
D N urU E o
Example scripts

In the following, we will illustrate how to use different features of DUNEuro
from the Python and MATLAB interfaces by explaining several example scripts
in detail. In these scripts, the numerical EEG forward solution is computed
using different finite element method (FEM) discretizations, source models as
well as different head models. We will also demonstrate how to write out the
mesh and solution for visualization using the ParaView software [1] (https:
//www.paraview.org/). The examples are not exhaustive, but are designed to
give an overview of different features that DUNEuro offers. The GitLab repos-
itory of DUNEuro contains a Wiki with more detailed documentation. This
includes an overview of possible options and parameters for constructing the
driver for fitted and unfitted methods, and an overview of functions the driver
interface offers with their required input (e.g., source model parameters) and
their output. In Section 1, we will describe different head models that are
used in the example scripts. On the one hand, we use a spherical head model
with four compartments. On the other hand, two different six compartment
realistic head models are used to compute the EEG forward solution: a tetra-
hedral volumetric mesh and a head representation by level set functions. In
Section 2, we describe the main steps when computing forward solutions us-
ing DUNEuro. Both for the spherical and realistic cases, we explain how the
DUNEuro interface works for different FEM discretizations, source models and
solution approaches (direct or transfer matrix approach). To run the example
scripts, the DUNEuro toolbox needs to be installed following the procedure de-
scribed in the Installation instructions. In order to use the Python bindings,
the module duneuro-py needs to be successfully installed, so that the library
‘duneuropy.so‘ is located in the build folder. For the MATLAB bindings the
file ‘duneuro matlab.mexa64‘ is needed which will be in the build folder after
successfully compiling the duneuro-matlab module. The choice of discretiza-
tion method, the fineness of the mesh and the number of sensors determine
the memory requirements for the computer used. For a standard Lagrangian

1

https://www.paraview.org/
https://www.paraview.org/


or Continuous Galerkin (CG-FEM) computation in a realistic head model we
recommend at least 16 GB of RAM.

1 Example datasets

We will first give an overview of the different head models we use within the
example scripts. These either fall in the category of spherical head models or
realistic head models. For each model, additional input (e.g., electrode positions,
test dipoles, . . . ) is provided.

1.1 Spherical head model

We use a 4-layer head model centered at [127 127 127] with four concentric
spheres corresponding to the tissues of brain (78 mm radius, 0.33 S/m conduc-
tivity), cerebrospinal fluid (80 mm, 1.79 S/m), skull (86 mm, 0.01 S/m) and
scalp (92 mm, 0.43 S/m). We use a tetrahedral and a hexahedral volumetric
mesh as well as an unfitted representation of this geometry. Additionally, 70
electrode positions are used which are approximately uniformly distributed on
the outer scalp surface. At each of 9 eccentricities ranging from 0.1 to 0.9 rel-
ative to the brain surface, 100 dipoles are randomly chosen with a tangential
orientation. A visualization of the tetrahedral volumetric spherical mesh as well
as an unfitted representation of the spherical head model is presented in Fig 1.

Figure 1. Spherical four-compartment head models: Tetrahedral volumetric
mesh (left) and unfitted head model (right), here the conductivity on the
internal tissue boundaries is shown as the mean between the conductivities of
the two adjacent tissues.

The input files included in this appendix for the spherical head model are
the following:

• sphere tet mesh 4c.msh: a tetrahedral mesh in gmsh [2] (https://
gmsh.info) format, which contains 54 771 nodes and 306 439 elements as
well as labels (0-3) for the physical entity indicating to which tissue an
element belongs in the fourth column in the element list

2

https://gmsh.info
https://gmsh.info


• sphere 4c.cond: the conductivity values for each tissue type (corre-
sponding to the label indices in the mesh files)

• sphere electrodes.txt: 70 approximately uniformly distributed elec-
trode positions on the outer surface

• sphere dipoles.txt: 100 tangential dipoles at nine different eccentrici-
ties, the first three columns refer to the dipole position, the last three to
the dipole moment

