et al., 2007; Sergeeva et al., 2012). Indeed, SP_1969 co-

sedimented with the 30S subunit, suggesting that, like RsmD, it might be involved

in 30S subunit maturation. The S4 domain-containing SP_0007 is a homolog of E.

coli Hsp15, an RBP involved in 50S subunit recycling (Jiang et al., 2009). SP_0007

peaked with the 50S subunit, which suggests it might have the same function in the

pneumococcus even though it does not contain the disordered ∼40 aa C-terminus

of its E. coli homolog, which was shown to increase the affinity of Hsp15 to trans-

lationally inactive 50S subunits (Jiang et al., 2009). Another S4 domain-containing

small protein, SP_2226, is a homolog of B. subtilis YaaA, which was suggested to be

involved in 50S subunit assembly (Suzuki et al., 2014). In contrast to SP_1969 and

SP_0007, this functional prediction did not fit with SP_2226: it coincided with the

30S subunit, implying it might have a different function in the pneumococcus.

A different way of using Grad-seq data is to predict protein interactions based on

operon structures, which often encode the subunits of complexes on a single tran-
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script (Wells et al., 2016). To test this assumption, operons as predicted by a recent

study (Warrier et al., 2018) were analyzed for co-migrating proteins (Figure 3.7 B).

This approach revealed that the acetyl-CoA carboxyltransferase complex (AccDA)

also forms a complex in the pneumococcus and that, surprisingly, it mostly sed-

imented around fraction 13 and peaked in the pellet. A third peak was detected

around fraction 3, congruent with biotin carboxylase (AccC) with which it forms a

complex in E. coli (Cronan and Waldrop, 2002). Concerning the strong abundance of

AccDA in the pellet, its E. coli homolog is known to act as a translational repressor

of its own mRNA (Meades et al., 2010). If this is also true for pneumococcal AccDA,

this might cause it to associate with polysomes, which for this big operon is espe-

cially intuitive since translatability of the other CDSs should not be affected by this

interaction.

Another example is the RexB/AddA (a.k.a. RexAB) exonuclease/helicase in-

volved in DNA repair in the pneumococcus (Halpern et al., 2004), which clearly

co-migrated in the gradient, suggesting that it forms a stable complex. Finally, the

membrane-associated, virulence-related protein UppP (a.k.a. BacA) (Chalker et al.,

2000) surprisingly peaked around fraction 3, where SP_0454, a protein of unknown

function with several trans-membrane domains, was also detected. While it is dif-

ficult to assess whether these membrane proteins remained properly folded during

the Grad-seq protocol, their encoding in the same operon together with the observed

co-sedimentation might indicate a functional interaction. Taken together, these re-

sults show that pneumococcal Grad-seq is able to assist in the identification and

verification of functional PPIs.

3.4 Cbf1 is an sRNA-binding protein

3.4.1 MS2 pull-downs are not suitable for the pull-down of pneumococcal

proteins

As mentioned before (see 1.3.2), a major goal of the present thesis was to identify

novel RBPs in the pneumococcus. To pick potential candidate ncRNAs with simi-

lar gradient profiles, t-stochastic neighbor embedding (t-SNE) (van der Maaten and

Hinton, 2008) analysis was performed in order to group ncRNAs according to their
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Figure 3.8: t-SNE analysis of the sedimentation of ncRNAs. (A) The sedimentation profiles of all
ncRNAs is globally compared and visualized using t-SNE (van der Maaten and Hinton, 2008). The
closer two ncRNAs (represented by dots) are in the plot, the more similar is their behavior in the
gradient. The ncRNAs were further assigned into three different clusters (Cluster 1, 2 and 3) using
k-means clustering (Lloyd, 1982). Cluster 3 contains several ncRNAs known to form RNPs, for exam-
ple, tmRNA and M1 RNA, but also contains four of the five csRNAs. Based on this analysis, several
ncRNAs (highlighted in red) were chosen to perform RNA-based pull-downs with. (B) Average sedi-
mentation profile of the ncRNAs present in Cluster 3. The RNAs show an early peak in the beginning
of the gradient, indicating involvement in small complexes. (C) The sedimentation profiles of the
csRNAs show that, in the RNA-seq, csRNA1 has a slightly less pronounced peak in fraction 3 when
compared to the other csRNAs. Profiles are normalized to a maximum of 1. Error bars show SD from
the mean.
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Figure 3.9: MS2 pull-downs using pneumococcal lysates. (A) Silver-stained gel of pull-downs per-
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migration in the gradient (Figure 3.8 A). As previously observed on northern blots

(Figure 3.2 A), the csRNAs and F41 clustered together in the t-SNE plot (Figure

3.8 A), confirming their similar sedimentation more globally. Cluster 3, which they

were part of, showed an average early peak in the beginning of the gradient, in-

dicating involvement in small complexes (Figure 3.8 B). The only exception to this

was csRNA1, which clustered a bit further away from the other csRNAs, probably

due to the fact that, in the RNA-seq, its peak in fraction 3 was inexplicably slightly

lower when compared to the other csRNAs (Figure 3.8 C). Still, all five csRNAs and

F41 were chosen as promising candidates for pull-down assays to fish for interacting

RBPs. Additionally, tmRNA and F20 were chosen as positive and negative controls,

respectively, since tmRNA was known to bind SmpB (Keiler, 2015), whereas F20 is a

riboswitch RNA that was not expected to specifically bind to proteins.
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To perform the pull-downs, the RNAs were in vitro transcribed and tagged with

a 5’- or 3’-located MS2 aptamer, which should allow capture of the RNAs and their

potential binders by an immobilized MS2-MBP fusion protein (see 1.2.2.2). While

successful in similar experiments in Salmonella and E. coli (Corcoran et al., 2012;

Lalaouna et al., 2015; Said et al., 2009; Smirnov et al., 2016), this approach did nei-

ther allow pull-down of specific binders of the RNAs nor unspecific binders that

might bind to, e.g., the column resin (Figure 3.9 A). The second wash step already

contained no detectable protein anymore and many attempts to optimize the exper-

imental conditions resulted in no improvement. Still, pull-down of the MS2-MBP

(labeled with #) and the tagged RNAs (arrows) did work as intended, which could

further be verified via northern blotting (Figure 3.9 B). Probing for wild-type csRNA3

demonstrated that only the tagged RNA species could be recovered in the experi-

ment, providing further evidence that the issue was not based on the pull-down of

the RNAs (Figure 3.9 C).

In an attempt to increase the chance to pull-down specific RBPs bound to the

csRNAs, glycerol gradients of pneumococcal lysates were run (Figure 3.10 A). As

shown before (Figure 3.2 A), fractions 2–4 contain the highest amount of csRNAs, im-

plying that a potential RBP should also be present in these fractions and be strongly

enriched in comparison to the total lysate. Therefore, fractions 2–4 were used as the

input for MS2 pull-downs as described above (Figure 3.10 A, highlighted in gray).

The gradient-based “filtering” of the lysate drastically changed the protein compo-

sition of the input: the strong bands >100 kDa observed before (Figure 3.9 A) were

almost fully depleted in this experiment (Figure 3.10 B). Yet again, the first wash

removed most of the proteins that were present in the input, resulting in an empty

second wash.

A slight improvement over the previous setup was that some unspecific pro-

teins could be detected in the elution fraction, but only one band stood out to be

enriched over the corresponding control: a faint band at around 12 kDa (blue ar-

rows). MS analysis of this band did, however, not result in the identification of an

enriched protein, indicating the observed band might have been an artifact from the

silver staining. Importantly though, the general pull-down also worked with gradi-

ent fractions as the input, as indicated by the enrichment of MS2-MBP (labeled with
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#) and tagged RNAs (black arrows) in the eluates, which could further be verified

by northern blotting (Figure 3.10 C). Finally, to test whether the selected gradient

fractions indeed contained the wild-type csRNAs, which would be a pre-requisite

for the pull-down of a specific RBP, northern blotting for csRNA2 was performed

(Figure 3.10 D). This confirmed the presence of wild-type csRNA2 in all of the used

fractions. In sum, these results demonstrate that MS2 pull-downs are not suitable

for pneumococcal lysates.

3.4.2 A new pull-down approach reveals Cbf1 as an sRNA-binding pro-

tein

In the eukaryotic field, an in vitro pull-down approach based on a 14 nt long tag was

successful in the identification of RBPs involved in microRNA biogenesis (Treiber

et al., 2017). The concept of this “14mer pull-down” is similar to the MS2 approach:

the RNAs of interest are in vitro transcribed using a DNA template that adds a

14 nt long sequence to the 5’ end of the RNA. Using this tag, the RNA can then

be immobilized by binding to a complementary RNA adaptor that is built from

2’-O-methylated nucleotides and which carries a 3’ biotin, enabling the binding to

streptavidin beads (Figure 3.11 A).

To test whether this setup works and whether the tagged RNA is stable during

the protocol, the RNA was either coupled to the beads overnight or it was cou-

pled overnight followed by overnight addition of a pneumococcal lysate. Following

elution from the beads, an RNA gel was run and the recovered RNA visualized by

ethidium bromide staining (Figure 3.11 B). Coupling of the tagged RNA to the beads

worked, since it could readily be recovered after elution. More importantly, however,

addition of pneumococcal lysate did not decrease the amount of recovered tagged

RNA, demonstrating that the coupled RNA is stable over a long duration in lysate.

It is noteworthy that pull-down of the tagged RNA from the lysate also recovered

cellular RNA species (Figure 3.11 B, overexposed gel on the right), which could make

this method a suitable alternative for the identification of RNA-RNA interactions as

well.

Having established that the 14mer pull-down protocol should be suitable to cap-

ture RBPs from pneumococcal lysates, the ncRNAs highlighted in Figure 3.8 A were
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Figure 3.12: Cbf1 is a binder of the csRNAs. (A) Heat map showing Spearman’s correlation co-
efficients between the sedimentation profiles of the bait ncRNAs used in the pull-downs and the
proteins enriched by them (Figure 3.11 C). Ribosomal proteins except for S1 (RpsA) and proteins only
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csRNAs and F41. Cbf1 co-sediments with these sRNAs. Profiles are normalized to a maximum of 1.

tagged and subsequently used to perform pull-downs. An RNA oligonucleotide

with the same sequence as the 14 nt tag served as the control. Excitingly, several spe-

cific protein bands were enriched for all bait RNAs when compared to the control

(Figure 3.11 C). The only exception to this was the riboswitch RNA F20, which did

not enrich any proteins to a degree that they were visible by Coomassie staining. In

contrast to the MS2 pull-downs (see 3.4.1), unspecific background proteins were de-

tected in all pull-downs, which can be used to improve the calculation of enrichment

factors based on MS measurements.

Next, the Coomassie-stained gels were analyzed by MS in order to identify pro-

teins that were enriched in the pull-down samples when compared to the control

(Appendix Figure 7.5). As expected from the protein gels (Figure 3.11 C), several

proteins could be identified this way. Figure 3.12 A shows all proteins that were

pulled down by the respective RNAs with the following exceptions: Except for ri-

bosomal protein S1 (RpsA), all other ribosomal proteins were omitted for clarity.
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Similarly, all proteins (except for SmpB) that were enriched only by tmRNA were

omitted. Interestingly, most of the degradosome subunits, namely CshA, PNPase

and RNases J1 and J2, were enriched by at least one of the bait RNAs. Correlation

analyses between the sedimentation profiles of the bait RNAs and the enriched pro-

teins showed, however, that only RNases J1 and J2 correlated well. The essential

RNase Z, which is involved in tRNA maturation (Durand and Condon, 2018), was

pulled down by F41 as well as all csRNAs except for csRNA3 and its gradient profile

strongly correlated with those of these RNAs.

However, only Cbf1 was enriched by all csRNAs and F41 and additionally

showed excellent correlation within the gradient (Figure 3.12 A and B). Importantly,

the negative control riboswitch RNA F20 did not enrich most of the proteins pulled

down with the csRNAs or F41 (Figure 3.12 A). Similarly, the positive control RNA

tmRNA only enriched one protein that was detected by other baits (the NAD kinase

NadK) and was the only one to specifically enrich its physiological target SmpB

(Keiler, 2015). These results show that the new 14mer pull-down approach allows

the capture of specific binders of tagged pneumococcal ncRNAs and that Cbf1 is an

interacting protein of the csRNAs and F41.

3.4.3 Function and conservation of Cbf1 and its homologs

Cbf1 (cmp-binding factor 1) was first described as a host factor for replication of plas-

mid pT181 in Staphylococcus aureus (Zhang et al., 1997). Following this first study,

S. aureus Cbf1 and its B. subtilis homolog YhaM were shown to be manganese-

dependent 3’→5’ exonucleases whose activity was blocked by stem-loop structures

in their RNA substrates (Oussenko et al., 2002). YhaM was further shown to be able

to degrade DNA, potentially even with higher activity than RNA (Fang et al., 2009;

Oussenko et al., 2002) and implicated in mRNA turnover (Oussenko et al., 2005) as

well as 23S rRNA maturation (Redko and Condon, 2010). In Streptococcus pyogenes,

YhaM was recently shown to only trim its targets by nibbling away a few nucleotides

from the 3’ end until it reached a stem-loop structure like a ρ-independent termi-

nator (Lécrivain et al., 2018), thereby agreeing with the previous observation in B.

subtilis (Oussenko et al., 2002). Yet, the specific physiological functions of these pro-

teins remain unknown.
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Figure 3.13: Phylogenetic analysis of Cbf1. Phylogenetic analysis of Cbf1 based on 508 protein
sequences deposited in eggNOG 4.5.1 (Huerta-Cepas et al., 2016) (COG3481). Cbf1 homologs were
identified in archaea (orange), Firmicutes (red) and δ-proteobacteria (blue).

Cbf1/YhaM homologs are present in a wide range of Gram-positives and a mi-

nority of Gram-negatives as well as archaea (Figure 3.13), implying that their func-

tions are generally either absent in Gram-negative bacteria or fulfilled by a different

enzyme. The HD domain present at the C-terminus of Cbf1/YhaM proteins likely is

the catalytic domain (Oussenko et al., 2002). It is named after the conserved histidine

(H) and aspartate (D) residues that are found within it and often is involved in en-

zymes involved in nucleic acid metabolism (Aravind and Koonin, 1998). Prominent

examples of HD domain-containing proteins are RNase Y, SpoT and RelA. In the en-

doribonuclease RNase Y, the HD domain is the catalytically active domain (Durand

and Condon, 2018). The bifunctional SpoT, which is involved in the stringent re-

sponse of E. coli, has weak ppGpp synthetic activity and strong ppGpp degrading

activity, the latter of which is carried out by its HD domain (Atkinson et al., 2011).

RelA shares the same ancestral homolog as SpoT but its HD domain is inactive, ex-

plaining why RelA has strong ppGpp synthetic activity and no ppGpp degrading

activity (Atkinson et al., 2011). The conserved H and D residues of HD domains
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are also conserved in Cbf1/YhaM proteins (Appendix Figure 7.6) and are therefore

likely involved in the catalytic activity.

The other domain of Cbf1/YhaM homologs is a tRNA_anti domain, which is

a family of OB-fold-like (OB = oligonucleotide/oligosaccharide-binding) domains

found in some aminoacyl-tRNA synthetases (El-Gebali et al., 2019). OB-fold do-

mains are usually involved in the RNA or DNA binding of the proteins they are

present in (Flynn and Zou, 2010; Theobald et al., 2003). Many well-known classes

of RBPs contain OB-fold or OB-fold-like domains, including cold shock proteins,

the ρ transcription termination factor and several ribosomal proteins (Mitchell et al.,

2019). The OB-fold-like domain of Cbf1/YhaM proteins is located at the N-terminus

and is likely involved in their RNA-binding properties (Appendix Figure 7.6).

3.4.4 Validation of the sRNA-binding activity of Cbf1

To validate the initial findings of the sRNA-binding activity of Cbf1 (see 3.4.2), the

reverse experiment was performed by in vivo CLIP-seq (see 1.2.2.1). To allow purifi-

cation of Cbf1, a cbf1-3xFLAG strain was used. After crosslinking, immunoprecipi-

tation, gel electrophoresis and membrane transfer, a ∼5–10-fold enrichment of RNA

compared to the non-crosslinked control was observed, demonstrating that RNA can

indeed be specifically crosslinked to Cbf1 (Figure 3.14 A). Following the release of

the RNA fragments bound to Cbf1, RNA-seq was performed in order to assign the

fragments to their respective transcripts. This resulted in 528 statistically significant

peaks (log2 fold change >1, adjusted p-value <0.01), 354 (∼67 %) of which mapped

to CDSs (Figure 3.14 B). 94 (∼18 %) peaks derived from intergenic sequences, which

originated from unannotated antisense transcripts, intergenic transcripts and UTRs.

38 (∼7 %) peaks could be attributed to 30 unique annotated ncRNAs (Figure 3.14 B

and C).

F41 was the most enriched ncRNA in the CLIP-seq experiment, closely fol-

lowed by csRNA1, csRNA3 and csRNA5 (Figure 3.14 C). Unexpectedly, csRNA2 and

csRNA4 were absent from the list of enriched transcripts, which might have been

caused by unfavorable positioning of crosslinkable nucleotides in the Cbf1-RNA

complex. The abundant house-keeping ncRNAs 6S RNA, tmRNA and M1 RNA tend

to crosslink to RBPs in CLIP-seq experiments (Holmqvist et al., 2018) and were also
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(CDS). (C) Enrichment of the 30 unique ncRNAs identified by Cbf1 CLIP-seq. F41, csRNA1, csRNA3
and csRNA5 were previously used to pull-down Cbf1 (Figure 3.11 C) and are strongly enriched in
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csRNAs also occurs in vivo. 5S rRNA was used as loading control and is not affected by knockout of
cbf1.

slightly enriched in the present dataset. The obtained reads of the CLIP-seq exper-

iment mostly mapped to the 3’ ends of the transcripts, whereas little coverage was

observed around the 5’ ends (Figure 3.14 D), supporting the predicted role of Cbf1

as a 3’→5’ exonuclease (see 3.4.3). These results show that Cbf1 binds a large variety

of transcripts in vivo, among which the csRNAs and F41 could be verified.

