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Abstract

Background: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity,
diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the
vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the
potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes
on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density
lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin
in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR)
program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene
polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to
n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC.

Results: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides
(4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation
model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum
triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total
n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17).

Conclusions: Our results did not provide strong evidence for interactions between allelic variations in VDR and
RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm
our findings.

Keywords: VDR, RXRG, SNPs, SNP-SNP interaction, 1958BC
Background
Low vitamin D status has become a major public health
problem due to its associations with several chronic dis-
eases such as diabetes [1] and cardiovascular disease [2].
Observational studies have provided evidence for an asso-
ciation of serum 25-hydroxyvitamin D [25(OH)D] concen-
trations with blood pressures [3] and lipid outcomes [4].
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These findings suggest a role of vitamin D in mediating
biological functions required for the normal functioning
of the body.
Vitamin D is involved in a variety of biological actions

such as calcium metabolism, cell proliferation and differ-
entiation [5]. Vitamin D, that is derived from the diet or
by bio-activation of 7-dehydrocholesterol, must be acti-
vated to exert its biological activity [6]. The most active
metabolite of vitamin D is calcitriol, 1,25-dihydroxyvita-
min D (1,25(OH)2D), the genomic actions of which are
mediated through the ligand-activated transcription factor,
vitamin D receptor (VDR) [7]. 1,25(OH)2D mediates its
action as a ligand by binding to the VDR, which regulates
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the transcription of the target genes by heterodimerizing
with retinoid X receptor (RXR) (Figure 1). This VDR-RXR
complex interacts with the hexameric DNA sequence
element, vitamin D response elements (VDREs), which
are found in the promoter regions of the target genes [8]
(Figure 1). Thus, genetic alterations of VDR and RXR
genes could lead to important defects in gene activation,
cell proliferation and differentiation, calcium homeostasis
and other related biological mechanisms.
Based on the biological relationship between VDR and

RXR (Figure 1), we hypothesised that genetic variations in
VDR and RXR genes have an effect on metabolic out-
comes. In this paper, we examine the potential interactions
between tagging polymorphisms in the VDR and RXRG
genes on metabolic traits such as BMI, waist circumference
(WC), waist hip ratio (WHR, adjusted for BMI), high-
(HDL) and low- (LDL) density lipoprotein cholesterols,
serum triglycerides, systolic (SBP) and diastolic (DBP)
blood pressures and glycated haemoglobin (HbA1c).

Methods
Study population
We used information from the 1958 British birth cohort
(1958BC, up to n = 5,231) as the discovery sample, and
Figure 1 Key stages involved in transcriptional regulation of 1,25-dih
vitamin D receptor (VDR), which stimulates the heterodimerization of VDR
VDR/RXRG complex to the vitamin D response element (VDRE) and leading
from the Northern Finland Birth cohort 1966 (NFBC66,
up to n = 5,316) and Twins UK (up to n = 3,943)] to rep-
licate the initial findings from the 1958BC.