• sphere eeg analytical.txt: quasi-analytical EEG solution for our spher-
ical four-compartment head model, where each row corresponds to the
potential at an electrode for the 900 test dipoles, computed using the se-
ries expansion formulas following [3] via the software tool simbiosphere
(https://gitlab.dune-project.org/duneuro/simbiosphere)

1.2 Realistic head model

In our example scripts, we use two different realistic six-compartment head mod-
els, which can be downloaded from [4]. Additionally required input data (e.g.,
electrode positions) are provided in this attachment. Both realistic models con-
sist of the tissues scalp (0.43 S/m conductivity), skull compacta (0.0042 S/m),
skull spongiosa (0.01512 S/m), cerebrospinal fluid (1.79 S/m), gray matter (0.33
S/m) and white matter (0.14 S/m). In the first model, the head is represented
by a volumetric tetrahedral mesh, while the second model provides level sets for
each tissue boundary. Both models are visualized in Fig 2. An overview of the
input files related to the realistic head models is provided in the following.

1.2.1 Tetrahedral volumetric mesh

• realistic tet mesh 6c.msh: a tetrahedral mesh in gmsh [2] format, which
contains 885 214 nodes and 5 335 615 elements as well as labels (0-5) for
the physical entity indicating to which tissue an element belongs in the
fourth column in the element list, provided at [4]

• realistic 6c.cond: conductivity values for each tissue type (correspond-
ing to the label indices in the mesh file)

• realistic electrodes fitted.txt: 73 realistic electrode positions from an
EEG measurement (EASYCAP GmbH, Herrsching, Germany), for which
the positions were digitized using a Polhemus device (FASTRAK, Polhe-
mus Incorporated, Colchester, Vermont, U.S.A.)

1.2.2 Unfitted head model

• {skin, skull compacta, skull spongiosa, CSF, gray, white}.npy:
level sets representing the surfaces of each of the six tissue types: N3-
dimensional arrays (N=257) which discretize the background mesh and

3

https://gitlab.dune-project.org/duneuro/simbiosphere


contain signed distance values which are 0 at the surface, negative within
and positive outside the surface, available at [4]

• realistic electrodes unfitted.txt: 73 realistic electrode positions from
an EEG measurement (EASYCAP GmbH, Herrsching, Germany), for
which the positions were digitized using a Polhemus device (FASTRAK,
Polhemus Incorporated, Colchester, Vermont, U.S.A.)

Figure 2. Coronal views of clipped realistic six-compartment head models:
Tetrahedral volumetric mesh (left) and unfitted head model (right), here the
conductivity on the internal tissue boundaries is shown as the mean between
the conductivities of the two adjacent tissues.

2 Example scripts

We will now demonstrate how to use some of the features of DUNEuro using
different example scripts. First, the general structure of a DUNEuro script which
computes the EEG forward solution, is presented. Second, an overview of the
provided example scripts is given, which either use the spherical or realistic head
models. Third, we provide detailed explanations for a typical application: using
CG-FEM to compute the EEG forward solution with different source models
and the transfer matrix approach. In the following sections, some other features
such as different FEM discretizations, will be addressed.

2.1 Main steps for computing EEG forward solutions with
DUNEuro

Computing the EEG forward solutions with the DUNEuro toolbox generally
consists of the following steps:

I) DUNEuro Interface: In order to be able to use the DUNEuro toolbox from
Python/MATLAB, we need to import the duneuropy library (Python) or

4



add the path to our MEX file (MATLAB), which are contained in the
build folder after a successful compilation of DUNEuro.

II) Input : The input files for our forward computation are defined (FE mesh,
tissue conductivities, sources, electrodes,. . . ). Note that the physical units
of the input data provided define the output unit and should therefore be
consistent, as DUNEuro currently does not check or convert units (e.g., if
the dipole moments are provided in Amm, the geometry data in mm and
the conductivities in S/mm, the resulting EEG potential has the unit V).

III) Driver : The driver is the common interface which is necessary to carry
out the next steps. In order to create the driver, we need to specify the
parameters related to our FEM discretization and the volume conductor
head model.

IV) Sensors: The sensor characteristics are read and passed to DUNEuro.