3.5 Functional characterization of Cbf1

3.5.1 Cbf1 is a manganese-dependent 3’→5’ exonuclease

To test whether pneumococcal Cbf1 is a manganese-dependent 3’→5’ exonuclease

similar to its previously studied homologs in B. subtilis, S. aureus and S. pyogenes

(Lécrivain et al., 2018; Oussenko et al., 2002), recombinant Cbf1 was purified from

E. coli and incubated with in vitro-transcribed RNAs (Figure 3.15 A). In the presence

of manganese ions, immediately after addition of Cbf1 to the reaction, a slight shift

toward a faster migrating species of RNA was detectable by northern blotting in the
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case of csRNA1 and csRNA3 (time point 0 min). After 5 and 15 min of incubation at

37 °C, this shift was more noticeable and also visible for csRNA5. Since the shortened

bands were not accompanied by other species and they were of similar intensity than

the undigested bands, this suggested complete digestion of the original RNAs. The

observed shortening was also fully dependent on Cbf1 and manganese ions, thus

verifying the predictions based on B. subtilis YhaM (Fang et al., 2009; Oussenko

et al., 2002). In vitro-transcribed 5S rRNA, which in vivo is processed by RNase M5

(Bechhofer and Deutscher, 2019), could not be processed by Cbf1.

To assess whether cleavage by Cbf1 indeed happens at the single-stranded over-

hang that follows the ρ-independent terminator of the tested transcripts, truncated

versions of csRNA1, csRNA3 and csRNA5 missing the 3’ U-stretch were in vitro

synthesized and subjected to the same experiment as before. Intriguingly, no de-

cay could be observed in this case, implying that Cbf1 indeed only cuts off a few

nucleotides before being stopped by a stem-loop structure (Figure 3.15 B). Having

established that Cbf1 shortens csRNAs in vitro, a cbf1 knockout mutant and the re-

spective complementation strain were constructed to allow in vivo validation. Total

RNA extraction followed by northern blotting revealed what was expected from the

in vitro experiments: the tested RNAs were longer in the knockout strain than in

the wild type (Figure 3.15 C). Again, processing of 5S rRNA was not affected and

no difference between the wild type and the mutant could be observed. Taken to-

gether, these results show that pneumococcal Cbf1 is a manganese-dependent 3’→5’

exonuclease that only trims its targets.

3.5.2 Cbf1 stabilizes its target ncRNAs

As mentioned before (see 3.4.3), the exact physiological functions of Cbf1/YhaM

proteins is not well understood. For example, in S. pyogenes, knockout of yhaM has no

global effect on RNA levels, even though it causes the same phenotype as observed

here for S. pneumoniae, i.e., it shortens its targets (Lécrivain et al., 2018). To investigate

what the repercussions of this trimming could be, rifampicin RNA stability assays

were performed comparing wild-type pneumococcus to a cbf1 knockout strain.

The antibiotic rifampicin shuts down the cellular transcription machinery and

thereby allows monitoring of RNA decay over time. Unexpectedly, knockout of cbf1
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caused a strong decrease in stability for all csRNAs compared to the wild type

(Figure 3.16 A), lowering their half-lives from >32 min to ∼10–16 min (Figure 3.16 B–

F). This indicated a protective function of Cbf1 for these transcripts. While classic

RNA chaperones such as Hfq are well-known to increase the stability of their targets

(Holmqvist and Vogel, 2018), this function is generally not expected for RNases

such as Cbf1. Only one other example of RNase-dependent transcript stabilization

has been previously described in bacteria: sRNA stabilization by PNPase (Cameron

et al., 2018, 2019). How Cbf1 might cause this effect will be discussed separately (see

3.6).

3.5.3 cbf1 is part of the competence regulon

Binding and trimming of csRNAs by Cbf1 putatively connected cbf1 to the compe-

tence regulon, which is one of the fundamental systems of pneumococcal virulence

(Salvadori et al., 2019). As introduced in 1.3.2, csRNAs post-transcriptionally down-

regulate comC (Laux et al., 2015; Schnorpfeil et al., 2013), which codes for the pre-

cursor peptide of CSP, which in turn is the pheromone that triggers the activation of

the competence regulon (Shanker and Federle, 2017). Apart from its putative impli-

cation in the competence regulon due its direct interaction with csRNAs (see 3.4.4),

global studies also predicted cbf1 to be a late competence gene upregulated by the

alternative paralogous σ-factors ComX1 and ComX2 (Peterson et al., 2004; Slager

et al., 2019).

To verify this prediction, a cbf1-3xFLAG culture was stimulated with CSP and

sampled over time, extracting both protein and RNA (Figure 3.17 A). Western blot-

ting revealed that Cbf1 protein levels indeed were upregulated ∼2-fold 15 min after

stimulation with CSP (Figure 3.17 B), which is the expected induction speed of a late

competence gene (Shanker and Federle, 2017). GAPDH levels on the other hand were

not influenced by the pheromone (Figure 3.17 A). As expected, the early competence

gene operon comCDE (Shanker and Federle, 2017) was strongly upregulated on RNA

level 5 min after CSP addition, thereby confirming that the stimulation worked as in-

tended. It is of note that northern blotting revealed the comCDE polycistronic mRNA

to be heavily processed.
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Figure 3.17: cbf1 is a member of the competence regulon. (A) Western blotting of Cbf1-3xFLAG
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To exclude that the observed upregulation of cbf1 was caused by continuous

growth of the culture, the same experiment was repeated applying a mock induc-

tion with water instead of CSP (Figure 3.17 C). In this case, only a minor increase in

Cbf1 protein levels was observed, whereas GAPDH levels again did not change over

the course of the experiment. Control of the experiment was again performed by

northern blotting of total RNA extracted at the indicated time points, revealing no

upregulation of the comCDE operon after mock stimulation with water. Interestingly,

even though only a weak signal could be detected, the same processing pattern of

the mRNA could be observed in this case when compared to the CSP-stimulated

experiment (Figure 3.17 A). Finally, cbf1 mRNA levels were measured 10 min after

CSP stimulation using RT-qPCR, revealing a ∼2-fold increase in RNA levels (Figure

3.17 D). Taken together, these results establish cbf1 as a member of the late compe-

tence genes of the pneumococcus.

3.5.4 Cbf1 is a negative regulator of competence

The identified stabilization of csRNAs by Cbf1 and its upregulation during com-

petence suggested that Cbf1 might negatively regulate competence. To test this hy-

pothesis, spontaneous competence assays were performed that are independent of

exogenously added CSP. This is important since the csRNAs post-transcriptionally

downregulate expression of CSP (Laux et al., 2015; Schnorpfeil et al., 2013), meaning

that exogenous CSP would probably mask the effect of the csRNAs. Competence in-
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duction was surveyed by addition of a PCR product of rpsL (ribosomal protein S12)

containing a point mutation conferring resistance against streptomycin (Muschiol

et al., 2017). This allowed quantification of the competence assays by counting colony

forming units (CFUs) after selection on streptomycin-containing plates.

However, no transformants were obtained using the TIGR4 strain background.

To bypass this nuisance, strain R6, which is known to spontaneously develop com-

petence when grown at pH 7.9–8.0 (Moscoso and Claverys, 2004), was used instead

of TIGR4. Intriguingly, knockout of cbf1 increased the number of CFUs in the R6

background by ∼2.5-fold when compared to the wild type (Figure 3.18 A), thereby

suggesting Cbf1 to indeed be a negative regulator of competence. The cbf1 deletion

mutant did not exhibit any difference in growth when compared to the wild type

(Figure 3.18 B), showing that this was not the cause of the observed competence

phenotype. These results suggest that Cbf1 is negative regulator of competence.

3.6 Discussion

The overwhelming majority of studies on sRNAs as well as their targets and mech-

anisms were performed in the closely related Gram-negative Enterobacteria E. coli

and Salmonella (Hör et al., 2020b). Results from these studies suggest that sRNAs

generally need an RNA chaperone like Hfq in order to fulfill their functions, which

most of the time is post-transcriptional regulation of one or more mRNA targets

(Gorski et al., 2017; Holmqvist and Vogel, 2018). In Gram-positive organisms, how-

ever, much less is known about sRNA mechanisms and the potential RBPs involved.

Hfq, for instance, is only present in some Gram-positives and its function in these

organisms is poorly understood.

In B. subtilis, Hfq seems to only play a minor role in gene regulation, even

though several groups have tried to identify its functions (Dambach et al., 2013;

Hämmerle et al., 2014; Rochat et al., 2015). Similarly, in Listeria monocytogenes, Hfq

is not involved in general regulation by sRNAs but instead was shown to facili-

tate antisense regulation (Nielsen et al., 2010). In contrast, the function of Hfq in

the nosocomial pathogen Clostridium difficile is potentially more similar to its enter-

obacterial homolog: C. difficile Hfq can partially replace Hfq in E. coli (Caillet et al.,
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2014) and its depletion has pleiotropic effects (Boudry et al., 2014). Nonetheless,

Gram-positives make ample use of sRNA-mitigated regulation (Brantl and Brückner,

2014; Desgranges et al., 2019; Quereda and Cossart, 2017; Wagner and Romby, 2015;

Wassarman, 2018), raising the question whether there might be overlooked regula-

tory RBPs in these organisms.

Similar to the examples mentioned above, the clinically important pneumococcus

transcribes a vast number of ncRNAs, some of which were shown to be important

for several physiological processes and virulence (Laux et al., 2015; Mann et al.,

2012). However, the functions and molecular mechanisms of most of them remain

unknown. The pneumococcus further encodes no homologs of the well-studied ma-

jor regulatory RBPs CsrA, Hfq or ProQ (Tettelin et al., 2001). Therefore, Grad-seq was

used here in order to provide an RNA/protein complexome dataset for the pneu-

mococcus and with it the first of its kind for a Gram-positive organism. Importantly,

apart from the lysis conditions, no adjustments to the Grad-seq protocol established

with E. coli in the previous chapter had to be performed in order to obtain suitable

separation of the pneumococcal lysate (Figure 3.1). This simultaneously suggests

that the Grad-seq protocol may be generally applicable to bacteria without major

changes, making it a robust choice for the analysis of bacterial complexomes.

The only previous global study investigating the protein interactome of the pneu-

mococcus was based on Y2H (Wuchty et al., 2017), which is limited in several ways

since it relies on binary interactions that have to be established in a different species

(see 1.2.1). In contrast, Grad-seq is independent of tagging, allowing to draft a global

landscape of stable complexes from a single experiment (Smirnov et al., 2017a). With

this, Grad-seq for the first time revealed major pneumococcal complexes such as the

ATP synthase F1 complex (Figure 3.6 A). Moreover, the combined analysis of the

global RNA and protein datasets here provided an overview of conserved stable

RNPs such as 6S RNA-RNAP or the SRP, demonstrating that these universally con-

served complexes can be readily reproduced by Grad-seq (Figure 3.6 B).

In comparison to the binary Y2H approach (Wuchty et al., 2017), Grad-seq does

not provide predictions of direct interactions. Yet, sedimentation properties of pro-

teins can be cross-referenced with functional predictions in order to evaluate the

likeliness of the predictions. Here, SP_1969 was detected to co-migrate with the 30S
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subunit (Figure 3.7 A). Based on database information from InterPro (Mitchell et al.,

2019), SP_1969 belongs to a family of 16S rRNA methyltransferases, which E. coli

RsmD is also part of. RsmD methylates G966 of the 16S rRNA (Lesnyak et al., 2007),

which stabilizes the binding of initiator tRNA to the 30S pre-initiation complex and

whose absence causes reduced fitness when compared to the wild type (Burakovsky

et al., 2012).

Purified E. coli RsmD was further shown to tightly bind to non-methylated

30S subunits after in vitro reconstitution and sucrose gradient analysis (Sergeeva

et al., 2012). It therefore seems likely that SP_1969 indeed is a homolog of RsmD.

Unexpectedly, in the E. coli Grad-seq presented in this thesis (see 2), RsmD did not

co-migrate with the 30S subunit but rather exhibited slower sedimentation with a

peak around fraction 5. One reason could be that, under the specific conditions used

here, the E. coli RsmD-30S subunit interaction was not stable enough to survive the

protocol.

In contrast to SP_1969, the E. coli Hsp15 homolog SP_0007 co-sedimented with

the 50S subunit with almost no intensity in the pellet fraction (Figure 3.7 A). E. coli

Hsp15 is involved in the recycling of dead-end 50S subunits, which have stalled

polypeptide chains attached and are no longer able to form new translating ribo-

somes (Jiang et al., 2009; Korber et al., 2000). The observed sedimentation of SP_0007

fits this functional prediction, suggesting it might indeed be a functional homolog

of Hsp15. Further evidence for this comes from the E. coli Grad-seq dataset, where

Hsp15 exclusively co-migrated with the 50S subunit too (Figure 2.23).

In comparison to the two examples above, Grad-seq is also able to challenge

functional predictions: B. subtilis YaaA was suggested as a protein involved in 50S

subunit assembly (Suzuki et al., 2014). In the present dataset, the pneumococcal ho-

molog of YaaA, SP_2226, co-sedimented with the 30S subunit instead, thereby ques-

tioning functional conservation between the two species (Figure 3.7 A). Interestingly,

YaaA homologs within the family of Streptococcaceae have a ∼50 aa long extended

N-terminus not present in other families of Gram-positives (Appendix Figure 7.7).

Given that B. subtilis YaaA is only 71 aa in length and SP_2226 is 122 aa, it is easy to

imagine that this extension could have a drastic influence on the protein’s function.
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Apart from refining functional predictions of uncharacterized proteins, the re-

source presented here also enables the search for biochemically similar classes of

RNAs, which are defined solely by their sedimentation behavior in the gradient,

independent of sequence or length of the RNAs included in them (Smirnov et al.,

2017a). The clustering of ncRNAs in this chapter revealed three major classes of

ncRNAs in the pneumococcus, one of which contained several ncRNAs known to

be involved in RNPs as well as 4 of the 5 csRNAs and the functionally unknown

F41 (Figure 3.8 A). Based on this, pull-down assays using a newly developed pull-

down approach inspired by a similar protocol used for eukaryotes (Treiber et al.,

2017, 2018) was employed in order to identify a potential common interactor of

the csRNAs (Figure 3.11). Indeed, the 3’→5’ exonuclease Cbf1 turned out to be a

common interactor using this pull-down approach, which subsequently was ver-

ified using CLIP-seq (Figure 3.14). These data further revealed that Cbf1 targets

many different transcripts, especially mRNAs. Similarly, S. pyogenes YhaM trims the

majority of 3’ ends of mRNAs generated via either a transcription termination or

endonucleolytic cleavage event (Lécrivain et al., 2018). However, the consequences

of this global targeting are not understood.

Another result from the pull-down experiments is that the pneumococcus pos-

sibly does not encode for a global RBP like Hfq or ProQ. While the existence of

such a protein cannot fully be excluded at this point, the existence of the more

specialized KhpA/B complex (Figure 3.5), which binds subsets of sRNAs, tRNAs

and mRNAs (Zheng et al., 2017), suggests that the pneumococcus and similar or-

ganisms may either rely on such narrow spectrum RBPs or that their RNA-based

regulation at least partially occurs without the aid of a chaperone. To elucidate this

in more detail, alternative orthologous strategies for the identification of RBPs will

be necessary in the future. A recently introduced method relies on the isolation of

crosslinked RBP-RNA complexes via organic phase extraction or adhesion to sil-

ica matrices and is suitable for bacteria, providing a promising platform for the

discovery of RBPs in the pneumococcus (Queiroz et al., 2019; Shchepachev et al.,

2019; Urdaneta et al., 2019). Moreover, the gradient-based R-DeeP (RNA-dependent

proteins) is able to identify RNA-dependent proteins by comparing the shifting of
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proteins between an RNase-treated gradient and a control gradient and is applicable

to bacteria (Caudron-Herger et al., 2019, 2020).

Similar to its homologs in B. subtilis, S. aureus and S. pyogenes (Fang et al., 2009;

Lécrivain et al., 2018; Oussenko et al., 2002, 2005), pneumococcal Cbf1 was shown

in vitro to trim the csRNAs in a manganese-dependent fashion; a reaction that was

blocked by stem loop structures (Figure 3.15 A). This trimming also occurred in

vivo, thus recapitulating the in vitro observations with purified Cbf1 (Figure 3.15 C).

Unexpectedly, this shortening by Cbf1 increased the stability of the csRNAs in vivo

(Figure 3.16), which downregulate competence by inhibiting translation of comC

(Laux et al., 2015). In a knockout of yhaM, B. subtilis RNase R was observed to

be more active than in presence of yhaM, implying a protective function of YhaM

(Oussenko et al., 2005). Given that RNase R has helicase activity, enabling it to con-

tinue decay in the presence of stem-loops (Bechhofer and Deutscher, 2019), removal

of single-stranded 3’ regions by Cbf1/YhaM might remove the foothold RNase R

needs in order to bind its targets.

Indeed, in B. subtilis, a 12 nt long single-stranded region was not enough for

RNase R to allow binding (Oussenko and Bechhofer, 2000), which could explain

the protective function of Cbf1/YhaM. Another possible explanation is that Cbf1

does not dissociate after trimming of its targets and thereby shields them from other

RNases, similarly to how ProQ protects its targets from degradation by RNase II

in Salmonella (Holmqvist et al., 2018) and by PNPase in Neisseria (Bauriedl et al.,

2020). The only other bacterial exonuclease known to exert a protective effect so far

is PNPase in Enterobacteria, which degrades certain sRNAs and protects others, a

function dependent on Hfq (Andrade et al., 2012; Bandyra et al., 2016; Cameron

and De Lay, 2016; Cameron et al., 2018, 2019; De Lay and Gottesman, 2011). In

eukaryotes, this phenomenon was observed for several classes of ncRNAs that can

be stabilized by PARN- or TOE1-dependent trimming at their 3’ ends (Berndt et al.,

2012; Son et al., 2018; Tseng et al., 2015).