1958BC
Detailed description of the 1958 British birth cohort
(1958BC) has been published previously [9]. In brief,
study participants were born in England, Scotland or
Wales during one week in March 1958 (n = 17,638). At
age 45 years, 11,971 participants were invited to attend
a biomedical survey: 9,377 (78%) completed at least one
questionnaire. The 1958BC is almost entirely a white
European population (98%) [10], and for these analyses,
158 individuals of other ethnic groups and one preg-
nant participant were excluded. The 45-year biomedical
survey was approved by the South-East Multi-Centre
Research Ethics Committee (ref. 01/1/44), the ethics
approval for genetic work was granted by the Joint
UCL/UCLH Committees on the Ethics of Human Re-
search (Committee A) Ref: 08/H0714/40, and written
consent [for use of information in medical research
studies] was obtained from the participants. For the
present study, all the analyses were performed in up to
5,231 individuals.
ydroxyvitamin D (1,25(OH)2D). The ligand (1,25(OH)2D) binds to the
with retinoid X receptor gamma (RXRG), followed by binding of the
to the transcriptional activation of the target genes.
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NFBC66
The Northern Finland Birth Cohort of 1966 (NFBC66)
comprises a total of 12,058 live-births to mothers living
in the two northern‐most provinces of Finland, who
were invited to participate if they had expected delivery
dates during 1966 [11]. At age 31 all individuals still liv-
ing in Northern Finland or the Helsinki area were asked
to participate in a detailed biological and medical exam-
ination (n = 6,007) as well as a questionnaire. The Uni-
versity of Oulu ethics committee approved the study.
The present study includes up to 5,316 individuals with
genotype data and information on WHR, serum triglyc-
erides and LDL cholesterol. Written informed consent
was obtained from all the participants and the Ethics
Committee of the Faculty of Medicine at the University
of Oulu approved the study.
Twins UK
The Twins registry in St. Thomas' Hospital, King's College
London recruited a total sample of 11,000 identical and
non-identical, mostly female Caucasian, twins from across
the UK through national media campaigns [12]. Their age
ranges between 16 and 85 years. Over 7,000 twins have
attended detailed clinical examinations with a wide range
of phenotypes over the last 18 years. All participants were
recruited without presence or interest in any particular
disease or trait. We included individuals for whom data
on WHR (n = 3,943), serum triglycerides (n = 1,996) or
LDL cholesterol (n = 1,992) were available. The Guy’s and
St Thomas’ (GSTT) Ethics Committee approved the study
and all the study participants gave informed consent.
Measurements
1958BC
Weight and standing height, at 45 years of age, were
measured without shoes and in light clothing by a trained
nurse using standardized protocols and equipment; waist
circumference was measured by the nurse midway be-
tween the costal margin and iliac crest. BMI was calcu-
lated as weight (kg)/height (m)2. Blood pressure was
measured in a seated position, after 5 min rest, using an
Omron 705CP automated sphygmomanometer with a
large cuff for participants with a mid-upper arm circum-
ference ≥32 cm; the measurement was repeated three
times, and blood pressure was determined as the average
of successful measurements.
Venous blood samples were drawn without prior

fasting and posted to the collaborating laboratory. Glyco-
sylated haemoglobin (HbA1c) was assayed using high-
performance liquid chromatography standardized to the
Diabetes Control and Complications Trial [13]. Triglycer-
ides and HDL cholesterols were measured by standard
autoanalyzer methodology.
NFBC66
Height and body weight were measured using a standard-
ized height measure and scale. The participants were asked
to fast overnight before a blood sample was taken. Serum
HDL cholesterol and triglycerides were determined by en-
zymatic methods using a Hitachi 911 Clinical Chemistry
Analyzer (Boehringer Mannheim). Serum LDL was cal-
culated by the Friedewald formula if the serum TG level
was <354 mg/dl; if the triglyceride level was <354 mg/dl,
LDL was determined by precipitating LD-lipoproteins
with heparin and measuring cholesterol in the liquid
phase and subtracting it from total cholesterol.

Twins UK
Weight and standing height were measured without shoes
and in light clothing by a trained nurse. Blood sample col-
lection for determination of fasting lipids was drawn from
most subjects after a minimum 8-h overnight fast. Serum
was stored at −45°C until analyzed using a Cobas Fara
machine (Roche Diagnostics, Lewes, UK). A colourimetric
enzymatic method was used to determine total choles-
terol, triglycerides and HDL cholesterol levels. The latter
was measured after precipitation from chylomicron, LDL
and VLDL particles by magnesium and dextran sulphate.

Tag SNP selection
Tag SNPs for VDR and RXRG genes were chosen using
the genotype data from the International HapMap col-
lected in individuals of Northern and Western European
ancestry (CEU) (HapMap data release 24/ phase II Nov08,
on NCBI B36 assembly, dbSNP b126). The Haploview
software V3.3 (http://www.broadinstitute.org/haploview/
haploview-downloads) was used to assess the linkage dis-
equilibrium (LD) structure between SNPs [14]. Tagger
software was used to select tag SNPs with the ‘pairwise
tagging only’ option and an r2 threshold of >0.8 (±10 kb
upstream and downstream of the genes). In the tag SNP
selection, we force included the functional SNPs (VDR
SNPs: rs731236 and rs2228570; RXRG SNPs: rs2134095)
previously studied [15-18] before running tagger. There
were 30 VDR and 31 RXRG tag SNPs; however, after
applying the quality control criteria [call rate >99% for ge-
notyped SNPs, average genotype probability across all
individuals in the sample >90% for imputed SNPs and
minor allele frequency >5%], there were only 22 VDR and
23 RXRG tag SNPs.