V) Forward solution: The computation of the forward solution can be done
using one of the following approaches

(a) Transfer matrix approach: This case is advisable in case the dipoles
outnumber the sensors, which is often the case in EEG/MEG source
analysis. In this approach, the transfer matrix is computed in a first
step, and applied afterwards in order to compute the forward solution
at the sensor positions. In this second step, the source model needs
to be specified and for each dipole, the right hand side is internally
computed based on the source model configurations.

(b) Direct approach: The forward solution is computed directly for each
degree of freedom within the model, and evaluated at the sensor
positions afterwards. This option is usually chosen for a small set of
dipoles, e.g., for visualization purposes.

VI) Postprocessing (optional): Output for visualization with ParaView [1] can
be created. Additionally, the computed leadfields can be further used for
source analysis. In the spherical case, the numerical solutions can also be
compared to the (quasi-)analytical solutions.

Due to this modular structure, single components can be easily modified,
while the rest remains unchanged. For instance, if the user wants to employ a
different source model, only the source model configuration in step V) needs to
be adjusted, while the rest of the code remains unchanged.

2.2 Overview of example scripts

We will now demonstrate how to use some of the features of DUNEuro. Differ-
ent fitted and unfitted FEM discretizations, source models, input meshes and
solution approaches (direct or using the transfer matrix approach) will be ex-
emplarily presented. Additionally, we will show how output can be produced

5



for visualization. The separate steps are almost identical for the spherical and
realistic case, only the input related to the volume conductor model differs.

2.2.1 Example scripts for spherical models

An overview of the example scripts related to the spherical head representation
is listed here:

Sa) sphere cg tet transfer.py: CG-FEM with tetrahedral mesh and trans-
fer matrix approach, partial integration/St. Venant/Subtraction/Whitney
source models

Sb) sphere cg tet transfer.m: CG-FEM with tetrahedral mesh and trans-
fer matrix approach, partial integration/St. Venant/Subtraction/Whitney
source models (MATLAB interface)

Sc) sphere cg hex direct.py: CG-FEM with hexahedral mesh and direct
approach, St. Venant source model

Sd) sphere dg tet transfer.py: DG-FEM with tetrahedral mesh and trans-
fer matrix approach, partial integration source model

Se) sphere udg transfer.py: UDG-FEM with the transfer matrix approach,
partial integration source model

2.2.2 Example scripts for realistic models

The example scripts related to the realistic head models are listed here:

Ra) realistic cg tet transfer.py: CG-FEM with tetrahedral mesh and trans-
fer matrix approach, partial integration/St. Venant/Subtraction/Whitney
source models

Rb) realistic dg tet direct.py: DG-FEM with tetrahedral mesh and direct
approach, partial integration source model

Rc) realistic udg transfer.py: UDG-FEM with transfer matrix approach,
partial integration source model

2.3 A closer look: CG-FEM using a tetrahedral mesh, the
transfer matrix approach and different source models
(Python interface)

In this section, we will have a detailed look at each of the steps necessary to
compute the EEG forward solution using the Python interface of DUNEuro.
This refers to example scripts Sa) using a spherical head model and Ra) with
a realistic model. In both cases, a tetrahedral volumetric mesh is used for the
head volume conductor model and the EEG potential is computed using the
standard Continuous Galerkin Finite Element Method (CG-FEM) for different

6



source models (Partial Integration, St. Venant, Subtraction and Whitney).
The transfer matrix approach is used to speed up computations for the typical
case that the number of dipoles exceeds the number of sensors. As all Python
example scripts, they can be executed using the terminal command ’python3
filename.py’.

2.3.1 Step I)

In this preparatory step, we need to import the DUNEuro library using the
following command:

import duneuropy as dp

Additionally, we require some other libraries such as numpy for handling arrays
and libraries for visualization, which can be installed using pip.

2.3.2 Step II)

In this step, the path to the folder which contains the input data and the path to
a folder where the output data should be stored need to be indicated. The input
data consist of the tetrahedral mesh, the conductivity file, dipoles, electrodes
and in the spherical case, the (quasi-)analytical solution that we will use for the
comparison with the numerical result.