The direct interaction between Cbf1 and csRNAs (see 3.4.4) raises the question

whether Cbf1 is playing a role in the competence regulon. Intriguingly, others have

suggested cbf1 to be a member of ComX-induced late competence genes (Peterson

et al., 2004; Slager et al., 2019), which are upregulated approximately 12.5–15 min
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after induction by CSP (Shanker and Federle, 2017). Proving their prediction right,

cbf1 could be shown to be upregulated on both RNA and protein level 15 min after

induction (Figure 3.17). As an exonuclease, Cbf1 is unlikely to contribute to the major

competence complexes needed, e.g., for the uptake or integration of DNA. However,

since Cbf1 stabilizes the csRNAs (Figure 3.16), Cbf1 in return should have a negative

effect on competence too. Supporting this prediction, a knockout strain of cbf1 was

found to be more competent when compared to the wild type (Figure 3.18 A).

Still, as shown here by CLIP-seq, Cbf1 targets many more transcripts in the cell

than just the csRNAs (Figure 3.14 B), suggesting there might be additional transcripts

involved in the observed phenotype. Further, in a different strain of S. pneumoniae,

another study showed reduced (20 % down) competence in a cbf1 knockout back-

ground (Peterson et al., 2004). However, in this case, exogenous CSP was added to

perform the competence assays, which, as mentioned in 3.5.4, should mask the effect

of Cbf1. Overall, the involvement of cbf1 in the competence regulon may be relevant

for the in vivo survival of the pneumococcus: A global transposon-sequencing study

revealed that disruption of the cbf1 gene renders the pneumococcus unable to in-

fect the murine nasopharynx and strongly attenuates murine lung colonization (van

Opijnen and Camilli, 2012).

While clearly linked to competence, transcription of the csRNAs is actually up-

regulated by the CiaRH two-component system (Halfmann et al., 2007), which is not

directly involved in the competence regulon. Instead, it is the main regulator protect-

ing the pneumococcus against stress via upregulation of chaperones and heat shock

proteins (Gómez-Mejia et al., 2018). The csRNAs and HtrA, a protease that is able

to degrade extracellular CSP (Cassone et al., 2012), are among those upregulated

genes and together are able to downregulate competence (Gómez-Mejia et al., 2018;

Halfmann et al., 2007; Sebert et al., 2005), preventing the activation of the costly

competent state under detrimental conditions. It is therefore not surprising that,

while constant levels are kept, transcription of the csRNAs is not upregulated under

competence-inducing conditions (Slager et al., 2019). Interestingly, this is reminis-

cent of the quorum sensing system of Vibrio harveyi, which is controlled additively

by the five Qrr sRNAs (Feng et al., 2015; Pérez-Reytor et al., 2016): even though the

csRNAs are highly similar in sequence, they are only partially redundant, as at least
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Figure 3.19: The role of Cbf1 in the competence regulon of S. pneumoniae. The pneumococcal
competence regulon is a quorum sensing system activated by the competence stimulating peptide
(CSP). CSP induces the two-component system (TCS) ComDE, which then activates expression of
the early competence loci comAB, comCDE, comX1 and comX2. This results in a positive feedback
loop producing ComC, which gets processed to CSP and exported by ComAB. ComX1 and ComX2
are paralogous alternative σ-factors activating the late competence genes, which are, among other
things, responsible for DNA uptake and integration. cbf1 is part of the late competence genes and its
protein product is a 3’→5’ exonuclease able to trim and thereby stabilize csRNAs, which are regulatory
RNAs that inhibit competence by post-transcriptional repression of comC translation. Expression of
the csRNAs is activated by the TCS CiaRH that is triggered by a variety of environmental signals. EC,
extracellular. CM, cell membrane. IC, intracellular.
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three of them are necessary to successfully inhibit competence (Laux et al., 2015). To

make it even more complicated, it appears that not all combinations of three csRNAs

suffice to fulfill this function (Laux et al., 2015).

In summary, the results of this chapter provide a valuable resource for the in-

vestigation of RNA and protein complexes in S. pneumoniae TIGR4 and other related

Gram-positive bacteria. A functional relationship between the exonuclease Cbf1 and

the competence-regulating csRNAs was established, resulting in a model in which

Cbf1 is upregulated under competence-inducing conditions, leading to stabilization

of the available pool of inhibitory csRNAs. On the level of a pneumococcal popula-

tion, the csRNAs are then able to dampen the energetically costly competence state,

possibly by preventing individual cells from entering it in the first place (Figure

3.19). This process might be independent of an RNA chaperone that aids in the

facilitation of the pairing between the csRNAs and their target(s).
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Conclusions & Outlook

The original “central dogma” of molecular biology postulated by Francis Crick states

that information within the cell can be transferred from nucleic acid to nucleic acid

and from nucleic acid to protein but not from protein to protein or from protein to

nucleic acid (Crick, 1958, 1970). While this is still regarded as true, another version

of the “central dogma”, postulated by James Watson, states that information within

the cell flows from DNA to RNA and from RNA to protein (Watson, 1965). This

second version is the more popular of the two and is still found in many textbooks.

However, it is incorrect, as shown by, for example, the discovery of RNA-dependent

DNA polymerases (reverse transcriptases) (Temin and Mizutani, 1970). It further

generated the general assumption that RNA is only a mere helper of gene expression

represented by mRNAs, tRNAs and rRNAs.

This view drastically changed with the discovery of additional classes of

ncRNAs. In the 1980s, small nuclear RNAs were discovered as part of the spliceo-

some and were soon joined by others such as small nucleolar RNAs or microRNAs

(Cech and Steitz, 2014). With the introduction of deep sequencing methods, the num-

ber of known classes of ncRNAs has dramatically increased and ncRNAs were found

to be present in all domains of life (Cech and Steitz, 2014). RNA was further shown

to catalyze reactions (called ribozymes) (Kruger et al., 1982), carry all kinds of modi-

fications (Helm and Motorin, 2017) and regulate gene expression (Hör et al., 2020b),

just to name a few findings. Importantly, many of these ncRNAs are involved in

complexes with proteins to form central RNPs such as the spliceosome (Wilkinson

125
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et al., 2019) or the ribosome (Davis and Williamson, 2017). The formation of RNPs is

also important for the function of many if not most of the known post-transcriptional

regulators found in bacteria (Babitzke et al., 2019; Holmqvist and Vogel, 2018; Hör

et al., 2020b).

Yet, these complexes have been studied on a case-by-case basis, whereas global

description of RNA complex formation has not been possible before the introduc-

tion of Grad-seq investigating the RNA/protein complexome of Salmonella (Smirnov

et al., 2016). For the first time, Grad-seq allowed the prediction of complex involve-

ment for all detectable RNAs and proteins based on a single experiment, thereby

filling a methodological gap in RNA biology. With the introduction of two addi-

tional Grad-seq datasets for E. coli MG1655 and S. pneumoniae TIGR4 in this thesis,

new avenues for research in the field of bacterial RNA biology and complexomics

have been opened up.

The availability of Grad-seq datasets for Salmonella and E. coli now enables the

comparison of the complexomes of these closely related enterobacterial species.

Importantly, this allows the prediction and verification of conserved functions of

RNAs and proteins based on their observed sedimentation profiles. For example, in

comparison to Hfq or ProQ, CsrA and its titrating sRNAs CsrB and CsrC do not

show any ribosome association in E. coli (Figure 2.15) or Salmonella (Smirnov et al.,

2016). These findings are in line with the function of CsrA to inhibit binding of the

ribosome to mRNAs (Romeo and Babitzke, 2018). The combined analysis of the two

datasets further multiplies the power of the single datasets: if unexpected or new

observations such as the ribosome-association of ProQ (discussed in 2.10) are found

in both datasets, the likelihood of them being artifacts is drastically reduced.

Finally, findings in one organism can be cross-referenced with the data of the

other organism in order to make functional predictions. For example, the small pro-

tein YggL that was identified here to be a ribosome-bound protein in E. coli (see 2.9)

is also highly conserved in Salmonella (Figure 2.26 B). Even though its exact func-

tions remain unknown, Salmonella YggL showed the same peak at the 50S subunit

observed in E. coli (Smirnov et al., 2016). This strongly suggests that YggL has the

same functions in both species even though there are no experimental studies on the

Salmonella homolog.
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Similarly, the RNA/protein complexome dataset for S. pneumoniae presented in

this thesis for the first time allows the global prediction of interactions in a Gram-

positive bacterium based on a single experiment. This is of special importance given

the lack of studies on Gram-positive RNA and protein biology when compared to

Gram-negatives. Grouping of pneumococcal ncRNAs according to their sedimenta-

tion behavior followed by tag-based protein capture revealed the 3’→5’ exonuclease

Cbf1 to be an interactor of the competence-regulating csRNAs (Figure 3.14). As dis-

cussed in 3.6, the proteins recovered in these experiments hint at the absence of a

global RBP in the pneumococcus—and possibly other Gram-positives—although it

expresses a vast number of regulatory RNAs (Wilton et al., 2015). Importantly, these

findings can further be transferred to many related Gram-positive species, which

possess homologs of the detected pneumococcal RNAs and proteins. For example,

the 6S RNA-RNAP complex was discovered in E. coli (Wassarman and Storz, 2000)

and described in B. subtilis (Burenina et al., 2014; Cavanagh et al., 2012; Trotochaud

and Wassarman, 2005). Grad-seq now confirmed its existence in the pneumococcus

(Figure 3.6 B), cementing it as a ubiquitous RNP similar to RNase P, SRP, tmRNA-

SmpB or the ribosome.

Not only is the knowledge about their complexomes lagging behind, the pneu-

mococcus and other Gram-positives also remain understudied with respect to the

functions of their genes. Grad-seq provides a valuable resource for the study of such

genes of unknown function and can greatly benefit from the research performed

in other organisms: as discussed in 3.6, the sedimentation profiles of SP_0007 and

SP_1969 in S. pneumoniae matched the functions of their E. coli homologs and thereby

supported the functional predictions of these proteins. This gives the opportunity to

get a quick impression of whether the function of a specific gene of interest might be

conserved. If no homologs of an RNA or protein of interest have been functionally

characterized, Grad-seq can still provide information about possible interactions and

with that add to the results from other experiments such as affinity purification.

To further improve the significance of Grad-seq predictions, it can be combined

with synergistic methods. One especially interesting method is R-DeeP (Caudron-

Herger et al., 2019, 2020) and the conceptionally similar RNase-sensitive gradient

profiles (GradR) (Gerovac, El Mouali, Barquist and Vogel, unpublished). Both meth-
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ods rely on the comparison of protein sedimentation profiles between an RNase-

treated gradient and a control gradient. Generally, a protein that is either directly or

indirectly in contact with RNA will shift toward the top of the gradient upon RNase

treatment, thereby enabling the global identification of such proteins. In comparison

to the methods discussed in 1.2, R-DeeP/GradR do not identify the RNAs bound

to a shifting protein. Grad-seq, however, can provide information on which classes

of RNAs might be bound by the shifting proteins, showing how the power of the

single methods is increased by their combination.

In the future, the most important step to improve Grad-seq will be to obtain

interactome maps with higher resolution. This would allow both to increase the

sharpness of sedimentation peaks as well as to better separate similarly sedimenting

complexes from each other. Ultimately, an ambitious goal would be to have only few

different RNAs and/or proteins per fraction, allowing the direct prediction of inter-

actions between them. In its current iteration, Grad-seq relies on glycerol gradient

separation, which does not have the resolution to achieve a fine enough separation

for this (see 1.2.5). While an increase in fraction numbers will be able to increase the

resolution, detection limits of the downstream high-throughput methods have to be

kept in mind.

Therefore, a promising method is to combine several different biochemical sepa-

ration techniques in order to achieve extremely fine-grained co-elution profiles. This

approach was applied to human cells and, using a combination of ion exchange

chromatography, isoelectric focusing and sucrose gradients, separated the cellular

content into >1,000 biochemical fractions (Havugimana et al., 2012). While this study

focused exclusively on protein complexes, it should be possible to use a similar ap-

proach to investigate the co-elution of both proteins and RNA as well. Furthermore,

an increased resolution would enable the study of more complex samples such as

eukaryotic cells or mixtures of bacteria from, e.g., mixed biofilms or the microbiota.

Apart from the obvious increase in experimental costs and time, such a drastic

increase in fractions and resolution for Grad-seq will necessitate the development

of novel bioinformatical analysis methods to reliably make sense of the data. These

pipelines will have to combine the data from the different separation techniques,

robustly identify co-eluting molecules and finally visualize them in an easily un-
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derstandable fashion. Especially the visualization is key to the success of such a

high-resolution Grad-seq variant since it should allow the community to grasp the

complexity of the dataset in an intuitive manner. Current complex datasets with

hundreds of thousands of data points such as the mouse cell atlas (Han et al., 2018)

or the Tabula Muris (The Tabula Muris Consortium, 2018), two single cell RNA-seq

studies investigating the cellular composition of mouse organs, show examples of

how this can be achieved. Yet, to match the requirements for an intuitive visualiza-

tion of high-resolution Grad-seq, different avenues have to be taken. For example,

virtual reality could be an option to allow the three-dimensional exploration of the

data, enabling the user to interactively study the similarities of RNA and protein

elution profiles.

In addition to increasing the resolution, another important improvement to Grad-

seq will be the refinement of the RNA-seq protocols. While the changes introduced

in this thesis (see 2.3) improved the ability to normalize the data, the RNA-seq of

a Grad-seq experiment is still the step that causes most of the issues. One reason

for this is that each fraction of the gradient inevitably has a unique composition of

RNAs (see Appendix Figure 7.1). During library preparation, this can cause biases

that are different from fraction to fraction during, for example, adapter ligation or

PCR amplification (van Dijk et al., 2014). Different options exist to reduce bias during

library preparation, e.g., unique molecular identifiers allow the counting of single

molecules (Kivioja et al., 2011). Yet, for Grad-seq, empirical studies will be necessary

to find the optimal way of reducing biases.

The sequencing platform used for Grad-seq also has to be taken into considera-

tion in order to improve the power of the RNA-seq. The Illumina platform, which

has become the industry standard by this point, sequences short reads obtained

from cDNA originating from fragmented RNA. While generally of little concern, for

Grad-seq this means that discrimination between full-length and processed RNA

molecules is not possible based on the sequencing results. However, especially for

mRNAs, this knowledge would add an interesting layer to the data: Have mRNA

molecules found within the gradient just dissociated from ribosomes? Are they non-

functional decay products? Or are they processed but stable, inactive species? Stable

3’ UTR-derived sRNAs (Miyakoshi et al., 2015) already give a flavor of the impor-
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tance of this information—they often bind Hfq, which is why they exhibit sedi-

mentation profiles distinct from their usually much less abundant parental mRNAs

(Smirnov et al., 2017a). This makes 3’ UTR-derived sRNAs easy to detect by Illumina

sequencing, which, however, is in contrast to full-length mRNAs.

Third generation sequencing technologies offered by Pacific Biosciences (PacBio)

and Oxford Nanopore Technologies (ONT) provide the ability to sequence full-

length single molecules. In comparison to Illumina, they are low-throughput and

therefore not suitable for the quantitative analysis needed for Grad-seq (Weirather

et al., 2017). Still, PacBio or ONT could be used as complementary methods to add

a qualitative layer uncovering the identity of the transcript species within Grad-seq

fractions.

Taken together, there are many exciting ways how Grad-seq could develop in

the years to come. It will continue to provide a fast and effective way to obtain

complexomic resources that should be collated in public databases allowing easy

access for everyone in the community.



Chapter 5

Materials & Methods

General chemicals used in this thesis were purchased from AppliChem, Merck, Roth

and Sigma.

5.1 General equipment, consumables and software

Table 5.1: General equipment and instruments.

Equipment and instruments Manufacturer Model

Biosafety cabinet Thermo Fisher Scientific Safe 2020

Cell density meter Amersham Biosciences Ultrospec 10

Cell lysis instrument MP Biomedicals FastPrep-24

Centrifuge Eppendorf 5415R and 5424

Centrifuge Thermo Fisher Scientific Heraeus Multifuge X3R and Pico 21

Confocal microscope Leica TCS SP5

Electrophoresis power supply Peqlab EV202, EV232, peqPower 250V/300V

Electroporator Bio-Rad MicroPulser

Finescale Chyo JL-180

Fraction collector Gilson FC 203B

Geiger counter Thermo Fisher Scientific Mini 900 Ratemeter

Gel documentation system Intas GelStick Imager

Gel dryer Bio-Rad Model 583

Gradient profiler Biocomp Model 251

Gradient station Biocomp Model 153

Horizontal electrophoresis Peqlab

continued on next page
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Table 5.1, continued.

Equipment and instruments Manufacturer Model

Hybridization oven UVP HB-1000 Hybridizer

Image eraser GE Healthcare FLA Image Eraser

Imaging system GE Healthcare ImageQuant LAS 4000

Incubator shaker New Brunswick Scientific Innova 44

Magnetic stirrer Wisd Instruments WiseStir MSH-20A

Mixer mill Retsch MM400

Phosphoimager GE Healthcare Typhoon FLA 7000

Phosphor screen Fujifilm BAS-SR 2040

Pipet aid Brand accu-jet pro

Pipettes Eppendorf Research plus

Platereader Tecan Infinite M Plex

Rotator Stuart SB2

RT-qPCR system Bio-Rad CFX96

Scale Kern 572

Sequencing gel chamber C.B.S. Scientific Co. SG-400-20

Shaker incubator Eppendorf Thermomixer comfort

Sonication system Diagenode Bioruptor Plus

Spectrophotometer Thermo Fisher Scientific NanoDrop 2000

Thermal cycler Applied Biosystems 2720

Ultracentrifuge Beckman Coulter Optima XP-80

Ultracentrifuge rotor Beckman Coulter SW 40 Ti and type 70 Ti

UV crosslinker Vilber

UV monitor Bio-Rad Econo UV monitor

Vertical electrophoresis Peqlab

Vortexer Scientific Industries Vortex Genie 2

Waterbath GFL 1092

Table 5.2: Consumables and commercial kits.

Consumables and kits Manufacturer

96-well plates Nunc

Bolt 4–12 % Bis-Tris gels Thermo Fisher Scientific

Centrifuge tubes Sarstedt

Cuvettes Sarstedt

Disposable glass pipettes Kimble

DNA Cycle Sequencing kit Jena Bioscience

Electroporation cuvettes Cell projects

continued on next page
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Table 5.2, continued.