SNP genotyping
1958BC
Genome-wide data for the 1958BC were obtained through
two sub-studies, both using the 1958BC participants as
population controls. The first sub-study included 3000
DNA samples randomly selected as part of the Welcome
Trust Case Control Consortium (WTCCC2) and genotyped

http://www.broadinstitute.org/haploview/haploview-downloads
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on the Affymetrix 6.0 platform [19]. The second sub-study
was the Type 1 diabetes case–control study (T1DGC)
which used 2,500 DNA samples and genotyped using
the Illumina Infinium 550 K chip through the JDRF/WT
Diabetes and Inflammation Laboratory (DIL) [20]. IM-
PUTE was used for the imputations that were done in
the 1958BC.

NFBC66
For NFBC, genomic DNA was extracted from whole blood
using standard methods. All DNA samples for the Illu-
mina Infinium 370cnvDuo array were prepared for geno-
typing by the Broad Institute Biological Sample Repository
(BSP). The 1000 Genome imputation was carried out for
the NFBC66 samples using IMPUTE2.

Twins UK
Genotyping of the TwinsUK dataset was done with a
combination of Illumina arrays (HumanHap300, Human-
Hap610Q, 1 M-Duo and 1.2 M Duo 1 M). The normalised
intensity data for each of the three arrays were pooled
separately (with 1 M-Duo and 1.2 M Duo 1 M pooled to-
gether). For each dataset, the Illluminus calling algorithm
was used to assign genotypes in the pooled data. No calls
were assigned if an individual's most likely genotype was
called with less than a posterior probability threshold of
0.95. Prior to merging, pairwise comparison was per-
formed among the three datasets. Further exclusion of
SNPs and samples was done to avoid spurious genotyp-
ing effects, identified as follows: (i) concordance at
duplicate samples <1% (i.e., only samples with ≥99%
concordance included for the study); (ii) concordance at
duplicate SNPs <1% (i.e., only SNPs with ≥99% concord-
ance included for the analysis); (iii) visual inspection of
QQ plots for logistic regression applied to all pairwise
dataset comparisons; (iv) Hardy-Weinberg p-value <10−6,
assessed in a set of unrelated samples; (v) observed
pairwise IBD probabilities (samples excluded if the IBD
threshold was less than 0.30) suggestive of sample identity
errors.

Statistical analysis
The natural logarithm was used to transform slightly
skewed metabolic measures (BMI, WC, WHR, HbA1c
and serum triglycerides) to approximate a normal distri-
bution. All the SNPs were coded additively and with the
effect allele as the minor allele. Linear regression models
were used to evaluate the interaction between the VDR
and RXRG tag SNPs on the following outcomes: BMI,
WC, WHR, SBP, DBP, HDL and LDL cholesterol, serum
triglycerides and HbA1c. The Friedewald equation was
used to calculate LDL cholesterol levels in subjects with
triglycerides ≤4.52 mmol/L [21]. In the 1958BC, linear
regression models were adjusted for gender, geographical
region (coded as Scotland, North, Middle, and South of
England including Wales, and London) and genotyping
platform. The use of medication was adjusted for in the
models of HbA1c, serum triglycerides, LDL and HDL
cholesterols. Serum triglyceride measures were further ad-
justed for time since eating prior to blood sample. Blood
pressure of individuals who were on blood pressure medi-
cation was adjusted by adding 15 mm Hg to SBP and
10 mm Hg to the DBP [22]. Models for WHR were ad-
justed for BMI to test whether the effects of the SNP-SNP
interactions on WHR are independent of BMI.
A joint likelihood ratio test (LRT) of the main SNP

effects and the SNP-SNP interaction effects was used in
the linear regression analyses to maximise statistical
power (H0: βS1 = βS2 = βS1xS2 = 0) [23]. In comparison
to the joint LRT of the main and the interaction effects,
we also performed direct LRT tests for interaction (one
degree of freedom test, H0: βS1xS2 = 0). This was done
by comparing the model with the SNP-SNP interaction
term and the marginal effects of both SNPs, with a
model including the marginal effects of both SNPs only.
Bonferroni correction was applied to p-values in order
to account for multiple testing (22 × 23 = 506 SNP-SNP
combinations assessed). Combinations with a corrected
p-value <0.05 (uncorrected P < 0.05/506 = 9.9 × 10−5) were
selected for replication.
At the discovery stage, we also used Multifactor Di-