2.3.3 Step III)

Here, we create the driver with parameters related to our FEM approach and
the volume conductor head model.

config = {

’type’ : ’fitted ’,

’solver_type ’ : ’cg’,

’element_type ’ : ’tetrahedron ’,

’volume_conductor ’ : {

’grid.filename ’ : filename_grid ,

’tensors.filename ’ : filename_tensors

}

}

driver = dp.MEEGDriver3d(config)

Since we want to use the classical CG-FEM approach, we specify the ‘type‘ as
‘fitted‘ and ‘solver type‘ as ‘cg‘. The volume conductor is specified as the mesh
file and the conductivity file, which contains a list of conductivity values in the
order of the labels within the mesh file. Note that all input files, including the
mesh file, use dots as decimal separators.1 Alternatively, the volume conductor
can also be specified by directly passing the elements, nodes and labels of the
mesh, as demonstrated in Sc) and described in more detail in 2.5.

1Numerical formatting differs across countries, which can lead to errors while reading the
mesh in case a different decimal specifier (e.g., a comma) is expected due to system-specific
settings. The terminal command sudo update-locale LC NUMERIC=C can be used to change
the numerical formatting default system-wide after restarting.

7



2.3.4 Step IV)

Next, the electrode positions are read from the text file whose path was de-
fined earlier. Now, the electrode positions are passed to DUNEuro using the
setElectrodes method. Here, we choose the closest subentity within our grid
with codimension 3, which means that we move each electrode to the closest
node within the given mesh. Note that this node could also be located within
the head model.

config = {

’type’ : ’closest_subentity_center ’,

’codims ’ : [3]

}

driver.setElectrodes(electrodes , config)

Another option is to project the electrode positions orthogonally to the head
surface by setting ’type’ : ’normal’.

2.3.5 Step V)

In the next step, we use the transfer matrix approach to compute the EEG lead-
field. This consists of several sub-steps. First, the transfer matrix is computed.

config = {

’solver ’ : {

’reduction ’ : 1e-10

}

}

tm = driver.computeEEGTransferMatrix(config)

Optionally, parameter choices can be passed to the solver, in this case the rel-
ative reduction is set to 1e-10. This value should not be too large in order to
ensure an adequate accuracy.

Next, the source model configuration is defined. Depending on the source
model, there are different mandatory and optional parameters. For the partial
integration source model, for instance, no parameters are needed. For the St.
Venant source model, several parameters are necessary, e.g., if the so-called
St. Venant condition should be fulfilled (’restrict’ = ’true’). For a more
detailed description of the source models, see [5, 6, 7, 8, 9, 10].

After reading the dipole locations and moments from our input file, we can
pass them together with the source model configurations and apply the transfer
matrix:

for sm in source_model_configs:

lf = driver.applyEEGTransfer(tm_eeg , dipoles , {

’source_model ’ : source_model_configs[sm],

’post_process ’ : True ,

’subtract_mean ’ : True

})

solutions[sm] = np.array(lf[0])

8



The ’subtract mean’ parameter indicates that the resulting EEG leadfield
will be average referenced. The setting ’post process’ : True, is relevant
for the subtraction source model and indicates that the analytical portion of the
solution is added to the numerically computed correction potential, see [6, 7].

2.3.6 Step VI)

Here, the mesh is written in .vtk format using the write function of DUNEuro.
Additionally, the first dipole and the solution for this dipole using the St. Venant
source model at the electrodes are produced as output. These three files can be
visualized using ParaView [1], an open-source visualization toolbox, the result
is shown in Fig 3. In order to reproduce Fig 3 (left subfigure), the attached
ParaView state sphere cg tet transfer.psvm can be loaded within Paraview
via File→ Load State which opens a dialog window in which the paths to the
three output files of Sa) need to be indicated.

Figure 3. EEG forward solution at electrode positions computed using
CG-FEM for a test dipole (magnified, shown as black arrow) in tetrahedral
spherical model (left) and realistic model (right).

In the spherical case, we can also load the (quasi-)analytical solution and
compare it to the numerical one. We compute the topography and magnitude
errors (RDM and lnMAG) and visualize the errors for the test dipoles at different
eccentricities, see Fig 4.

Additionally, we can call the function print citations to get a list of relevant
publications which provide further information on the software as well as the
source models and finite element methods that were used.