Consumables and kits Manufacturer

FastPrep tubes MP Biomedicals

G-25 MicroSpin columns GE Healthcare

Glass beads, 0.1 mm Roth

Hybond+ membranes GE Healthcare

NucleoSpin Gel and PCR clean-up Macherey-Nagel

NucleoSpin Plasmid EasyPure Macherey-Nagel

PCR tubes Thermo Fisher Scientific

Phase Lock Gel tubes 5 Prime

Pipette tips Sarstedt

Power SYBR Green RNA-to-CT 1-Step kit Thermo Fisher Scientific

PVDF membranes GE Healthcare

StrataClone PCR cloning kit Agilent

TranscriptAid in vitro transcription kit Thermo Fisher Scientific

Ultracentrifugation tubes Seton

Table 5.3: Chemicals and commercial reagents.

Chemicals and commercial reagents Manufacturer

Albumin fraction V Roth

Ampicillin Roth

Carbenicillin Roth

Chloramphenicol Roth

CSP-1 and CSP-2 AnaSpec

DNA and RNA ladders Thermo Fisher Scientific

DNA loading buffer (6×) Thermo Fisher Scientific

dNTPs Thermo Fisher Scientific

Dynabeads M-270 Thermo Fisher Scientific

Dynabeads protein A/G Thermo Fisher Scientific

ERCC spike-in Thermo Fisher Scientific

GlycoBlue Thermo Fisher Scientific

Kanamycin Roth

LDS sample buffer Thermo Fisher Scientific

MES buffer Thermo Fisher Scientific

Protein ladders Thermo Fisher Scientific

Rifampicin Fluka

Roti Hybri-Quick Roth

Rotiphorese gel 40 (19:1) Roth

continued on next page
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Table 5.3, continued.

Chemicals and commercial reagents Manufacturer

Rotiphorese gel 40 (37.5:1) Roth

SimplyBlue Coomassie Thermo Fisher Scientific

TRIzol Thermo Fisher Scientific

UPS2 spike-in Sigma

ECL WB detection reagent GE Healthcare

Yeast extract Roth

Table 5.4: Enzymes.

Enzymes Manufacturer

Calf intestinal phosphatase (CIP) NEB

DNase I Thermo Fisher Scientific

Lysozyme Roth

Phusion DNA polymerase NEB

Polynucleotide kinase (PNK) Thermo Fisher Scientific

Restriction enzymes Thermo Fisher Scientific

RNase inhibitor Thermo Fisher Scientific

Shrimp alkaline phosphatase (SAP) NEB

SuperScript II reverse transcriptase Thermo Fisher Scientific

T4 DNA ligase NEB

Taq DNA polymerase NEB

Table 5.5: Antibodies and antisera.

Antibodies and antisera Dilution for WB Source

α-6xHis (mouse) 1:3,000 Sigma

α-FLAG (mouse) 1:1,000 Sigma

α-GAPDH (rabbit) 1:2,000 B. Henriques-Normark (Stockholm)

α-GroEL (rabbit) 1:10,000 Sigma

α-mouse; HRP-conjugated (goat) 1:10,000 Thermo Fisher Scientific

α-rabbit; HRP-conjugated (goat) 1:10,000 Thermo Fisher Scientific

α-RpoB (mouse) 1:1,000 BioLegend

α-RpoD (mouse) 1:1,000 BioLegend
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Table 5.6: Software.

Software and version Purpose Developer/Reference

CorelDRAW 2018 Vector graphics editor Corel Corporation

Excel 365 ProPlus Spreadsheet editor Microsoft Corporation

ImageJ 1.52u Image processing Schneider et al. (2012)

IGV 2.8.2 Genome browser Thorvaldsdóttir et al. (2013)

JabRef 4.3.1 Reference manager The JabRef Team

Jalview 2.11 Multiple sequence alignment visualization Waterhouse et al. (2009)

MiKTeX 2.9.7300 LATEX distribution Christian Schenk

Notepad++ 7.7.1 Text editor Notepad++ team

Prism 8.4.0 Graphing and statistics GraphPad Software, Inc.

Texmaker 5.0.4 LATEX editor Pascal Brachet

VARNA 3-93 RNA secondary structure visualization Darty et al. (2009)

5.2 Solutions and media

Table 5.7: Buffers and solutions.

Buffers and solutions Composition

30:1 mix 29 ml ethanol, 1 ml 3 M sodium acetate, pH 5.2 or 6.5

DEPC-H2O 1 ml DEPC in 1 l H2O; 37 °C o/n; autoclave

Developer solution 60 g Na2CO3; 4 mg Na2S2O3 × 5 H2O; 0.5 ml formaldehyde (37 %); H2O

ad 1 l

Fixing solution 500 ml ethanol; 120 ml acetic acid; 0.5 ml formaldehyde (37 %); H2O ad 1 l

Glycerol solution (10 %) 10 g glycerol in lysis buffer A + 1 mM PMSF and 0.2 % (v/v) Triton X 100

Glycerol solution (40 %) 40 g glycerol in lysis buffer A + 1 mM PMSF and 0.2 % (v/v) Triton X 100

Lower buffer (SDS-PAGE) 1.5 M Tris-HCl, pH 8.8, 0.4 % (w/v) SDS

Lysis buffer A 20 mM Tris-HCl, pH 7.5; 150 mM KCl; 1 mM MgCl2; 1 mM DTT

Lysis buffer B 20 mM Tris-HCl, pH 7.5; 100 mM NH4Cl; 10.5 mM MgCl2; 0.5 mM EDTA;

3 mM DTT

Lysis buffer C 20 mM Tris-HCl, pH 7.5; 100 mM NH4Cl; 10 mM MgCl2; 1 mM DTT

Lysis buffer D 20 mM Tris-HCl, pH 7.5; 100 mM NH4Cl; 10 mM MgCl2; 3 mM DTT

Lysis buffer E 50 mM Tris-HCl, pH 8; 150 mM KCl; 1 mM MgCl2; 5 % (v/v) glycerol;

0.05 % (v/v) Tween-20

Lysis buffer F 50 mM Tris-HCl, pH 8; 150 mM KCl; 1 mM MgCl2; 5 % (v/v) glycerol;

0.05 % (v/v) Tween-20; 1 mM PMSF; 1 mM DTT

MOPS buffer (10×) 41.8 g MOPS; 16.6 ml 3 M sodium acetate; 20 ml 0.5 M EDTA, pH 8; H2O

ad 1 l; adjust pH to 7 with NaOH

continued on next page
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Table 5.7, continued.

Buffers and solutions Composition

P1 buffer 10 mM MgSO4; 5 mM CaCl2
PAA solution (denaturing

RNA gel)

100 ml 10× TBE; 420 g urea; 150 or 250 ml Rotiphorese gel 40 (19:1) for 6

or 10 % gels; H2O ad 1 l

PAA solution (protein

resolving gel)

3.75 ml lower buffer; 3 or 3.25 ml Rotiphorese gel 40 (37.5:1) and 3.25 or

3 ml H2O for 12 or 15 % gels; 75µl 10 % (w/v) APS; 7.5µl TEMED

PAA solution (protein

stacking gel)

1.25 ml upper buffer; 1 ml Rotiphorese gel 40 (37.5:1); 7.5 ml H2O; 90µl

10 % (w/v) APS; 9µl TEMED

PBS (10×) 2 g KCl; 2.4 g KH2PO4; 80 g NaCl; 14.4 g Na2HPO4; adjust to pH 7.4;

H2O ad 1 l

Protein loading buffer

(5×)

15 g SDS; 46.95 ml 1 M Tris-HCl, pH 6.8; 75 ml glycerol; 11.56 g DTT;

0.075 g bromophenol blue; H2O ad 150 ml

RNA elution buffer 0.1 M sodium acetate, pH 6.5; 0.1 % (w/v) SDS; 10 mM EDTA, pH 8

RNA loading buffer (2×) 0.025 % (w/v) bromophenol blue; 0.025 % (w/v) xylene cyanol; 18µM

EDTA, pH 8; 0.13 % (w/v) SDS; 95 % foramamide

SB 1× Mg10 10 mM Tris-acetate, pH 7.6; 100 mM potassium acetate; 1 mM DTT;

10 mM magnesium acetate

SB 1× Mg60 10 mM Tris-acetate, pH 7.6; 100 mM potassium acetate; 1 mM DTT;

60 mM magnesium acetate

SB 5× –Mg 50 mM Tris-acetate, pH7.6; 500 mM potassium acetate; 5 mM DTT

SDS running buffer (10×) 30.275 g Tris base; 144 g glycine; 10 g SDS; H2O ad 1 l

Sensitizer 0.2 g Na2S2O3 × 5 H2O; H2O ad 1 l

Silver staining solution 2 g AgNO3; 0.75 ml formaldehyde (37 %); H2O ad 1 l

Silver stop solution 10 g glycine; H2O ad 1 l

SSC (20×) 3 M NaCl; 0.3 M sodium citrate, pH 7

SSC-S Needed dilution of SSC + 0.1 % (w/v) SDS

Storage buffer Lysis buffer B + 10 % (v/v) glycerol

Stop mix 95 % ethanol, 5 % acidic phenol

TAE (50×) 242 g Tris base; 51.7 ml acetic acid; 10 mM EDTA, pH 8; H2O ad 1 l

TBE (10×) 108 g Tris base; 55 g boric acid; 20 mM EDTA, pH 8; H2O ad 1 l

TBS (10×) 24.11 g Tris base; 72.6 g NaCl; adjust to pH 7.4 with HCl; H2O ad 1 l

TBS-T 1× TBS + 0.1 % (v/v) Tween-20

TE (1×) 100 mM Tris-HCl, pH 8; 10 mM EDTA, pH 8

Toeprint stop buffer 50 mM Tris-HCl, pH 7.5; 0.1 % (w/v) SDS; 10 mM EDTA, pH 8

Transfer buffer 3 g Tris base; 14.4 g glycine; 200 ml methanol; H2O ad 1 l

Upper buffer (SDS-PAGE) 0.5 M Tris-HCl, pH 6.8, 0.4 % (w/v) SDS

Wash buffer A Lysis buffer F with a total of 300 mM KCl

Wash buffer B Lysis buffer F + 0.1 % (v/v) Triton X 100
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Table 5.8: Media.

Media Composition

Lennox broth (LB) 10 g tryptone; 5 g yeast extract; 5 g NaCl; H2O ad 1 l

LB agar 10 g tryptone; 5 g yeast extract; 5 g NaCl; 15 g agar; H2O ad 1 l

Todd Hewitt broth + yeast

extract (THY)

30 g Todd Hewitt broth (Bacto); 5 g yeast extract; H2O ad 1 l

Tryptic soy agar with

sheep blood (TSA-B)

15 g tryptone; 5 g soy peptone; 5 g NaCl; 15 g agar; 50 ml defibrinated

sheep blood; H2O ad 1 l (bought from Oxoid)

5.3 Bacterial strains, plasmids and oligonucleotides

Table 5.9: Bacterial strains.

Name Species Genotype Plasmid Source

JVS-00271 S. Typhimurium SL1344 wild type pJV300 Laboratory strain collection

JVS-01574 S. Typhimurium SL1344 wild type Laboratory strain collection

JVS-04335 E. coli BL21(DE3) wild type Laboratory strain collection

JVS-05709 E. coli MG1655 wild type Laboratory strain collection

JVS-10520 E. coli W3110 proQ-3xFLAG-KmR Holmqvist et al. (2018)

JVS-11947 E. coli MG1655 wild type pKD46 This study

JVS-11972 E. coli MG1655 intS-3xFLAG-KmR This study

JVS-11975 E. coli BL21(DE3) wild type pJV300 This study

JVS-11986 E. coli MG1655 wild type pJV300 This study

JVS-12009 S. pneumoniae TIGR4 wild type B. Henriques-Normark

JVS-12010 S. pneumoniae TIGR4 ∆cbf1::Sp B. Henriques-Normark

JVS-12012 S. pneumoniae TIGR4 cbf1-3xFLAG-Sp B. Henriques-Normark

JVS-12013 S. pneumoniae TIGR4 ∆cbf1::Sp B. Henriques-Normark

∆bgaA::[tetM-

PczcD-cbf1]

JVS-12054 E. coli 536 wild type Laboratory strain collection

JVS-12065 E. coli 536 wild type pJV300 This study

JVS-12077 E. coli MG1655 ∆yggL pJV300 This study

JVS-12078 E. coli MG1655 ∆yggL pJH034 This study

JVS-12082 E. coli MG1655 ∆ryeG This study

JVS-12083 E. coli MG1655 ∆ryeG pJV300 This study

JVS-12084 E. coli MG1655 ∆ryeG pJH032 This study

JVS-12107 S. Typhimurium SL1344 wild type pJH032 This study

JVS-12108 E. coli BL21(DE3) wild type pJH032 This study

continued on next page
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Table 5.9, continued.

Name Species Genotype Plasmid Source

JVS-12109 E. coli 536 wild type pJH032 This study

JVS-12151 E. coli MG1655 yggL truncation This study

JVS-12156 E. coli MG1655 ∆yggL This study

JVS-12157 E. coli MG1655 yggL-3xFLAG This study

JVS-12223 E. coli MG1655 wild type pJH066 This study

JVS-12224 E. coli MG1655 yggL truncation pJH066 This study

JVS-12225 E. coli MG1655 ∆yggL pJH066 This study

JVS-12226 E. coli MG1655 yggL truncation pJH067 This study

JVS-12227 E. coli MG1655 ∆yggL pJH067 This study

JVS-12246 E. coli MG1655 ∆ryeG pJH071 This study

JVS-12262 E. coli MG1655 ∆ryeG pJH068 This study

JVS-12277 E. coli MG1655 ∆ryeG pJH078 This study

JVS-12278 E. coli MG1655 ∆ryeG pJH076 This study

JVS-12279 E. coli MG1655 ∆ryeG pJH075 This study

JVS-12419 S. pneumoniae R6 wild type B. Henriques-Normark

JVS-12420 S. pneumoniae R6 ∆cbf1::Sp B. Henriques-Normark

Table 5.10: Plasmids.

Name Resistance Backbone Purpose Source

pCP20 Amp; Cm expresses Flp recombinase Cherepanov and

Wackernagel (1995)

pJH032 Amp pZE12 RyeG overexpression this study

pJH034 Amp pZE12 yggL overexpression this study

pJH066 Cm pXG-1 ctrl plasmid this study

pJH067 Cm pXG-1 yggL expression (own promoter) this study

pJH068 Amp pCRT7 RyeG inducible overexpression this study

pJH071 Amp pCRT7 ctrl plasmid this study

pJH075 Amp pCRT7 RyeG SD-mut inducible this study

overexpression

pJH076 Amp pCRT7 RyeG ORF3-stop inducible this study

overexpression

pJH078 Amp pCRT7 RyeG-ORF2-stop inducible this study

overexpression

pJV300 Amp pZE12 ctrl plasmid Sittka et al. (2007)

pKD4 Amp template for Km knockouts Datsenko and Wanner (2000)

pKD46 Amp expresses λRED recombinase Datsenko and Wanner (2000)

continued on next page
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Table 5.10, continued.

Name Resistance Backbone Purpose Source

pSUB11 Amp template for 3xFLAG-tagging Uzzau et al. (2001)
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Table 5.11: Oligonucleotides.

Name Sequence (5’→3’) Purpose

JVO-00249 GGTATTAGCTACCGTTTCCAG NB probe for E. coli 16S rRNA

JVO-00321 CAATTGCAAACACAACAACACAACATC NB probe for E.coli GcvB

JVO-00322 CTACGGCGTTTCACTTCTGAGTTC NB probe for E. coli 5S rRNA

JVO-01003 GAATCTCCGAGATGCCG NB probe for E. coli 6S RNA

JVO-01341 AATACGGCGCAGTGCGTTA NB probe for E. coli rpoA

JVO-01366 CACCAATACTCAGTCACACATGATG NB probe for E. coli SgrS

JVO-01367 TCGTTACACCAGGAAATCTGATGTG NB probe for E. coli DsrA

JVO-01368 GGTCTGAAAGATAGAACATCTTACCTCTGTACC NB probe for E. coli Spot 42

JVO-01370 GTTGTTTCACTCAGGGGATTTCCATG NB probe for E. coli RprA

JVO-01371 GGATGATGATAACAAATGCGCGTCT NB probe for E. coli MicA

JVO-01727 CTATTGGCCCGTCAAAGAGGAATTTCA NB probe for E. coli ChiX

JVO-02280 TGGCACCGTTAGTGATTTCGA NB probe for E. coli cspE

JVO-02873 GGTTCCTGGTACAGCTAGCA NB probe for E. coli CyaR

JVO-04201 GTTTTTTTTAATACGACTCACTATAGGTCGTACACCATCAGGGTAC Sense oligo for MS2-tag T7 template

JVO-04202 GTTTTTTTTAATACGACTCACTATAGG Sense oligo for T7 promotor

JVO-04203 GTGACCAGACCCTGATGG Antisense oligo for MS2 with linker

JVO-04943 ACAGACCCTGATGGTGTCT Antisense oligo for MS2 with U (for 3’tagging)

JVO-04944 GTCACCGTACACCATCAGGGTAC Sense oligo for MS2 with linker (for 3’tagging)

JVO-08219 GGCCCTGCCAGCTACAT NB probe for E. coli 4.5S RNA

JVO-08540 CCTCCGACCCCTTCG NB probe for E. coli tRNA(Pro)CGG

JVO-09045 AACGGTCTGACCTTCGCTTACTCG NB probe for E. coli rplU

JVO-10325 TGGTGGAGCTGGCGGGAGTT NB probe for E. coli tmRNA

JVO-10329 AGGTGAAACTGACCGATAAGCC NB probe for E. coli RnpB / M1 RNA

JVO-14661 ACAGCCCCTCGACACATAAC NB probe for S. pneumoniae tmRNA

continued on next page
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Table 5.11, continued.