mensionality Reduction (MDR) program (version 3.0.3)
[24,25] as a non-parametric test to scan for potential in-
teractions (one to four way combinations) between the
VDR and RXRG tag SNPs on all the metabolic traits in
the 1958BC. MDR program is a genetic model free ap-
proach [24,25], and includes a combined cross-validation
and permutation testing procedure. With 10-fold cross-
validation, the data are divided into 10 equal parts, and
the model is developed on 9/10 of the data (training set)
and then tested on 1/10 of the remaining data (testing
set). The cross-validation consistency was done as a
measure of how many times out of 10 divisions of the
data MDR finds the same best model; hence, the higher
the consistency, the better the model. Permutation test-
ing was performed to assess the probability of obtaining
a testing accuracy as large as or larger than that ob-
served in the original data, given that the null hypothesis
of no association is true. This is carried out by random-
izing the samples 1000 times and repeating the MDR
analysis on each randomized dataset. This process yields
an empirical distribution of testing accuracies under the
null hypothesis, which is in turn used to calculate a p-
value. For the MDR analysis in the 1958BC (up to 5,231
individuals), trait values were standardised for covariates
using the same adjustments as in linear regression ana-
lyses (see above), as MDR analysis does not take account
of these covariates. This was done by regressing the



Table 1 Interaction analysis between vitamin D receptor (VDR) and retinoid X receptor-gamma (RXRG) polymorphisms
in the discovery cohort (1958 British Birth Cohort) using linear regression

Outcome VDR RXRG N in
analysis

Interaction Unadjusted P
(adjusted P*) from

joint LRT
SNP SNP Beta ± SE

Low density lipoprotein
cholesterol

rs3847987 rs283695 4,700 −0.12 ± 0.04 1.0x10−5 (0.03)

rs11574143 rs283695 4,696 −0.13 ± 0.04 2.9x10−5 (0.04)

Serum triglycerides rs11574143 rs17429123 4,843 0.13 ± 0.04 4.5x10−5 (0.01)

rs11574143 rs10918172 4,873 0.13 ± 0.04 5.7x10−5 (0.02)

rs3847987 rs17429123 4,849 0.12 ± 0.03 7.1x10−5 (0.02)

rs3847987 rs10918172 4,880 0.12 ± 0.03 7.5x10−5 (0.05)

Waist Hip Ratio rs2283342 rs157872 5,067 −0.01 ± 0.002 7.7x10−5 (0.04)

*Bonferroni correction applied to P values.
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relevant covariates on the trait and using the standar-
dised residuals as the new “trait” outcome variables for
use in the MDR analyses.
For replication analyses, a one degree of freedom test

for the interaction term was used. In the NFBC66, models
were adjusted for gender, population substructure (using
the first two principal components) and the use of lipid
lowering medications, as described above. Available covar-
iates in Twins UK were gender and age. The cluster func-
tion for familial relatedness was used to account for non-
independence of the twin pairs in analyses for Twins UK.
Results from the two replication cohorts (NFBC66 and
Twins UK) were then meta-analysed using the inverse-
variance method for a fixed effects model. Bonferroni
correction was also applied in order to account for mul-
tiple testing [P < 0.05/8 for 8 combinations assessed].
All analyses were carried out using STATA, version 12,
except for the analyses in Twins UK, where STATA, ver-
sion 10 was used.
The power to detect SNP-SNP interactions in the

1958BC (n =5,231) was calculated using the Quanto soft-
ware (version 1.2.4). The power to detect SNP-SNP inter-
actions for a standard normal outcome was calculated
with different combinations of minor allele frequency
(MAF) and an interaction beta of up to 0.25 (marginal
SNP effects were set to 0.02). There was 80% power to de-
tect an interaction β as small as 0.08 when both SNPs had
a MAF of 0.40. However, when both SNPs had a MAF of
0.1, there was 80% power to detect interaction effect sizes
only as small as 0.22 (Additional file 1: Figure S1). Despite
the large sample size in the 1958BC, we lack the power to
Table 2 Interaction analysis between vitamin D receptor (VDR
in the discovery cohort (1958 British Birth Cohort) using Mul

Outcome VDR RXRG

SNP SNP

Serum triglycerides rs11574143 rs10918172

rs739837, rs2238136 rs12739596
detect smaller interactions, particularly when looking for
combinations of SNPs with lower MAF.

Results
Main effects
In the 1958BC (n = 5,231), after correction for multiple
testing, only two RXRG SNPs (rs3753898 and rs283695)
showed a significant association with WHR (adjusted for
BMI) and LDL, respectively. None of the VDR or other
SNPs from RXRG was associated with any of the meta-
bolic traits (Additional file 2: Table S1, Additional file 3:
Table S2).