2.4 How to use the MATLAB interface

The interface to MATLAB is very similar to the Python interface. Instead of
passing parameters through Python dictionaries, MATLAB structure arrays are
used. An example which computes the EEG leadfield using the same configu-
rations as Sa) using the MATLAB interface is provided by Sb).

9



Figure 4. RDM (left) and lnMAG (right) errors for CG-FEM computation in
tetrahedral spherical model using different source models.

2.5 How to use hexahedral meshes

Example script Sc) gives an example how hexahedral meshes can be passed
instead of tetrahedral ones. The only difference is in Step III). When passing
the volume conductor,

’element_type ’ : ’hexahedron ’

is used instead of ‘tetrahedron‘.
In this example script, an alternative way to pass the volume conductor is

shown instead of passing the mesh and tensors via input files, which is possible
for both tetrahedral and hexahedral meshes. A list of node coordinates is passed
in combination with a list of elements, containing the indices (starting at 0) of
the nodes associated with each element. Additionally, a list of labels (starting
at 0) which correspond to the list of conductivities is provided. Note that the
mesh size of the regular hexahedral grid created in Sc) is 1 mm in order to
achieve a reasonable resolution even for the narrow CSF tissue layer. This
results in 3 342 701 nodes and 3 262 312 elements, leading to a large system of
linear equations that needs to be solved when computing the EEG solution.

2.6 How to use the direct approach when computing the
forward solution

In case the solution needs to be computed for a small set of dipoles, e.g., for vi-
sualization purposes, DUNEuro can compute the EEG leadfield directly without
first computing the transfer matrix. In step V), instead of using the functions
computeEEGTransferMatrix and applyEEGTransfer explained above, the func-
tion solveEEGForward is used. The EEG solution is computed and can then be
directly written out, before it is evaluated at the electrode positions using the
function evaluateAtElectrodes. Example script Sc) and Rb) show how to carry
out these steps. The visualized output of these scripts is shown in Fig 5.

10



Figure 5. Visualization of EEG solution using the direct approach for
spherical head model using CG-FEM (left) and for the tetrahedral realistic
model using DG-FEM (right).

2.7 How to use other Finite Element Methods

In the detailed example in subsection 2.3, the standard (CG-)FEM is used for the
EEG forward computation. However, DUNEuro offers additional discretization
methods, the examples below will explain how they can be used.

2.7.1 DG-FEM

In general, the user can easily switch between different FEM discretizations by
modifying the configuration when setting up the driver in Step III). Example
scripts Sd) and Rb) show how to use DG-FEM for a spherical and realistic test
case. As shown in the example files, the main difference is that the ‘solver type‘
is changed to ‘dg‘. Additionally, the solver requires some parameters, such as
the penalty parameter.

config = {

’type’ : ’fitted ’,

’solver_type ’ : ’dg’,

’element_type ’ : ’tetrahedron ’,

’volume_conductor ’ : {

’grid.filename ’ : filename_grid ,

’tensors.filename ’ : filename_tensors

},

’solver ’ : {

’edge_norm_type ’ : ’houston ’,

’penalty ’ : 20,

’reduction ’ : 1e-10,

’scheme ’ : ’sipg’,

’weights ’ : ’tensorOnly ’,

}

driver = dp.MEEGDriver3d(config)

For a more detailed description of the DG method, we refer for EEG to [11]
and for MEG to [12]. The output of Rb) is depicted in Fig 5 (right subfigure).

11



2.7.2 UDG-FEM

Similarly, the code in Step III) can be modified for the unfitted discontinuous
Galerkin method (UDG-FEM), as shown by example scripts Se) and Rc). In
this case, we need to pass the different options for the FEM type (set ‘type‘
to ‘unfitted‘ and ‘solver type‘ to ‘udg‘), but also pass the volume conductor
differently. For this unfitted method, a hexahedral coarse background mesh is
used, which does not resolve the head’s geometry. Instead, the boundary of each
tissue type is represented by level set information.

For the spherical case, within the configuration for the driver creation, the
volume conductor can be passed by specifying the characteristics of the back-
ground mesh, in this case, there are 303 cells within the bounding box [30, 220]3

in mesh coordinates.