Name Sequence (5’→3’) Purpose

JVO-14662 TACGTTCGTTTCCGCGTACT NB probe for S. pneumoniae RNase P

JVO-14665 GGAGTTCATTAAATAAAGATATTAGATGAAAATCAAATTCAAACTAATTC NB probe for S. pneumoniae csRNA5

JVO-14666 CATGGGTACAGGTGTATCTC NB probe for S. pneumoniae 5S rRNA

JVO-14667 GGCTACCTCTATCAAGGTGTACTCCTTCTATACTATCCCTTGTGCTTTAG NB probe for S. pneumoniae F41

JVO-14670 CATTTCACCGCTACACATGG NB probe for S. pneumoniae 16S rRNA

JVO-14671 CCTGATATACTTCCCTTGGGCTACTAGTCTTTCAGATTCCTATTCAATTAC NB probe for S. pneumoniae F20

JVO-14673 CGACCTCACGCTTATCAGGC NB probe for S. pneumoniae tRNA-Ile

JVO-14856 TGAAGCTGTTTCCGTGTGAG NB probe for S. pneumoniae 6S RNA

JVO-14874 CACCATCAGGGTCTGGTCACGGTTACAAGAAGACCTCCTAACTTGTTG 5’ MS2 tagging of S. pneumoniae csRNA3; fwd

JVO-14875 AAAAAAGCCACCGAATGCGGTGAC 5’ MS2 tagging of S. pneumoniae csRNA3; rev

JVO-14876 GTTTTTTTTAATACGACTCACTATAGGGGTTACAAGAAGACCTCCTAACTT

GTTG

3’ MS2 tagging of S. pneumoniae csRNA3; fwd

JVO-14877 GTACCCTGATGGTGTACGGTGACAAAAAAGCCACCGAATGCGGTGAC 3’ MS2 tagging of S. pneumoniae csRNA3; rev

JVO-14878 CACCATCAGGGTCTGGTCACATTAAATAAAGACCTCCTAATATTATTTG 5’ MS2 tagging of S. pneumoniae csRNA5; fwd

JVO-14879 AATAAAAGCCACCCATACAGGCGAC 5’ MS2 tagging of S. pneumoniae csRNA5; rev

JVO-14880 GTTTTTTTTAATACGACTCACTATAGGATTAAATAAAGACCTCCTAATATT

ATTTG

3’ MS2 tagging of S. pneumoniae csRNA5; fwd

JVO-14881 GTACCCTGATGGTGTACGGTGACAATAAAAGCCACCCATACAGGCGAC 3’ MS2 tagging of S. pneumoniae csRNA5; rev

JVO-14882 CACCATCAGGGTCTGGTCACATAGAAACGCTGTGGTGTACGACTTC 5’ MS2 tagging of S. pneumoniae 6S RNA; fwd

JVO-14883 AAAAAAGCTGTATTGGTGCCGAAAC 5’ MS2 tagging of S. pneumoniae 6S RNA; rev

JVO-14884 GTTTTTTTTAATACGACTCACTATAGGATAGAAACGCTGTGGTGTACGACTTC 3’ MS2 tagging of S. pneumoniae 6S RNA ; fwd

JVO-14885 GTACCCTGATGGTGTACGGTGACAAAAAAGCTGTATTGGTGCCGAAAC 3’ MS2 tagging of S. pneumoniae 6S RNA ; rev

JVO-14886 CACCATCAGGGTCTGGTCACAAAGCACAAGGGATAGTATAGAAGGAG 5’ MS2 tagging of S. pneumoniae F41; fwd

JVO-14887 AAAAAGCACCTAGTTTCCTAGATGCTAGC 5’ MS2 tagging of S. pneumoniae F41; rev

JVO-14888 GTTTTTTTTAATACGACTCACTATAGGAAAGCACAAGGGATAGTATAGAAGGAG 3’ MS2 tagging of S. pneumoniae F41; fwd

continued on next page
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Table 5.11, continued.

Name Sequence (5’→3’) Purpose

JVO-14889 GTACCCTGATGGTGTACGGTGACAAAAAGCACCTAGTTTCCTAGATGCTAGC 3’ MS2 tagging of S. pneumoniae F41; rev

JVO-14987 CACCATCAGGGTCTGGTCACAATTGAATAGGAATCTGAAAGACTAGTAGC 5’ MS2 tagging of S. pneumoniae F20; fwd

JVO-14988 AAAAAGAAAACCACATGCCAAAAACTCCAC 5’ MS2 tagging of S. pneumoniae F20; rev

JVO-14989 GTTTTTTTTAATACGACTCACTATAGGAATTGAATAGGAATCTGAAAGACTAG

TAGC

3’ MS2 tagging of S. pneumoniae F20; fwd

JVO-14990 GTACCCTGATGGTGTACGGTGACAAAAAGAAAACCACATGCCAAAAACTCCAC 3’ MS2 tagging of S. pneumoniae F20; rev

JVO-14991 CACCATCAGGGTCTGGTCACGTTAAGTGACGATAGCCTAGGAGATACAC 5’ MS2 tagging of S. pneumoniae 5S rRNA; fwd

JVO-14992 GCTAAGCGACTTCCCTATCTCAC 5’ MS2 tagging of S. pneumoniae 5S rRNA; rev

JVO-14993 GTTTTTTTTAATACGACTCACTATAGGGTTAAGTGACGATAGCCTAGGAGATA

CAC

3’ MS2 tagging of S. pneumoniae 5S rRNA; fwd

JVO-14994 GTACCCTGATGGTGTACGGTGACGCTAAGCGACTTCCCTATCTCAC 3’ MS2 tagging of S. pneumoniae 5S rRNA; rev

JVO-14995 CACCATCAGGGTCTGGTCACGGGGTCGTTACGGATTCGACAGGCATTATG 5’ MS2 tagging of S. pneumoniae tmRNA; fwd

JVO-14996 AATGGAGCCGGTGGGAGTCGAACCCACG 5’ MS2 tagging of S. pneumoniae tmRNA; rev

JVO-14997 GTTTTTTTTAATACGACTCACTATAGGGGGGTCGTTACGGATTCGACAGGCAT

TATG

3’ MS2 tagging of S. pneumoniae tmRNA; fwd

JVO-14998 GTACCCTGATGGTGTACGGTGACAATGGAGCCGGTGGGAGTCGAACCCACG 3’ MS2 tagging of S. pneumoniae tmRNA; rev

JVO-15000 AAGTTTAGGATATTTGTTACAACAAGTTAGGAGGTCTTCTTGTAACC NB probe for S. pneumoniae csRNA3

JVO-15001 ATTATGAAAAAGTTTTAGGAGTTTAAGTTAAGGTCTTCTTAACTTAT NB probe for S. pneumoniae csRNA4

JVO-15118 CGTACCCTGATGGTGTACGA NB Probe against MS2 (first hairpin)

JVO-15295 CACCATCAGGGTCTGGTCACATTAAATAAAGACCTCCTAACTTTATTTA 5’ MS2 tagging of S. pneumoniae csRNA1/2; fwd

JVO-15296 AAAAAAGCCACCTGATTGGGTGGCTTCATTAG 5’ MS2 tagging of S. pneumoniae csRNA1; rev

JVO-15297 GTTTTTTTTAATACGACTCACTATAGGATTAAATAAAGACCTCCTAACTTTAT

TTA

3’ MS2 tagging of S. pneumoniae csRNA1/2; fwd

JVO-15298 GTACCCTGATGGTGTACGGTGACAAAAAAGCCACCTGATTGGGTGGCTTCATT

AG

3’ MS2 tagging of S. pneumoniae csRNA1; rev

continued on next page
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Table 5.11, continued.

Name Sequence (5’→3’) Purpose

JVO-15299 AAAAAACTCCACCTGATTCGGTGGAGTTAAG 5’ MS2 tagging of S. pneumoniae csRNA2; rev

JVO-15300 GTACCCTGATGGTGTACGGTGACAAAAAACTCCACCTGATTCGGTGGAGTTAAG 3’ MS2 tagging of S. pneumoniae csRNA2; rev

JVO-15301 CACCATCAGGGTCTGGTCACATAAGTTAAGAAGACCTTAACTTAAACTC 5’ MS2 tagging of S. pneumoniae csRNA4; fwd

JVO-15302 AAAAAATAAGCCGCCTGATTGGGCGAC 5’ MS2 tagging of S. pneumoniae csRNA4; rev

JVO-15303 GTTTTTTTTAATACGACTCACTATAGGATAAGTTAAGAAGACCTTAACTTAAA

CTC

3’ MS2 tagging of S. pneumoniae csRNA4; fwd

JVO-15304 GTACCCTGATGGTGTACGGTGACAAAAAATAAGCCGCCTGATTGGGCGAC 3’ MS2 tagging of S. pneumoniae csRNA4; rev

JVO-15428 GTTGATTCCATTTCCGTTTAATTAC NB probe E. coli CsrC

JVO-15429 CCTCTGGCCTTGCGGCCAATCGTTC NB probe E. coli CsrB

JVO-15448 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTATTAAATAAAGACC

TCCTAACTTTATTTA

5’ tagging of S. pneumoniae csRNA1/2; fwd; use

with JVO-15296/15299

JVO-15449 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTGGTTACAAGAAGAC

CTCCTAACTTGTTG

5’ tagging of S. pneumoniae csRNA3; fwd; use with

JVO-14875

JVO-15450 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTATAAGTTAAGAAGA

CCTTAACTTAAACTC

5’ tagging of S. pneumoniae csRNA4; fwd; use with

JVO-15302

JVO-15451 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTATTAAATAAAGACC

TCCTAATATTATTTG

5’ tagging of S. pneumoniae csRNA5; fwd; use with

JVO-14879

JVO-15452 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTAAAGCACAAGGGAT

AGTATAGAAGGAG

5’ tagging of S. pneumoniae F41; fwd; use with

JVO-14887

JVO-15453 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTAATTGAATAGGAAT

CTGAAAGACTAGTAGC

5’ tagging of S. pneumoniae F20; fwd; use with

JVO-14988

JVO-15454 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTGGGGTCGTTACGGA

TTCGACAGGCATTATG

5’ tagging of S. pneumoniae tmRNA; fwd; use with

JVO-14996

JVO-15455 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTGTTAAGTGACGATA

GCCTAGGAGATACAC

5’ tagging of S. pneumoniae 5S rRNA; fwd; use with

JVO-14992

continued on next page
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Name Sequence (5’→3’) Purpose

JVO-15456 GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCTATAGAAACGCTGTG

GTGTACGACTTC

5’ tagging of S. pneumoniae 6S RNA; fwd; use with

JVO-14883

JVO-16298 TCACGGAGTATGGGACTTAATGTTCGAGAGGGTGAAATAAGTGTAGGCTGGAG

CTGCTTC

fwd primer to delete yggL in E. coli using pKD4

JVO-16299 CATCAGGCAGTTTTGCATTTGTCATCGCCCGTATGCTTTCGGTCCATATGAAT

ATCCTCCTTAG

rev primer to delete yggL in E. coli using pKD4

JVO-16300 TGAGGTACGCACCAGCGAACTTTTCGACGTTTGGTGGGACGACTACAAAGACC

ATGACG

fwd primer to 3xFLAG-tag E. coli yggL

JVO-16301 CATCAGGCAGTTTTGCATTTGTCATCGCCCGTATGCTTTCCATATGAATATCC

TCCTTAG

rev primer to 3xFLAG-tag E. coli yggL

JVO-16302 CAATGATTACGTACCGCGTCC fwd primer to verify yggL deletion

JVO-16303 GCGCATCATAGTCTTCCCTC rev primer to verify yggL deletion/tagging

JVO-16339 ACTATCAAATGCCCTGATTC NB E. coli RyeG

JVO-16340 CTGGAATTCGTCGATGTGCA NB E. coli yggL CDS

JVO-16349 GTTATCTGGCCTGGGAAGGT fwd primer to verify yggL tagging; use with

JVO-16303

JVO-16365 GAGTTGCGAACGGGTGAGTA fwd 16S rRNA for S. pneumoniae DNase treatment

control PCR

JVO-16366 TCAGACTTCCGTCCATTGCC rev 16S rRNA for S. pneumoniae DNase treatment

control PCR

JVO-16367 TCCTGTCTGGCAACGGATTG fwd cbf1 qPCR S. pneumoniae

JVO-16368 CCGTTTCAAAGGCATGGTGG rev cbf1 qPCR S. pneumoniae

JVO-16369 CCGTATGGCTCAATGGTGGA fwd gyrA qPCR S. pneumoniae

JVO-16370 TATAACGTTGAGCGGCAGCA rev gyrA qPCR S. pneumoniae

JVO-16384 GATGAGACAAAACTTATACACACAAAGC rev primer to verify intS deletion

continued on next page
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Table 5.11, continued.

Name Sequence (5’→3’) Purpose

JVO-16385 TAGTATATGTATCTATCACTGTTGATGATAATATCAGCACGTGTAGGCTGGAG

CTGCTTC

fwd primer to delete ryeG in E. coli using pKD4

JVO-16386 AAATCAAGACAATAGCGATGTAAAGCACTAAGTTTAAATTGGTCCATATGAAT

ATCCTCCTTAG

rev primer to delete ryeG in E. coli using pKD4

JVO-16387 CAAAGTGGAAGTCCTTATGTTAAGTATAA fwd primer to verify ryeG deletion

JVO-16388 GACCTTTGCTTATACATAACAGTCGT rev primer to verify ryeG deletion

JVO-16389 GATGCAATGGTGGGCGGACTGGCTTGATGAGAAGGTGGAGGACTACAAAGACC

ATGACG

fwd primer to 3xFLAG-tag E. coli intS

JVO-16390 ATTGCAAGACTTTGTGCTATTCGATAGTTGTTAAGGTCGCCATATGAATATCC

TCCTTAG

rev primer to 3xFLAG-tag E. coli intS

JVO-16391 GGCCTGCTGACGCTATTGAA fwd primer to verify intS tagging; use with

JVO-16384

JVO-16392 P-TTGGTTCTGGAGGGGGTTTGTT fwd primer to clone RyeG into pZE12;

phosphorylated

JVO-16393 GTTTTTCTAGAAAATTGCGCGCCAATCATGGC rev primer to clone RyeG into pZE12; XbaI

JVO-16396 GTTTTGGTACCATGGCAAAGAACCGTAGCCGT fwd primer to clone E. coli yggL into pZE12; KpnI

JVO-16397 GTTTTTCTAGATTAGTCCCACCAAACGTCGAAAAG rev primer to clone E. coli yggL into pZE12; XbaI

JVO-16411 AAATTGCGCGCCAATCATGGC rev primer for 14mer pulldown of E. coli RyeG

JVO-16446 GTTTTTCTAGACTTATACATAACAGTCGTTTTTTTAATTTATAAAATAATTC rev primer to clone RyeG into pZE12 (binds 40nt

dwnstr); XbaI; use with JVO-16392

JVO-16459 GTTTTTCTAGACAAAGAAATCAAGACAATAGCGATGTAAA rev primer to clone RyeG into pZE12 (binds 11nt

dwnstr); XbaI; use with JVO-16392

JVO-16507 GTTTTTTTTAATACGACTCACTATAGGGTTGGTTCTGGAGGGGGTTTGT fwd primer to amplify E. coli RyeG with a T7

promoter; use with JVO-16411

continued on next page
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Name Sequence (5’→3’) Purpose

JVO-16525 GTTTTGACGTCGCGTGATGTGTCACGATGCG fwd primer to clone the transcriptional unit of E. coli

yggL into pXG-1; AatII

JVO-16526 GTTTTTCTAGAGCGTGACGCTGCACTGGTA rev primer to clone the transcriptional unit of E. coli

yggL into pXG-1; XbaI

JVO-16531 GCTCTTCCAGCCACTTACGCACAATCGCCTGATGTTCTTCGGTCCATATGAAT

ATCCTCCTTAG

rev primer to truncate E. coli yggL; keeps

transcriptional unit of yggN intact. Use with

JVO-16298

JVO-16577 P-CTAGAGGCATCAAATAAAACGAAAGG fwd primer to generate a ctrl vector of pXG-1;

phosphorylated

JVO-16578 GTGCTCAGTATCTCTATCACTGAT rev primer to generate a ctrl vector of pXG-1; binds

the -1 position of the PLtetO-1 promoter

JVO-16602 ATACGCCCGGTAGTGATCTTATT fwd primer for colony PCR and sequencing in pXG-1

backbone

JVO-16648 GTTTTCTCGAGGCGTGATGTGTCACGATGCG fwd primer to clone the transcriptional unit of E. coli

yggL into pXG-1; XhoI; use with JVO-16526

JVO-16771 P-ATGCATTTAAGTTATCGTCTGCAGATAG fwd primer to delete SD sequence of RyeG on

plasmids; phosphorylated

JVO-16772 CATTGCCCACAACAAACTTTTCCCAGAACCAA rev primer to delete SD sequence of RyeG on

plasmids

JVO-16791 P-GCGTGATGTGTCACGATGCG fwd primer to clone the transcriptional unit of E. coli

yggL into pXG-1; phosphorylated; use with

JVO-16526

JVO-16792 CTCGAGGTGAAGACGAAAGG rev primer to PCR pXG-1 in order to blunt clone

inserts; binds at the XhoI site

continued on next page
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Table 5.11, continued.