SNP-SNP interaction analysis in the discovery cohort
(1958BC)
In the 1958BC, the joint LRT in linear regression ana-
lyses showed significant SNP-SNP interactions on serum
triglycerides (4 SNP-SNP pairs), LDL cholesterol (2 SNP-
SNP pairs) and WHR (1 SNP-SNP pair) after correction
for multiple testing (Table 1). There were no significant
interactions based on 1df interaction test in linear regres-
sion after correction for multiple testing (Additional file 4:
Table S3).
MDR program was used as an additional method (non-

parametric approach) to test for the potential interactions
(one-way to four-way) between VDR and RXRG genes on
the metabolic traits in the 1958BC. Using this method, we
identified one two-way (rs11574143, rs10918172) and one
three-way (rs739837, rs2238136, rs12739596) interaction
on serum triglycerides (Table 2). The two-way interaction
(rs11574143, rs10918172) on serum triglycerides in the
) and retinoid X receptor-gamma (RXRG) polymorphisms
tifactor Dimensionality Reduction (MDR) program

T-Statistic Cross
validation
consistency

P value

4.72 9/10 0.035-0.036

6.32 9/10 0.033-0.034
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MDR analysis was consistent with the results from the
joint LRT (joint LRT, uncorrected p-value = 5.7 × 10−5;
corrected p-value: 0.02).

Replication of the SNP-SNP interaction findings in the
NFBC66 and Twins UK
In replication analyses using NFBC66 and Twins UK (total
n = 8,183), none of the interactions identified from the
joint LRT were significant after correction for multiple
testing (Table 3). Without correction, the interaction
between the VDR SNP rs3847987 and the RXRG SNP
rs10918172 on serum triglycerides was borderline (meta-
analysis 1df test for interaction, p-value = 0.02, Table 3).
In replication analyses using NFBC66 and Twins UK,

none of the interactions identified from the MDR ana-
lysis were significant (meta-analysed Pinteraction > 0.16, for
all comparisons) (Table 3).

Discussion
To our knowledge, this is the first study to examine
interactions between VDR and RXRG tag SNPs on
metabolic traits. VDR is the key nuclear receptor for the
active hormonal form of vitamin D [1,25-dihydroxyvita-
min D3, 1,25(OH)2D3] and there is some previous evi-
dence for its role in obesity- and diabetes- related traits
[26,27]. However, despite the known contribution of
vitamin D on bone metabolism and VDR being the key
hormonal receptor [5], previous studies have failed to
identify an association between VDR polymorphisms
and bone-related outcomes such as bone mineral dens-
ity (BMD) [28,29]. One of the reasons for the lack of
association between VDR and BMD could be due to a
Table 3 Interaction between vitamin D receptor (VDR) and re
replication cohorts (Northern Finland Birth Cohort 1966 and

Outcome VDR RXRG Northern Finland Birth Cohort
1966 (NFBC66)SNP SNP

N in
analysis

Interaction
Beta ± SE

Pinteract

Low density
lipoprotein
cholesterol

rs3847987 rs283695 5,007 −0.03 ± 0.03 0.26

rs11574143 rs283695 4,990 −0.02 ± 0.03 0.52

Serum
triglycerides

rs11574143 rs17429123 5,155 0.01 ± 0.03 0.74

rs11574143 rs10918172 5,131 0.03 ± 0.03 0.28

rs3847987 rs17429123 5,172 0.03 ± 0.03 0.28

rs3847987 rs10918172 5,148 0.05 ± 0.03 0.07

rs739837,
rs2238136

rs1273959 5,204 −0.002 ± 0.03 0.95

Waist hip
ratio

rs2283342 rs157872 4,707 0.002 ± 0.003 0.53

*Bonferroni correction applied to Pinteraction values.
compensatory interaction with RXRG polymorphism,
which was also the rational for undertaking analyses
presented in the current study.
RXR functions as a master regulator of various signal-