’volume_conductor ’ : {

’grid’ : {

’cells’ : (30 , 30 , 30),

’upper_right ’ : (220 , 220 , 220),

’lower_left ’ : (30 , 30, 30),

’refinements ’ : 0

}

}

Since this coarse fundamental grid does not match with the actual head geom-
etry, the tissue characteristics need to be specified in addition to that, as done
here for the spherical case.

’domain ’ : {

’domains ’ : [’skin’, ’skull ’, ’csf’, ’brain ’],

’level_sets ’ : [’outer_skin ’, ’skin_skull ’, ’skull_csf ’, ’

csf_brain ’],

’brain.positions ’ : ’iiii’,

’csf_brain.radius ’ : 78 ,

’csf.positions ’ : ’iiie’,

’skull_csf.radius ’ : 80 ,

’skull.positions ’ : ’iiee’,

’skin_skull.radius ’ : 86,

’skin.positions ’ : ’ieee’,

’outer_skin.radius ’ : 92

A list of domain types is indicated, together with their respective position (inter-
nal/external of the surfaces). Also, all surfaces need to be listed in combination
with their spherical characteristics, i.e., the radius (shown above) and the type
and center, done within a for loop within the code.

’type’ : ’sphere ’,

’center ’ : (127 , 127 , 127)

Additionally, the number of compartments (tissue types) needs to be indi-
cated (four in the spherical case) and the solver takes additional parameters,
similar to the DG case. Here, the conductivity values are also passed. The
compartments of the source and the sensors need to be indicated as well in the
source model and transfer matrix configurations, respectively.

12



For the realistic case, we need to specify ’type’ : ’image’ instead of
’sphere’ and the actual level set information is passed using the ’data’ option.
Here, we pass the npy arrays for each surface, which are 3-dimensional arrays
which have zero points at the respective surface. Note that computations using
the UDG method, in particular in the realistic mesh, is memory- and time-
consuming. In order to successfully run script Rc), which involves approximately
6.5 million degrees of freedom, we recommend at least 32 GB of RAM and to
use the TBB library for thread-parallelization.

For a more detailed description of the UDG method, we refer to [13, 10].
A visualization of the EEG leadfield for a test dipole using the above-

mentioned example scripts for UDG-FEM is presented in Fig 6.

Figure 6. EEG forward solution at electrode positions computed using
UDG-FEM for a test dipole (magnified, shown as black arrow) in unfitted
spherical (left) and realistic model (right).

2.8 Outlook and further information

The example scripts presented show important features of DUNEuro related to
the computation of the EEG forward solution using modern FEM discretiza-
tions. However, there are several additional features available which are not
explained in detail here, such as the MEG forward solution computation which
consists of the same main steps shown here [14, 12, 15], or geometry-adapted
hexahedral meshes [10]. Moreover, we focus on the interface to the Python
scripting language which is free and open-source. DUNEuro also offers bindings
to MATLAB as mentioned in 2.4 and illustrated by example script Sb), and
can also be used directly using C++ code. In the future, we are planning to
extend the documentation of our software toolbox and provide further tutorials
and example scripts on the DUNEuro homepage (http://www.duneuro.org)
and on the GitLab repository (https://gitlab.dune-project.org/duneuro)
which also offers a platform for issue tracking, bug reporting, and discussions.

13

http://www.duneuro.org
https://gitlab.dune-project.org/duneuro


References

[1] Ahrens J, Geveci B, Law C. ParaView: An End-User Tool for Large Data
Visualization, Visualization Handbook. Elsevier; 2005.

[2] Geuzaine C, Remacle JF. Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for
Numerical Methods in Engineering. 2009;79(11):1309–1331.

[3] De Munck J, Peters MJ. A fast method to compute the potential in the
multisphere model. IEEE Trans Biomed Eng. 1993;40(11):1166–1174.

[4] Piastra MC, Schrader S, Nüßing A, Antonakakis M, Medani T, Wollbrink
A, et al.. The WWU DUNEuro reference data set for combined EEG/MEG
source analysis; 2020. Available from: https://zenodo.org/record/

3888381.