Name Sequence (5’→3’) Purpose

JVO-16793 GTTTTTCTAGAGGCATCAAATAAAACGAAAGG fwd primer to PCR pXG-1 in order to blunt clone

inserts; binds at the XbaI site and is cleavable

JVO-16794 GTTTTAAGCTTCTAGCATAACCCCTTGGGG fwd primer to PCR pCRT7; use with JVO-16578 for

sRNA cloning

JVO-16795 P-AGCTTCTAGCATAACCCCTTGG fwd primer to make a ctrl plasmid of pCRT7;

phosphorylated; use with JVO-16578

JVO-16796 GTTTTAAGCTTAAATTGCGCGCCAATCATGGC rev primer to clone RyeG into pCRT7; HindIII; use

with JVO-16392

JVO-16797 GTTTTAAGCTTCTTATACATAACAGTCGTTTTTTTAATTTATAAAATAATTC rev primer to clone RyeG into pCRT7 (binds 40nt

downstream of 3’ end); HindIII; use with JVO-16392

JVO-16798 GTTTTAAGCTTCAAAGAAATCAAGACAATAGCGATGTAAA rev primer to clone RyeG into pCRT7 (binds 11nt

downstream of 3’ end); HindIII; use with JVO-16392

JVO-16825 CAGCTCTAATGCGCTGTTAATCAC fwd primer for colony PCR and sequencing of

pCRT7

JVO-16826 ATCGGTGCGGGCCTCTTC rev primer for colony PCR and sequencing of pCRT7

JVO-16833 ACCAACCTAATTTCTCCTCCTC rev primer for toe printing of RyeG; binds 60 nt from

the 3’ end

JVO-16871 P-CAATGATGCATTAAAGTTATCGTCTGC fwd primer to introduce stop codon into RyeG ORF3

on plasmids; phosphorylated; use with JVO-16550

JVO-16872 GTTTTGGTACCTTGTGGGCAATGATGCA fwd primer to clone RyeG ORF3 into pZE12/pCRT7;

KpnI

JVO-16873 GTTTTTCTAGATTATTGTAATATCTCCTCTATC rev primer to clone RyeG ORF3 into pZE12; XbaI

JVO-16874 GTTTTAAGCTTTTATTGTAATATCTCCTCTATC rev primer to clone RyeG ORF3 into pCRT7; HindIII

JVO-16907 P-CAATGATGCATTTAAGTAATCGTCTGC fwd primer to introduce stop codon into RyeG ORF2

on plasmids; phosphorylated; use with JVO-16550

continued on next page



148
C

hapter
5.

M
aterials

&
M

ethods
Table 5.11, continued.

Name Sequence (5’→3’) Purpose

JVO-16908 GTTTTGGTACCGTGGGCAATGATGCATTTAAG fwd primer to clone RyeG ORF2 into pZE12/pCRT7;

KpnI

JVO-16909 GTTTTTCTAGACTATAATACCAACCTAATTTCTCC rev primer to clone RyeG ORF2 into pZE12; XbaI

JVO-16910 GTTTTAAGCTTCTATAATACCAACCTAATTTCTCC rev primer to clone RyeG ORF2 into pCRT7; HindIII

JVO-16912 GCCACCTGATTGGGTGGCTTC rev primer for in vitro transcription of shortened

csRNA1; use with JVO-15297

JVO-16913 GCCACCGAATGCGGTGACTC rev primer for in vitro transcription of shortened

csRNA3; use with JVO-14876

JVO-16914 GCCACCCATACAGGCGAC rev primer for in vitro transcription of shortened

csRNA5; use with JVO-14880

JVO-16915 GCACCTAGTTTCCTAGATGCTAGC rev primer for in vitro transcription of shortened

F41; use with JVO-14888

JVO-16946 CCCACGGTACCTTTCTCCTC Rev primer to mutate RyeG on pCRT7; use with

JVO-16871/16907

JVO-17434 CCTGATTGGGTGGCTTCATT NB probe for S. pneumoniae csRNA1

JVO-17435 CGGTGGAGTTAAGGGAGATTA NB probe for S. pneumoniae csRNA2

JVO-17946 TAAAGTTAGGAGGTCTTTATTTAAT NB probe 5’ end of S. pneumoniae csRNA1/2

JVO-17953 GAAATCCTCATCTCCCCACC NB probe S. pneumoniae comC

M13 fwd GTAAAACGACGGCCAG plasmid sequencing

M13 rev CAGGAAACAGCTATGAC plasmid sequencing

pZE-A GTGCCACCTGACGTCTAAGA plasmid sequencing

pZE-Xba TCGTTTTATTTGATGCCTCTAGA plasmid sequencing

RNA34 GGGAGACCUAGCCU Negative ctrl for pull-downs

RNA35 AGGCUAGGUCUCCC-Biotin 2’-O-methyl-RNA oligo adaptor with 3’ biotin tag
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5.4 General methods

All solutions, media and equipment mentioned in this section are listed in 5.1 and

5.2. For work with RNA, only DEPC-treated water was used.

5.4.1 Escherichia coli

5.4.1.1 Culture

E. coli was grown on LB agar plates at 37 °C. Single colonies were then inoculated in

2 ml LB and grown overnight at 37 °C with shaking at 220 rpm. 1:100 dilutions of the

overnight cultures were used in order to start the main culture, which was grown

in LB at 37 °C and 220 rpm. If necessary, the following antibiotics were added to the

plates or the liquid medium:

• Ampicillin/carbenicillin (Amp/Carb): 100µg/ml

• Chloramphenicol (Cm): 20µg/ml

• Kanamycin (Km): 50µg/ml

5.4.1.2 Competent cells and transformation

For transformation, electrocompetent cells were prepared by growing 100 ml cells to

an OD600 nm of 0.4, which were then cooled to 4 °C and washed once with 15 ml ice-

cold water, followed by two washes with 10 ml of ice-cold 10 % glycerol. The pellet

was resuspended in 0.5 ml ice-cold 10 % glycerol and split into 80µl aliquots that

were either used directly for transformation or were stored at –80 °C.

For transformation, one aliquot was thawed on ice. 1µl of a plasmid or PCR

product was added to a pre-chilled 0.1 cm cuvette and the electrocompetent cells

added. After incubation for 30–60 s on ice, an electrical pulse (1.8 kV, 200 Ω, 25µF)

was used to electroporate the cells. Recovery of the cells was performed by addition

of 1 ml of 37 °C LB for 1–2 h at 37 °C and 50 rpm. The cells were then plated on LB

agar plates.
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5.4.1.3 Gene inactivation

Gene inactivation mostly followed a published protocol (Datsenko and Wanner,

2000). Briefly, a strain carrying the pKD46 plasmid, which carries the λRED recom-

binase and is temperature-sensitive, was grown overnight at 28 °C. The next day, the

overnight culture was diluted 1:300 in 50 ml LB containing 0.2 % L-arabinose and

grown at 28 °C to an OD600 nm of 0.5. Electrocompetent cells were prepared and trans-

formed with 800–1,000 ng of a gel-purified PCR product containing a kanamycin

resistance cassette. The PCR product was obtained using the pKD4 plasmid and

primers containing the flanking regions of the gene of interest. The transformed

cells were streaked on LB agar plates and incubated at 37 °C overnight. The deletion

was verified by PCR.

5.4.1.4 3xFLAG-tagging of genes

3xFLAG-tagging of genes mostly followed a published protocol (Uzzau et al., 2001).

The steps are the same as described for the gene inactivation, except that the PCR

product was obtained using the pSUB11 plasmid.

5.4.1.5 P1 transduction

In order to transduce gene knockouts or 3xFLAG-tagged genes to a recipient strain,

transduction with phage P1 was used. To obtain a phage lysate, an overnight culture

of the strain carrying the mutation was diluted in 10 ml 5 mM CaCl2 and grown

for 30 min. 200µl of a P1 lysate obtained from a wild-type strain was added and

the culture grown for 2–3 h. Lysis was stopped with 300µl chloroform, followed by

vortexing and storage in a glass tube at 4 °C.

Transduction was performed using 1 ml of an overnight culture of the recipient

strain, which was resuspended in 500µl P1 buffer. 5, 20 or 40µl P1 lysate was added

and incubated for 30 min at 37 °C without shaking. Lysis was stopped with 1 ml

LB containing 0.1 M sodium citrate. After growth at 37 °C and 220 rpm, the cells

were collected in 100µl LB, streaked on LB agar plates containing 5 mM sodium

citrate and grown at 37 °C. Single colonies were re-streaked twice on LB agar plates

containing 5 mM sodium citrate and verified by PCR.
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5.4.1.6 Removal of antibiotics resistance

To remove antibiotics resistance cassettes introduced by knockouts or 3xFLAG-

tagging, a published protocol was mostly followed (Datsenko and Wanner, 2000).

Briefly, the mutant strain was made electrocompetent and transformed with the

temperature-sensitive pCP20 plasmid that carries the Flp recombinase. Recovery and

overnight growth on plates were performed at 28 °C. Single colonies were streaked

on three plates containing either no antibiotics, only Amp/Carb or only Km. The

cured strain only grows on the plate without antibiotics and was additionally veri-

fied by PCR.

5.4.1.7 Cloning

To obtain plasmids with the desired inserts, inserts were generated by PCR with

flanking restriction sites. Restriction digestion on the insert and the plasmid was

then performed using the appropriate enzymes and the manufacturer’s instructions.

75 ng of the gel-purified insert was then ligated with 25 ng of the linearized plasmid

using 1 U T4 DNA ligase for ≥1 h at room temperature in a 10µl reaction. 1µl of the

ligation reaction was used to transform electrocompetent E. coli cells.

5.4.1.8 Growth curves

Growth curves were performed by scraping an agar plate of the strain of interest and

diluting it to a starting OD600 nm of 0.005 in a transparent 96 well plate. Growth and

measurements were performed using a microplate reader. Alternatively, the dilution

was performed in 50 ml LB and the measurements performed manually.

5.4.2 Streptococcus pneumoniae

5.4.2.1 Culture

S. pneumoniae was grown on tryptic soy agar containing 5 % sheep blood (TSA-B)

plates at 37 °C and 5 % CO2. Pre-cultures were grown by scraping whole plates and

diluting the bacteria in pre-warmed THY and growing them to an OD600 nm of 0.5
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at 37 °C without shaking. The main culture was then prepared by refreshing the

pre-culture in THY to a starting OD600 nm of 0.5 and grown at 37 °C without shaking.

5.4.2.2 Gene inactivation and 3xFLAG-tagging

Knockout and 3xFLAG-tagging were performed by homologous recombination

using a PCR product containing a spectinomycin cassette that was flanked by

∼1,000 bp of the gene of interest. The PCR product was obtained by overlapping

PCR of the up- and downstream regions of the gene of interest as well as a specti-

nomycin resistance cassette amplified from pSP72::Sp. To obtain competent cells,

a wild-type strain was grown to an OD620 nm of 0.5 at 37 °C without shaking in

C+Y (Lacks and Hotchkiss, 1960), pH 8. This pre-culture was refreshed in the same

medium to a starting OD620 nm of 0.05 and grown to an OD620 nm of 0.13 at 37 °C

without shaking. 1:10 dilutions in pre-warmed C+Y, pH 8 were incubated for 30 min

at 30 °C, followed by addition of CSP-1 (for strain R6) or CSP-2 (for strain TIGR4) to

a concentration of 100 ng/ml for 15 min. 100 ng/ml of the PCR product was added,

followed by incubation for 60 min at 30 °C and 90 min at 37 °C. Cells were streaked

on TSA-B plates containing 200µg/ml spectinomycin and grown at 37 °C and 5 %

CO2. Verification of the mutants was performed by PCR.

5.4.2.3 Growth curves

Growth curves were performed as described for E. coli.

5.4.3 DNA and RNA methods

5.4.3.1 Polymerase chain reaction (PCR)

To amplify DNA, PCR was performed using the Taq or Phusion DNA polymerases

and purification was performed using the NucleoSpin Gel and PCR clean-up kit

following the manufacturer’s instructions. Oligonucleotides used are listed in Table

5.11.
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5.4.3.2 Agarose gel electrophoresis

To separate DNA, 5 volumes of sample were mixed with 1 volume of 6× DNA load-

ing buffer and run using 0.8–2 % (w/v) agarose gels in 1× TAE for 30–90 min at

100–160 V. Gels were stained in an ethidium bromide bath for 15 min before visual-

ization.

5.4.3.3 Hot phenol RNA extraction

To isolate total RNA from bacteria, 4 OD600 nm of cells was mixed with 0.2 volumes

of ice-cold stop mix followed by freezing in liquid nitrogen. Samples were thawed

on ice and the cells pelleted. For E. coli, 600µl of 1× TE with 0.5 mg/ml lysozyme

were added. For S. pneumoniae, 600µl of 1× TE with 10 mg/ml lysozyme were added

followed by incubation at 37 °C for 10 min. The rest of the protocol did not differ be-

tween the organisms: 60µl of 10 % (w/v) SDS was added and the solution incubated

for 1–2 min at 64 °C. 66µl 3 M NaOAc, pH 5.2 and 750µl acidic phenol were added

and incubated for 6 min at 64 °C. After cooling the tubes on ice, phases were sepa-

rated for 15 min at 16,100 g and 4 °C. The aqueous phase was transferred to a PLG

tube and 750µl chloroform was added. Phases were separated for 15 min at 16,100 g

and 4 °C. The aqueous layer was transferred to a new tube and 1.4 ml of 30:1 mix,

pH 6.5 was added to precipitate the RNA for ≥1 h at –20 °C. The RNA was collected

by centrifugation for 30 min at 16,100 g and 4 °C. The pellet was washed with 350µl

70 % ethanol followed by centrifugation for 10 min at 16,100 g and 4 °C. The purified

RNA was then diluted in water and stored at –20 °C.

5.4.3.4 Phenol/chloroform/isoamyl alcohol (P/C/I) RNA extraction

RNA extraction using P/C/I was performed by adding 1 volume of acidic P/C/I

to the sample. Phases were separated for 15 min at 16,100 g and 4 °C. The aqueous

layer was transferred to a new tube and 3 volumes of 30:1 mix, pH 6.5 were added

to precipitate the RNA for ≥1 h at –20 °C. If the RNA concentration was expected

to be low, 1µl GlycoBlue was added as co-precipitant. The RNA was collected by

centrifugation for 30 min at 16,100 g and 4 °C. The pellet was washed with 350µl



154 Chapter 5. Materials & Methods

70 % ethanol followed by centrifugation for 10 min at 16,100 g and 4 °C. The purified

RNA was then diluted in water and stored at –20 °C.

5.4.3.5 DNase I digestion of RNA

To remove DNA from an RNA sample, DNA was digested by addition of 1 U of

DNase I per mg of RNA and incubation at 37 °C for 45 min. The DNase-treated

RNA was then purified using P/C/I extraction.

5.4.3.6 Denaturing polyacrylamide gel electrophoresis (PAGE)

To separate RNA, 1 volume of sample was mixed with 1 volume of 2× RNA loading

buffer, incubated for 5 min at 95 °C and then put on ice. The samples were then run

using 6–10 % polyacrylamide gels with 7 M urea in 1× TBE for 90–150 min. Gels

were either stained in an ethidium bromide bath for 15 min before visualization or

blotted.

5.4.3.7 Northern blotting

After RNA PAGE, gels were transferred onto Hybond+ membranes in 1× TBE at

50 V for 1 h using a wet blotting system. The RNA was crosslinked to the membrane

at 0.12 J and 254 nm followed by pre-hybridization in 15 ml Roti Hybri-Quick for 1 h

at 42 °C. 2–5 pmol of a radioactively labeled DNA oligonucleotide was added and

hybridized at 42 °C overnight. The membrane was washed at 42 °C for 15 min each

with 5× SSC-S, 1× SSC-S and 0.5× SSC-S. Then, the membrane was dried, sealed in

plastic foil and exposed on a phosphor screen.

10 pmol labeled DNA oligonucleotides were generated by phosphorylation using

0.5µl T4 polynucleotide kinase, 10µCi 32P-γ-ATP in a 10µl reaction for 45 min at

37 °C. The reaction was purified from unincorporated nucleotides by centrifugation

using G-25 columns.

5.4.3.8 In vitro transcription

To synthesize RNA in vitro, the sequence of interest was amplified with a T7 pro-

moter by PCR. Transcription was performed using the TranscriptAid kit following
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the manufacturer’s instructions. 40µl transcription reaction were mixed with 40µl

2× RNA loading buffer and separated using 6 % denaturing PAGE. The gel was

stained with ethidium bromide and the band of expected size was excised. RNA

was extracted from the gel by addition of 750µl of RNA extraction buffer followed

by rotating overnight at 4 °C. The supernatant was then subjected to P/C/I extrac-

tion and the size of the RNA checked on denaturing PAGE.

5.4.4 Protein methods

5.4.4.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

To separate proteins, cell pellets were dissolved in 100µl of 1× protein loading

buffer. Alternatively, 4 volumes of sample were mixed with 1 volume of 5× pro-

tein loading buffer. The samples were then incubated for 5 min at 95 °C and kept at

room temperature. Separation was performed using 12 or 15 % SDS polyacrylamide

gels in 1× running buffer for 1.5–3 h at 45 mA. Gels were then either stained using

Coomassie or blotted.

5.4.4.2 Western blotting

After SDS-PAGE, gels were transferred to PVDF membranes in 1× transfer buffer

at 340 mA for 1.5 h using a semidry blotting system. Prior to blotting, the mem-

branes were activated by incubation for 90 s in methanol, 5 min in water and 5 min

in 1× transfer buffer. After blotting, the membranes were blocked in 5 % powdered

milk in 1× TBS-T for 1 h at room temperature. Following 3 washes for 2 min with

1× TBS-T, the appropriate primary antibody was added (diluted in 1× TBS-T and

3 % BSA) and incubated overnight at 4 °C. The membranes were then washed three

times for 15 min with 1× TBS-T and the appropriate secondary antibody (diluted

in 1× TBS-T) was added and incubated for 1 h at room temperature. Finally, the

membranes were washed twice for 10 min with 1× TBS-T and then developed using

chemiluminescence detection solution.
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5.5 Grad-seq

All solutions, media and equipment mentioned in this section are listed in 5.1 and

5.2. The Grad-seq method described here is based on a previous study in Salmonella

(Smirnov et al., 2016) and has been published based on its application to S. pneumo-

niae (Hör et al., 2020a). For all steps, only DEPC-treated water was used.

5.5.1 Preparation of glycerol gradients

The middle of a clean open-top polyallomer tube was marked. The 10 % glycerol

solution was filled in so it exceeded the mark at the middle of the tube by ∼2–

3 mm. Using a 70 mm injection needle and a syringe, the 40 % glycerol solution was

then injected underneath the 10 % glycerol solution until the interphase reached

exactly the mark at the middle of the tube. The tube was closed with a short cap and

the liquid inside of the cap carefully removed. Using the Gradient Master Station, a

linear 10–40 % glycerol gradient was prepared with the 10–40 % (w/v) glycerol short

cap program. The prepared gradients were stored at 4 °C until needed.