ling pathways through heterodimerization with VDR. Vari-
ous isoforms of the RXR serve as dimeric partners for
VDR binding to VDREs [30]; however it has been shown
that VDR binds to RXRG more avidly than other RXR
isoforms [30]. Animal studies have shown that VDR
(−/−)/RXRG(−/−) mice exhibit features typical of vitamin
D-dependent rickets type II, including growth retardation,
impaired bone formation, hypocalcemia, and alopecia
[31]. Compared to VDR(−/−) mice, growth plate develop-
ment in VDR(−/−)/RXRG(−/−) mutant mice was more se-
verely impaired [31]. In addition, genome-wide association
scans have identified RXRG variants to be associated with
various human phenotypic traits such as age at menarche
[32], rapid disease progression in patients with human im-
munodeficiency virus type 1 infection [33] and personality
trait [34], suggesting a role of RXRG in mediating multiple
signalling pathways. Also, meta-analysis of inter-species
liver co-expression networks identified a human-specific
sub-network regulated by RXRG, which has been vali-
dated to play a role in hyperlipidemia and type 2 diabetes
[35]. Hence, based on this biological evidence and the role
of VDR and RXRG as heterodimer receptor partners, it
was anticipated that defects in VDR or RXRG genes might
have an effect on the biological interaction which, in turn,
could affect metabolic pathways implicated in obesity, dia-
betes or cardiovascular traits.
We observed several possibly interesting SNP-SNP inter-

actions in the 1958BC using linear regression analysis on
tinoid X receptor-gamma (RXRG) polymorphisms in the
Twins UK)

Twins UK Meta-analysis of the
results from NFBC66

and Twins UK

ion N in
analysis

Interaction
Beta ± SE

Pinteraction Interaction
Beta ± SE

Unadjusted
Pinteraction
(Adjusted
Pinteraction*)

1,555 −0.08 ± 0.08 0.31 −0.04 ± 0.03 0.16

1,528 −0.03 ± 0.08 0.75 −0.02 ± 0.03 0.48

1,686 0.09 ± 0.06 0.13 0.03 ± 0.03 0.32

1,725 0.05 ± 0.05 0.37 0.04 ± 0.03 0.16

1,730 0.08 ± 0.05 0.09 0.05 ± 0.02 0.08

1,767 0.07 ± 0.05 0.14 0.06 ± 0.03 0.02 (0.17)

1,883 0.01 ± 0.04 0.79 0.003 ± 0.03 0.91

3,376 −0.002 ± 0.004 0.62 0.001 ± 0.002 0.78
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various metabolic outcomes such as WHR, serum triglyc-
erides and LDL cholesterol. Furthermore, one additional
three-way interaction was identified in the 1958BC using
MDR permutation model testing analysis, a computational
approach to detect and characterize interactions [24]. In
the replication meta-analysis of the two cohorts (NFBC66
and TwinsUK), none of the interactions remained signifi-
cant except for one SNP-SNP two-way borderline inter-
action on serum triglycerides (VDR rs3847987 – RXRG
rs10918172, Pinteraction = 0.02). However, this two-way
interaction was not significant after correction for mul-
tiple testing (Pinteraction = 0.17). Although our finding of
the two-way interaction on serum triglycerides (before
correction for multiple testing) and the association of
RXRG SNP rs283695 with LDL cholesterol (main effect)
supports the hypothesis that VDR and RXRG are strong
candidates for lipid metabolism [35-37], these results
should be dealt with caution and need further confirm-
ation using large samples.
An important challenge with SNP-SNP interaction arises

from the large number of statistical tests involved, thereby
leading to the requirement of significant thresholds to con-
trol for type 1 error. Hence, only substantial joint effects
are likely to be detected, unless sample sizes are very large.
In the present study, despite using large samples in both
discovery (1958BC, n = 5,231) and replication analyses
(NFBC66 + Twins UK, total n up to 8,183), none of the in-
teractions remained significant after correction for multiple
testing. Given that vitamin D has been shown to be associ-
ated with various metabolic outcomes, we also re-ran the
joint LRT analyses in the 1958BC adjusting for 25(OH)D
concentrations and found that our results remain un-
changed (data not shown). Overall, the participants were
relatively young, with some heterogeneity across the three
studies, and it is possible that stronger effects could be
seen in older populations when the metabolic risks associ-
ated with ageing are more firmly established.
Conclusions
Our results do not provide strong evidence for interac-
tions between the allelic variations in the VDR and
RXRG genes on metabolic traits; however, further repli-
cation studies are highly warranted on large samples to
confirm our findings.
Additional files

Additional file 1: Figure S1. Calculation of the power to detect
SNP-SNP interactions in the 1958 British Birth Cohort for a standard
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