[5] Bauer M, Pursiainen S, Vorwerk J, Köstler H, Wolters CH. Comparison
study for Whitney (Raviart–Thomas)-type source models in finite-element-
method-based EEG forward modeling. IEEE Transactions on Biomedical
Engineering. 2015;62(11):2648–2656.

[6] Drechsler F, Wolters CH, Dierkes T, Si H, Grasedyck L. A Full Subtraction
Approach for Finite Element Method Based Source Analysis Using Con-
strained Delaunay Tetrahedralisation. NeuroImage. 2009;46(4):1055–1065.
doi:10.1016/j.neuroimage.2009.02.024.

[7] Wolters C, Köstler H, Möller C, Härdtlein J, Grasedyck L, Hackbusch W.
Numerical Mathematics of the Subtraction Method for the Modeling of
a Current Dipole in EEG Source Reconstruction Using Finite Element
Head Models. SIAM Journal on Scientific Computing. 2007;30(1):24–45.
doi:10.1137/060659053.

[8] Miinalainen T, Rezaei A, Us D, Nüßing A, Engwer C, Wolters CH, et al. A
realistic, accurate and fast source modeling approach for the EEG forward
problem. NeuroImage. 2019;184:56–67.

[9] Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH. A
guideline for head volume conductor modeling in EEG and MEG. Neu-
roImage. 2014;100:590–607.

[10] Nüßing A. Fitted and Unfitted Finite Element Methods for Solving the
EEG Forward Problem [Ph.D. thesis]. Westfälische Wilhelms-Universität
Münster; 2018. Available from: http://nbn-resolving.de/urn:nbn:de:
hbz:6-67139436770.

[11] Engwer C, Vorwerk J, Ludewig J, Wolters CH. A Discontinuous Galerkin
Method to Solve the EEG Forward Problem Using the Subtraction Ap-
proach. SIAM Journal on Scientific Computing. 2017;39(1):B138–B164.
doi:10.1137/15M1048392.

14

https://zenodo.org/record/3888381
https://zenodo.org/record/3888381
http://nbn-resolving.de/urn:nbn:de:hbz:6-67139436770
http://nbn-resolving.de/urn:nbn:de:hbz:6-67139436770


[12] Piastra MC, Nüßing A, Vorwerk J, Bornfleth H, Oostenveld R, Engwer
C, et al. The Discontinuous Galerkin Finite Element Method for Solving
the MEG and the Combined MEG/EEG Forward Problem. Frontiers in
Neuroscience. 2018;12:30.

[13] Nüßing A, Wolters CH, Brinck H, Engwer C. The Unfitted Dis-
continuous Galerkin Method for Solving the EEG Forward Problem.
IEEE Transactions on Biomedical Engineering. 2016;63(12):2564–2575.
doi:10.1109/TBME.2016.2590740.

[14] Piastra MC, Nüßing A, Vorwerk J, Clerc M, Engwer C, Wolters CH. A
Comprehensive Study on EEG and MEG Sensitivity to Cortical and Sub-
cortical Sources. Human Brain Mapping. 2020; p. Forthcoming.

[15] Piastra MC. New finite element methods for solving the MEG and the com-
bined MEG/EEG forward problem [Ph.D. thesis]. Westfälische Wilhelms-
Universität Münster; 2019. Available from: http://nbn-resolving.de/

urn:nbn:de:hbz:6-53199662090.

15

http://nbn-resolving.de/urn:nbn:de:hbz:6-53199662090
http://nbn-resolving.de/urn:nbn:de:hbz:6-53199662090

	Example datasets
	Spherical head model
	Realistic head model
	Tetrahedral volumetric mesh
	Unfitted head model


	Example scripts
	Main steps for computing EEG forward solutions with DUNEuro
	Overview of example scripts
	Example scripts for spherical models
	Example scripts for realistic models

	A closer look: CG-FEM using a tetrahedral mesh, the transfer matrix approach and different source models (Python interface)
	Step I)
	Step II)
	Step III)
	Step IV)
	Step V)
	Step VI)

	How to use the MATLAB interface
	How to use hexahedral meshes
	How to use the direct approach when computing the forward solution
	How to use other Finite Element Methods
	DG-FEM
	UDG-FEM

	Outlook and further information