5.5.2 Preparation of lysates

5.5.2.1 Escherichia coli

E. coli K-12 MG1655 was grown in 100 ml LB to an OD600 nm of 2.0 (early stationary

phase). Following cooling in an ice bath, the cells were washed three times with

ice-cold 1× TBS and collected in 500µl lysis buffer A (+ 20 U/ml DNase I, 200 U/ml

RNase inhibitor and 0.2 % (v/v) Triton X 100), followed by addition of 750µl 0.1 mm

glass beads. Mechanical lysis was performed by vortexing (highest power) for 30 s

followed by 15 s cooling on ice. This process was repeated ten times. Finally, the

lysate was cleared by centrifugation for 10 min at 16,100 g and 4 °C.

5.5.2.2 Streptococcus pneumoniae

S. pneumoniae TIGR4 was grown in 400 ml THY to an OD600 nm of 0.5 (mid-

logarithmic phase). Following cooling in an ice bath, the cells were washed three

times with ice-cold 1× TBS, collected in 500µl lysis buffer A (+ 20 U/ml DNase
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I, 200 U/ml RNase inhibitor and 0.2 % (v/v) Triton X 100) and transferred to a

2 ml FastPrep tube with lysing matrix E. Mechanical lysis was performed using the

FastPrep-24 instrument at 6 m/s for 30 s. Finally, the lysate was cleared by centrifu-

gation for 30 min at 16,100 g and 4 °C.

5.5.3 Gradient centrifugation and fractionation

10µl of the cleared lysate was mixed with 1 ml TRIzol for the RNA input control and

20µl were mixed with 20µl 5× protein loading buffer for the protein input control.

Then, 200µl (E. coli) or 400µl (S. pneumoniae) lysate were layered on top of the 10–

40 % glycerol gradient after the same volume was removed from the gradient to

prevent spilling. Gradient centrifugation was performed for 17 h at 4 °C and 100,000 g

(23,700 rpm) using an SW 40 Ti rotor. Acceleration and deceleration were both set to

9.

Fractionation of the gradient was performed manually by pipetting 20 590µl

fractions from the top of the gradient using a P-1,000. The pellet was collected by

resuspension in the remaining ∼300µl. To obtain a UV profile of the gradient, the

A260 nm values of each fraction were measured. 90µl of each fraction were mixed

with 30µl 5× protein loading buffer to obtain the samples for protein analysis and

stored at –20 °C.

5.5.4 RNA extraction

50µl of 10 % SDS (25µl for the pellet) and 600µl acidic P/C/I (300µl for the pel-

let) were added to the remaining 500µl of each fraction. To ensure dissociation of

RNPs, each fraction was vortexed for 30 s and let rest at room temperature for 5 min.

Phases were separated by centrifugation for 15 min at 16,100 g and 4 °C. The aque-

ous phases were collected and precipitated by addition of 1µl GlycoBlue and 1.4 ml

of ice-cold 30:1 mix, pH 6.5 and incubation for ≥1 h at –20 °C. The RNA was col-

lected by centrifugation for 30 min at 16,100 g and 4 °C. The pellet was washed with

350µl of 70 % ethanol followed by centrifugation for 10 min at 16,100 g and 4 °C. The

lysate input control stored in TRIzol was extracted according to the manufacturer’s

instructions, except that 400µl chloroform was used, 1µl GlycoBlue was added and

that precipitation was performed using 30:1 mix, pH 6.5.
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The purified RNA was dissolved in 40µl water and 5µl 10× DNase I buffer, 4µl

DNase I, 0.5µl RNase inhibitor and 0.5µl water were added. DNA was then digested

by incubation for 45 min at 37 °C. 150µl water and 200µl acidic P/C/I were added

and P/C/I extraction performed as above. The final RNA pellet was diluted in 35µl

water and stored at –80 °C.

5.5.5 Northern and western blotting

For northern and western blotting, equal volumes of each fraction were loaded on

the gels to keep the information of gradient separation.

5.5.6 RNA-seq

5.5.6.1 Library preparation and sequencing

For RNA-seq, 5µl purified RNA from each gradient fraction plus the pellet were di-

luted in 45µl water. Of this dilution, 10µl were mixed with 10µl of a 1:100 dilution

of the ERCC spike-in mix 2. Library preparation and sequencing was performed

by Vertis Biotechnologie AG. Briefly, the RNA was fragmented using ultrasound (4

pulses of 30 s at 4 °C) and the 3’ adapter was ligated. First strand cDNA synthesis

was carried out using M-MLV reverse transcriptase. Then, the 5’ Illumina TruSeq se-

quencing adapter was ligated to the 3’ end of the antisense cDNA, followed by PCR

amplification to 10–20 ng/µl. The PCR reaction was purified and pooled with ra-

tios according to RNA concentration of the fractions. A preparative agarose gel was

run to size-select a range of 200–550 bp for the cDNA, which was subsequently se-

quenced on an Illumina NextSeq 500 instrument using 75 nt single-end read length.

5.5.6.2 RNA-seq analysis

Sequencing reads were trimmed and clipped using cutadapt (Martin, 2011). Read

filtering, read mapping, nucleotide-wise coverage calculation and genome feature-

wise counting were performed using READemption (Förstner et al., 2014) and sege-

mehl (Hoffmann et al., 2014). The genome versions used were NC_000913.3 for E. coli

MG1655 and NC_003028.3 for S. pneumoniae TIGR4. ERCC spike-in-based normaliza-
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tion and further analyses were performed using the tool GRADitude1 (Di Giorgio,

Hör, Vogel and Förstner, unpublished). These steps were performed by Silvia Di

Giorgio (ZB MED, Cologne). Based on quantified northern blots, the normalized

data was manually adjusted to remove left-over disturbances in the data: for E. coli,

fractions 5, 7 and 8 were multiplied by 1.5, 4.5 and 28, respectively (see 2.4.3); for S.

pneumoniae, fractions 3, 4, 5, 6, 7 and 15 were multiplied by 1.15, 1.15, 0.85, 0.95, 0.85

and 1.25, respectively.

5.5.7 Mass spectrometry

5.5.7.1 Sample preparation and MS

Gradient protein samples were homogenized by ultrasound using a Bioruptor Plus

instrument (5 cycles of 30 s on followed by 30 s off, high power, at 4 °C), followed

by centrifugation for 15 min at 16,100 g and 4 °C. 20µl of the cleared protein sample

was mixed with 10µl UPS2 spike-in (diluted in 250µl 1.25× protein loading buffer).

Next, 50 mM DTT were added and the samples were reduced for 10 min at 70 °C,

followed by alkylation with 120 mM iodoacetamide for 20 min at room temperature

in the dark. The samples were precipitated by addition of four volumes of acetone

and incubation at –20 °C overnight. After four washes with acetone at –20 °C, the

pellets were dissolved in 50µl 8 M urea and 100 mM ammonium bicarbonate, pH 8.

0.25µg Lys-C were added to digest the proteins for 2 h at 30 °C. Subsequent

dilution to 2 M urea by addition of 150µl 100 mM ammonium bicarbonate, pH 8

was followed by overnight digestion with 0.25µg trypsin at 37 °C. C-18 Stage Tips

(Rappsilber et al., 2003) were used to desalt the peptides, which were then eluted

with 60 % acetonitrile and 0.3 % formic acid. Finally, the peptides were dissolved in

2 % acetonitrile and 0.1 % formic acid and subjected to nanoLC-MS/MS.

5.5.7.2 NanoLC-MS/MS analysis

Nano liquid chromatography followed by tandem mass spectrometry (nanoLC-

MS/MS) was performed by the lab of Andreas Schlosser at the Rudolf Virchow

Center in Würzburg using an Orbitrap Fusion instrument equipped with a PicoView

1https://foerstner-lab.github.io/GRADitude/
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ion source coupled to an EASY-nLC 1000 and similar to Cossa et al. (2020). The pep-

tides were separated with a 140 min linear gradient from 3 to 40 % acetonitrile and

0.1 % formic acid at a flow rate of 500 nl/min. Both MS and MS/MS scans were ac-

quired in the Orbitrap analyzer with a resolution of 60,000 for MS scans and 15,000

for MS/MS scans. HCD fragmentation with 35 % normalized collision energy was

applied. A top speed data-dependent MS/MS method with a fixed cycle time of 3 s

was used. Dynamic exclusion was applied with a repeat count of 1 and an exclusion

duration of 60 s; singly charged precursors were excluded from selection. Minimum

signal threshold for precursor selection was set to 50,000. Predictive AGC was used

with a target value of 2× 105 for MS scans and 5× 104 for MS/MS scans. EASY-IC

was used for internal calibration.

Raw MS data files were analyzed with MaxQuant version 1.5.7.4 (Cox and

Mann, 2008). Database search was performed using Andromeda (integrated into

MaxQuant) against the UniProt database for E. coli MG1655 (UP000000625, organ-

ism identifier: ECOLI) or S. pneumoniae TIGR4 (UP000000585, organism identifier:

STRPN), a database containing the UPS2 spike-in and a database containing com-

mon contaminants. The search was performed with tryptic cleavage specificity with

3 allowed miscleavages. A false-discovery rate of 1 % on both protein and peptide

level controlled protein identification. In addition to the MaxQuant default settings,

the search was performed against the following variable modifications: protein N-

terminal acetylation, Gln to pyro-Glu formation (N-terminal Gln) and oxidation

of Met. For protein quantitation, the LFQ intensities were used (Cox et al., 2014).

Proteins with less than 2 identified razor/unique peptides were dismissed.

Normalization was performed by Silvia Di Giorgio (ZB MED, Cologne) based on

the UPS2 spike-in using the tool GRADitude2 (Di Giorgio, Hör, Vogel and Förstner,

unpublished).

5.5.7.3 Data availability

The E. coli and S. pneumoniae Grad-seq datasets can be retrieved from a USB thumb

drive attached to the back of this thesis. The S. pneumoniae Grad-seq data have further

been published recently (Hör et al., 2020a).

2https://foerstner-lab.github.io/GRADitude/
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5.6 Methods used in chapter 2

This section describes the specific methods used in chapter 2, Grad-seq of Escherichia

coli. All solutions, media, equipment and bacterial strains mentioned in this section

are listed in 5.1, 5.2 and 5.3. All used oligonucleotides are listed in Table 5.11. For

work with RNA, only DEPC-treated water was used.

5.6.1 Purification of ribosomes

Crude purification of ribosomes mostly followed a previously published protocol

(Mehta et al., 2012). Briefly, 800 ml of an E. coli culture was grown to an OD600 nm

of ∼0.5–0.7 and washed once with 25 ml of ice-cold 1× TBS. The cell pellets were

snap-frozen in liquid nitrogen and stored at –80 °C. The pellets were resuspended

in 6 ml ice-cold lysis buffer B on ice. Lysis was performed by two lysis steps using a

french press at 10,000 psi. 75µl of 100 mM PMSF was added and the lysates cleared

by centrifugation for 30 min at 4 °C and 30,000 g using an SW 40 Ti rotor. 12.5 ml of

the supernatant was subsequently layered on top of a 12.5 ml 1.1 M sucrose cushion

made up in lysis buffer B. Next, the sample was centrifuged for 16 h at 4 °C and

100,000 g using a type 70 Ti rotor.

The pellet was gently washed with 500µl of storage buffer and finally dissolved

in 1 ml of storage buffer by gentle shaking for 2.5 h at 4 °C. After centrifugation for

5 min at 16,100 g and 4 °C, the concentration was measured, the purified ribosomes

aliquoted, snap-frozen in liquid nitrogen and stored at –80 °C.

5.6.2 Sucrose polysome gradient analysis

5.6.2.1 Analysis of total lysates

50 ml of an E. coli culture was grown to an OD600 nm of 2, followed by rapid fil-

tration and immediate freezing in liquid nitrogen. The cells were then thawed on

ice, resuspended in 1 ml of ice-cold lysis buffer C (+ 1 mM PMSF, 0.4 % Triton X 100,

20 U/ml DNase I and 200 U/ml RNase-inhibitor), transferred to a 2 ml FastPrep tube

with lysis matrix E and lysed using a FastPrep-24 instrument for 15 s at 4 m/s. The

lysate was cleared by centrifugation for 10 min at 4 °C and 16,100 g. Of the cleared
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lysate, 10µl was collected as input control. An equivalent of 15 A260 nm per ml of

the cleared lysate was layered on top of a linear 10–55 % (w/v) sucrose gradient (in

lysis buffer C + 5 mM CaCl2), which was formed in an open-top polyclear tube (see

5.5.1). The gradient was centrifuged for 2.5 h at 4 °C and 237,000 g (35,000 rpm) using

an SW 40 Ti rotor. Acceleration and deceleration were both set to 9. Subsequently,

the gradient was automatically fractionated into 20 fractions using a fractionator.

Simultaneously, a UV profile at 254 nm was recorded.

When the goal was to analyze RNA from the gradient, RNA extraction was

performed as for glycerol gradients (see 5.5.4), except that the vortexing step was

performed for 15 s and that DNase treatment was skipped. Northern blotting was

performed as for glycerol gradients (see 5.5.5).

When the goal was to analyze protein from the gradient, 4 volumes of sample

were mixed with 1 volume of 5× protein loading buffer and subjected to western

blotting as performed for glycerol gradients (see 5.5.5). If necessary, the protein con-

tent of each fraction was precipitated by addition of 1/10 volume of ice-cold 100 %

trichloroacetic acid and 1/10 volume of 0.15 % desoxycholate. The samples were

briefly shaken and let rest on ice for 10 min. After centrifugation at 16,100 g and 4 °C

for 10 min, the pellet was washed once with 400µl ice-cold acetone and dissolved in

50µl of 5× protein loading buffer diluted to 1× with 1 M Tris-HCl, pH 8.6.

5.6.2.2 Analysis of in vitro-reconstituted complexes

To test binding of RyeG or YggL to purified ribosomes (see 5.6.1), given amounts of in

vitro-transcribed RyeG or recombinant YggL (produced by the Recombinant Protein

Expression core unit at the Rudolf Virchow Center in Würzburg) were mixed with

purified ribosomes extracted from the corresponding knockout strain. Then, the vol-

ume was increased to 200µl lysis buffer B and the samples were incubated for 10 min

at 30 °C with shaking at 330 rpm to allow complex formation. The samples were sub-

sequently loaded on 10–40 % (w/v) sucrose gradients (in lysis buffer D), which were

formed in open-top polyclear tubes (see 5.5.1). Gradients were centrifuged for 14 h

at 4 °C and 71,000 g (20,000 rpm) using an SW 40 Ti rotor. Acceleration and decel-

eration were both set to 9. Fractionation as well as RNA and protein analysis were

performed as described in 5.6.2.1.
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5.6.3 Estimation of in vivo RNA copy numbers

Estimation of in vivo copy numbers of RyeG was performed as described previously

(Fröhlich et al., 2013). Briefly, RNA was extracted at the given time points by col-

lecting 4 OD600 nm of cells. The RNA was diluted in 40µl water and 10µl of each

time point (≈109 cells) was subjected to northern blotting. As reference, in vitro-

transcribed RyeG was loaded (0.05, 0.1, 0.5, 1 and 2.5 ng). RNA levels per cell were

based on determination of viable cell counts per OD600 nm as described in Sittka et al.

(2007).

5.6.4 Microscopy

Strains were grown on LB agar plates overnight. Plates were scraped and cultures

were inoculated in LB at a starting OD600 nm of 0.05. After 1.5 h of growth, 1 ml of

cells was collected and washed once with 1× TBS. Next, the cells were fixed with

500µl of 4 % paraformaldehyde for 15 min in the dark. 4µl were spotted on a cover

slip covered with 1.5 % agarose in 1× PBS to immobilize the cells and imaged using

a confocal microscope.

5.6.5 30S subunit toeprinting analysis

30S subunit toeprinting was performed as previously published (Hartz et al.,

1988; Smirnov et al., 2017b) with few changes. Briefly, 0.2 pmol unlabeled, in vitro-

transcribed RyeG and 0.5 pmol of a 5’-labeled DNA oligonucleotide (JVO-16833)

were denatured for 1 min at 95 °C in the presence of 0.8µl SB 5× –Mg in a total

volume of 3µl. After incubation on ice for 5 min, 1µl dNTPs (5 mM each) and 1µl

SB 1× Mg60 were added and the samples were incubated for 5 min at 37 °C. Next,

4 pmol purified 30S subunits (pre-activated for 20 min at 37 °C) was added to the

samples (SB 1×Mg10 was added to the control). After incubation for 5 min at 37 °C,

10 pmol uncharged fMet-tRNAMet
i was added to the corresponding sample.

Reactions were continued at 37 °C for 15 min, followed by addition of 100 U

SuperScript II reverse transcriptase and incubation for 20 min at 37 °C. Reactions

were stopped by addition of 100µl toeprint stop buffer. DNA was extracted by ad-

dition of 110µl P/C/I and extraction. Next, 5µl 3 M KOH was added and the RNA
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digested at 90 °C for 5 min. 10µl 3 M acetic acid, 1µl GlyoBlue and 300µl 30:1 mix,

pH 6.5 were added and the DNA precipitated at –20 °C overnight. Extraction was fin-

ished and the pellet washed once with 100µl of 70 % ethanol. The purified pellet was

dissolved in 10µl 1× RNA loading buffer, denatured for 3 min at 90 °C and subjected

to separation using a denaturing 8 % sequencing gel in presence of a RyeG-specific

sequencing ladder prepared using the DNA Cycle Sequencing kit according to the

manufacturer’s instructions. Gels were run for 1.5 h at 40 W, dried and exposed on a

phosphor screen.

5.6.6 Affinity purification followed by MS (AP/MS)

50 OD600 nm of the yggL-3xFLAG and wild-type strains were collected and washed

once with 1 ml of lysis buffer A. After resuspension in 800µl lysis buffer A, the

cells were transferred to a 2 ml FastPrep tube with lysis matrix E and lysed using a

FastPrep-24 instrument for 20 s at 4 m/s. The lysate was cleared for 10 min at 16,100 g

and 4 °C.

40µl of magnetic protein A/G beads were washed with 1 ml of lysis buffer A,

resuspended in 400µl lysis buffer A and 3µl anti-FLAG antibody was added. After

rotating for 45 min at 4 °C, the beads were washed twice with 400µl lysis buffer A.

600µl of the lysate was added to the beads with the coupled antibody and ro-

tated for 1.5 h at 4 °C. The beads were washed five times with 400µl lysis buffer A

and briefly spun down. The lysis buffer was removed, the beads were resuspended

in 35µl 1× LDS sample buffer with 50 mM DTT and the proteins eluted by incuba-

tion at 95 °C for 5 min. Alkylation, gel electrophoresis and MS were performed as

described in 5.7.2.

5.7 Methods used in chapter 3

This section describes the specific methods used in chapter 3, Grad-seq of

Streptococcus pneumoniae. Most of these methods have been published previously

in the corresponding paper (Hör et al., 2020a). All solutions, media, equipment and

bacterial strains mentioned in this section are listed in 5.1, 5.2 and 5.3. All used
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oligonucleotides are listed in Table 5.11. For work with RNA, only DEPC-treated

water was used.

5.7.1 MS2 pull-down and silver staining

MS2 pull-downs with in vitro-transcribed ncRNAs were performed as previously

described (Said et al., 2009; Smirnov et al., 2016), with some modifications. Briefly,

200 OD600 nm of S. pneumoniae TIGR4 wild type grown to mid-logarithmic phase were

used for each pull-down. The templates for the in vitro-transcribed bait ncRNAs were

created by overlapping PCR with ncRNA- and MS2-specific primers. Both 5’- and

3’-located MS2 tags were tried. Changes to most of the steps of the protocol were

tested in order to achieve pull-down of proteins: lysis conditions, number of cells per

pull-down, number of washes, MS2-MBP stocks, concentrations of bait RNAs and

MS2-MBP, folding of the bait RNAs, amount of amylose resin and more. 5’-MS2-

tagged ChiX was used as a positive control with Salmonella lysates, which achieved

pull-down of Hfq, indicating that a pneumococcus-specific issue prevented recovery

of proteins.

Silver staining of gels was performed using 15 % SDS-PAGE to separate the pro-

teins, followed by incubation in fixing solution for 1–3 h. Then, the gel was washed

twice in 50 % ethanol for 20 min, incubated for 1 min in sensitizer and washed three

times for 20 s with water. After incubation in silver staining solution for 20 min and

two 20 s washes with water, the gel was developed using developer solution for 5–

30 min. The process was stopped by incubation in silver stop solution for 2 min and

the gel rinsed with water.

5.7.2 14mer pull-down

5.7.2.1 14mer pull-down assay

The 14mer pull-down used in this thesis (see 3.4.2) is based on a previously pub-

lished method (Treiber et al., 2017, 2018). To obtain in vitro-transcribed RNAs car-

rying the 14mer tag, PCR templates were generated with a 39 nt 5’ overhang:

GTTTTTTTTAATACGACTCACTATAGGGAGACCTAGCCT, where highlighted nu-

cleotides represent the T7 promoter, the 14mer tag and the TSS. The negative control



166 Chapter 5. Materials & Methods

for the pull-down experiments was an RNA oligonucleotide only containing the

14mer tag (GGGAGACCUAGCCU).

For the pull-down, 100µl magnetic streptavidin beads was washed three times

with 1 ml of lysis buffer E. The rest of the protocol was performed at 4 °C. 4µg of

a 3’-biotinylated, 2’-O-methyl-modified RNA adaptor complementary to the 14mer

tag of the bait RNAs (AGGCUAGGUCUCCC-biotin) was coupled to the washed

beads for 1 h with rotation. Following two washes with 1 ml of lysis buffer E, the

adaptor-coupled beads were resuspended in 1 ml of lysis buffer E. Two enable pre-

clearing of the lysate, the beads were split into two tubes with 500µl each. One of

the tubes was used to couple 10µg per 100 nt of bait RNA rotating overnight, the

other was stored.

100 OD600 nm of S. pneumoniae TIGR4 wild type was lysed and cleared as de-

scribed in 5.5.2.2, except that the cells were resuspended in 500µl lysis buffer F. Pre-

clearing of the lysate was performed by incubation with the stored beads for 3.5 h

with rotation. The beads were subsequently removed by centrifugation for 10 min at

16,100 g. Next, the bait RNA-coupled beads were washed twice with lysis buffer E

and incubated with the pre-cleared lysate supernatant for 2 h to allow the capture

of interacting proteins of the bait RNAs. Finally, the beads were washed with 1 ml

each of wash buffer A, wash buffer B and lysis buffer F.

To elute the captured proteins, the beads were resuspended in 35µl of 1× LDS

sample buffer containing 50 mM DTT and boiled for 5 min. The samples were alky-

lated in presence of 120 mM iodoacetamide for 20 min in the dark and run on a

precast 4–12 % Bolt Bis-Tris plus gel using 1× MES buffer. The gel was stained with

SimplyBlue Coomassie and each lane of the gel was either cut into 11 pieces or spe-

cific prominent bands were cut. To prepare the gel pieces for LC/MS-MS, they were

destained with 30 % acetonitrile in 100 mM ammonium bicarbonate, pH 8. Next, the

pieces were shrunk using 100 % acetonitrile and dried. Digestion was performed by

addition of 0.1 µg trypsin per gel piece and incubation overnight at 37 °C in 100 mM

ammonium bicarbonate, pH 8. The supernatant was removed and the peptides were

extracted from the gel pieces with 5 % formic acid. Finally, the supernatant was

pooled with the extracted peptides.
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5.7.2.2 14mer pull-down nanoLC-MS/MS analysis

LC-MS/MS of the 14mer pull-downs was performed by the lab of Andreas Schlosser

at the Rudolf Virchow Center in Würzburg similar to the protocol described in

5.5.7.2 with some exceptions: An LTQ-Orbitrap Velos Pro instrument was used. A

30 min linear gradient from 3 to 30 % acetonitrile and 0.1 % formic acid was used. MS

scans were acquired in the Orbitrap analyzer with a resolution of 30,000 at m/z 400,

MS/MS scans were acquired in the Orbitrap analyzer with a resolution of 7,500 at

m/z 400 using HCD fragmentation with 30 % normalized collision energy. A TOP5

data-dependent MS/MS method was used; dynamic exclusion was applied with a

repeat count of 1 and an exclusion duration of 30 s. Predictive AGC was used with

a target value of 1 × 106 for MS scans and 5 × 104 for MS/MS scans. Lock mass

option was applied for internal calibration in all runs using background ions from

protonated decamethylcyclopentasiloxane.

5.7.3 CLIP-seq and CLIP-seq analysis

For CLIP-seq of Cbf1-3xFLAG, 800 ml S. pneumoniae cbf1-3xFLAG was grown to an

OD600 nm of 0.5. Half of the culture was crosslinked, whereas the other half was used

as the non-crosslinked control. The rest of the steps were performed as previously

published (Holmqvist et al., 2018). Analysis of the CLIP-seq data was performed

by Thorsten Bischler (Core Unit SysMed) as described previously (Chihara et al.,

2019). Peaks with a log2 fold-change of ≥1.0 and an adjusted p-value of ≤0.01 were

considered significant.

5.7.4 In vitro RNase assay

400 ng of in vitro-transcribed ncRNAs were digested with 3.5µg recombinant Cbf1

(produced by the Recombinant Protein Expression core unit at the Rudolf Virchow

Center in Würzburg) in a total volume of 20µl. The buffer conditions were chosen ac-

cording to a previous publication (Fang et al., 2009): 50 mM Tris-HCl, pH 8, 100 mM

KCl. To test the dependence on divalent cations, water, 5 mM MgCl2 or 5 mM MnCl2

were added. 10 % of the reaction volume was taken as samples 0, 5 and 15 min after

addition of Cbf1. Immediately after the 0 min time point was taken, the reaction was
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shifted to 37 °C. The samples were collected on ice in RNA loading buffer to stop

the reaction and analyzed using northern blotting.

5.7.5 Rifampicin RNA stability assay

Cells were grown to an OD600 nm of 0.5 and 8 ml were collected as the untreated

0 min control. Transcription was stopped with 500µg/ml rifampicin, followed by

collection of 8 ml samples after 2, 4, 8, 16 and 32 min. RNA of these samples was

purified using hot phenol extraction (see 5.4.3.3) and DNase digestion (see 5.4.3.5).

Of the purified RNA, 5µg were analyzed using northern blotting.

5.7.6 CSP induction assay and agarose northern blot

Cells were grown to an OD600 nm of 0.5 and 1 ml (protein sample) and 4 ml (RNA

sample) of culture were collected as the untreated 0 min controls. Competence was

stimulated by addition of 100 ng/ml CSP-2, whereas water was added to the control

instead. 5, 10, 15 and 30 min after stimulation, further samples were collected. RNA

purification was performed by hot phenol extraction (see 5.4.3.3) and DNase diges-

tion (see 5.4.3.5). The protein samples were dissolved in 200µl 1× protein loading

buffer and 10µl of each sample was separated using SDS-PAGE.

Of the purified RNA, 15µg per sample was heated to 75 °C for 5 min and sepa-

rated using a 1.2 % agarose gel with 1× MOPS buffer and 1.1 % formaldehyde. The

gel was run in 1×MOPS buffer for 3 h at 100 V. After capillary blotting to a Hybond+

membrane overnight in 10× SSC, the protocol was continued as for standard north-

ern blotting (see 5.4.3.7).

5.7.7 Reverse transcription-quantitative PCR (RT-qPCR)

RNA was extracted using hot phenol extraction (see 5.4.3.3) followed by DNase

digestion (see 5.4.3.5). Presence of contaminating genomic DNA was tested for by

PCR. RT-qPCR was carried out using the Power SYBR Green RNA-to-CT 1-Step kit

and a CFX96 system. gyrA was used as the control gene. Data were analyzed using

the comparative ∆∆CT method (Livak and Schmittgen, 2001).



5.7. Methods used in chapter 3 169

5.7.8 Spontaneous competence assay

For spontaneous competence assays, pre-cultures were grown to an OD600 nm of 0.5

at 37 °C without shaking in C+Y, pH 8. These pre-cultures were refreshed in the

same medium to a starting OD600 nm of 0.05 and grown to an OD600 nm of 0.13 at

37 °C without shaking. 1:10 dilutions in pre-warmed C+Y, pH 8 were incubated for

30 min at 30 °C. 100 ng/ml of a 524 bp PCR product was added, which encompassed

the SmR-rpsL allele that carries a point mutation in the rpsL gene and thereby con-

fers resistance to streptomycin (Muschiol et al., 2017). Incubation was continued for

60 min at 30 °C and 90 min at 37 °C. Cells were streaked on TSA-B plates contain-

ing 150µg/ml streptomycin and grown at 37 °C and 5 % CO2. Colony forming units

(CFUs) were counted and compared between strains. Competence assays were per-

formed by Geneviève Garriss (Karolinska Institutet, Stockholm, Sweden).
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Figure 7.1: Quality control of E. coli Grad-seq library preparation and RNA-seq. (A) RNA mea-
surements of the purified RNA obtained from an E. coli gradient using capillary electrophoresis. The
observed migration patterns of the RNA are identical to those shown in Figure 2.4. (B) DNA measure-
ments after cDNA library preparation of the RNA shown in (A), which was subsequently subjected
to sequencing. (C) Analysis of the obtained RNA-seq reads reveals that each fraction has a different
composition of RNA classes. M, size marker. L, lysate (input control). P, pellet.
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Figure 7.2: Overview of the sedimentation profiles of E. coli RBPs. The Grad-seq MS data was fil-
tered for RBPs according to predictions by UniProt (The UniProt Consortium, 2019) and Gene Ontology
(Ashburner et al., 2000; The Gene Ontology Consortium, 2019). The RBPs detected in the dataset were
subsequently classified according to their functions.
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Figure 7.3: Sucrose polysome gradient analysis of ProQ sedimentation. Western blotting of sucrose
polysome gradient analysis of a lysate obtained from a proQ-3xFLAG strain reveals ribosome associa-
tion of ProQ. L, lysate (input control).
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Figure 7.4: Predicted ORFs present in RyeG. (A–E) Prediction of all possible ORFs (highlighted in
bold) within RyeG revealed 5 different ORFs. The amino acid sequence of each ORF is given below
the corresponding ORF. ORF2 and ORF3 have putative ribosome-binding sites (highlighted in gray)
upstream of the start codon.
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Figure 7.5: MS results of the 14mer pull-downs. (A–H) Log10 LFQ intensities of the corresponding
bait sRNA + the control are plotted against the log2 ratio between the corresponding sRNA versus
the control. Proteins only detected in the pull-down samples were imputed with values close to the
baseline in the control (ctrl_imputed) to allow calculation of the ratio. Proteins only detected in the
control were not given pseudocounts in the pull-down samples and therefore omitted. Cut-offs for
proteins displayed in Figure 3.12 A (highlighted in yellow) were set to 5.5 for the log10 LFQ intensities
and to 4 for the log2 ratios (indicated by dotted lines). Cbf1 (highlighted in red) is one of the most
abundant and enriched proteins specific for csRNA1–5 (A–E) and F41 (F), whereas it was not pulled
down by the riboswitch RNA F20 (G) or tmRNA (H). The positive control tmRNA enriched its specific
binding protein SmpB (highlighted in blue). Proteins not considered specifically enriched are shown
in gray.
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tRNA_anti domain (OB-fold-like)

HD domain

HD domain

Figure 7.6: Multiple sequence alignment of Cbf1. Multiple sequence alignment of Cbf1 homologs
from different members of the Firmicutes. The tRNA_anti and HD domains are highlighted based
on their predicted positions within S. pneumoniae Cbf1 (El-Gebali et al., 2019; Mitchell et al., 2019).
Residues with≥50 % identity are highlighted in a blue gradient. Alignment was executed using Clustal
Omega (Madeira et al., 2019) and visualized using Jalview (Waterhouse et al., 2009).
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Figure 7.7: Multiple sequence alignment of SP_2226. Multiple sequence alignment of SP_2226 ho-
mologs from different members of the Firmicutes. Residues with ≥50 % identity are highlighted in
a blue gradient. Alignment was executed using Clustal Omega (Madeira et al., 2019) and visualized
using Jalview (Waterhouse et al., 2009). STRPN, Streptococcus pneumoniae. STRMT, Streptococcus mi-
tis. STRSY, Streptococcus suis. STRA5, Streptococcus agalactiae. STRP1, Streptococcus pyogenes. LACLA,
Lactococcus lactis. PAEPS, Paenibacillus polymyxa. BACSU, Bacillus subtilis. BACCR, Bacillus cereus.
BACAN, Bacillus anthracis. STAEQ, Staphylococcus epidermidis. STAA8, Staphylococcus aureus. LISMO,
Listeria monocytogenes. ENTFA, Enterococcus faecalis. ENTFC, Enterococcus faecium. LACPL, Lactobacillus
plantarum. LEUCJ, Leuconostoc carnosum. CLOPE, Clostridium perfringens. CLOBH, Clostridium bo-
tulinum. 9LACT, Aerococcus viridans.
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7.2 List of abbreviations

Table 7.1: List of abbreviations.

Abbreviation Meaning
2D-MS 2D gel analysis followed by MS
aa amino acid
AD activating domain
AP/MS affinity purification followed by MS
APS ammonium persulfate
BD binding domain
bp base pair
cDNA complementary DNA
CDS coding sequence
CFU colony forming unit
CLASH UV-crosslinking, ligation and sequencing of hybrids
CLIP-seq crosslinking immunoprecipitation followed by RNA-seq
csBN-MS cryo-slicing blue native-MS
CSP competence stimulating peptide
csRNA cia-dependent sRNA
ctrl control
DNA deoxyribonucleic acid
DNAP DNA polymerase
DNase deoxyribonuclease
dNTP deoxyribonucleotide
dRNA-seq differential RNA-seq
dsRNA double-stranded RNA
DTT dithiothreitol
EAL ethanolamine ammonia-lyase
EDTA ethylene diamine tetraacetic acid
ERCC External RNA Control Consortium
fCLIP-seq formaldehyde CLIP-seq
GAPDH glyceraldehyde-3-phosphate dehydrogenase
gDNA genomic DNA
GradR RNase-sensitive gradient profiles
Grad-seq gradient profiling by sequencing
HD histidine/aspartate
L lysate
LB Lennox broth
LC-MS/MS liquid chromatography-tandem MS
M marker
MBP maltose binding protein
MOPS 3-(N-morpholino)propanesulfonic acid
mRNA messenger RNA
MS mass spectrometry
NB northern blot
ncRNA noncoding RNA
nt nucleotide
OB oligonucleotide/oligosaccharide-binding
OD600 nm optical density at 600 nm
ORF open reading frame
P pellet

continued on next page
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Table 7.1, continued.
Abbreviation Meaning
P/C/I phenol/chloroform/isoamyl alcohol
PAA polyacrylamide
PAGE polyacrylamide gel electrophoresis
PCP protein correlation profiling
PCR polymerase chain reaction
PNPase polynucleotide phosphorylase
POI protein of interest
PPI protein-protein interaction
RBP RNA-binding protein
RBS ribosome binding site
R-DeeP RNA-dependent proteins
RIL-seq RNA interaction by ligation and sequencing
RIP-seq RNA immunoprecipitation followed by RNA-seq
RNA ribonucleic acid
RNAP RNA polymerase
RNase ribonuclease
RNA-seq RNA sequencing
RNP ribonucleoprotein particle
rRNA ribosomal RNA
RT-qPCR reverse transcription quantitative PCR
SD Shine-Dalgarno
SD standard deviation
SDS sodium dodecyl sulfate
sRNA small regulatory RNA
SRP signal recognition particle
TA toxin/antitoxin
TCS two-component system
TEMED N,N,N’,N’-tetramethylethylenediamine
TF transcription factor
tmRNA transfer-messenger RNA
tRNA transfer RNA
t-SNE t-stochastic neighbor embedding
TSS transcriptional start site
UAS upstream activating sequence
UPS universal protein spike-in
UTR untranslated region
v/v volume/volume
w/v weight/volume
WB western blot
wt wild type
Y2H yeast two-hybrid
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