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Abstract
Iron deficiency (ID) is a common and ominous comorbidity in heart failure (HF) and predicts worse outcomes, independently of the
presence of anaemia. Accumulated data from animal models of systemic ID suggest that ID is associated with several functional and
structural abnormalities of the heart. However, the exact role of myocardial iron deficiency irrespective of systemic ID and/or
anaemia has been elusive. Recently, several transgenicmodels of cardiac-specific ID have been developed to investigate the influence
of ID on cardiac tissue. In this review, we discuss structural and functional cardiac consequences of ID in these models and
summarize data from clinical studies. Moreover, the beneficial effects of intravenous iron supplementation are specified.
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Introduction

Iron is one of the most important microelements in the body as
it is involved in diverse metabolic processes, including trans-
port of oxygen, synthesis of deoxyribonucleic acid (DNA) and
oxidative energy production within the electron transport
chain (ETC) [1]. With regard to its redox-based properties,
iron is an integral part of Fe-S metalloproteins—key players
in cellular energetics, which can be found in the nucleus, cy-
tosol and mitochondria [2]. The optimal iron supply is critical
particularly for the proper functioning of high-energy demand
cells, specifically cardiomyocytes and skeletal myocytes [3,
4]. It is well established that either iron overload or ID
unfavourably affect human condition and in particular, the
role of disordered iron homeostasis in heart failure (HF) has
been elucidated in several papers [5–9]. This reviewwill focus
on structural and functional abnormalities occurring in the

heart as consequences of systemic or cardiac-specific ID with
the strong emphasis on molecular evidence.

Systemic iron deficiency and its
consequences for heart

ID is one of the most common nutrition deficiencies worldwide
[10] and untreated may lead to ID related anaemia (IDA). The
effects of systemic ID on cardiac function have been evaluated
in several animal studies. Acute and chronic models of systemic
ID have been developed in animals by bleeding or by feeding a
low-iron diet, respectively [11–17]. The results have shown that
ID with concomitant anaemia resulted in cardiomegaly, left
ventricular (LV) hypertrophy, cardiac fibrosis and symptomatic
HF [9, 14, 18, 19], leading in severe cases to hypervolemia and
pulmonary congestion [14, 20, 21].

In animal models, dietary iron restriction causes a signifi-
cant decrease of total heart iron [22] and numerous structural
and ultrastructural aberrations in heart, specifically cardio-
myocyte enlargement, degeneration of myofilaments, irregu-
lar sarcomere organization and mitochondrial swelling, with
the latter two being accompanied by elevated expression of
endothelial and inducible nitric oxygen synthase (eNOS and
iNOS, respectively) and several stress-related protein mole-
cules [16, 23]. Interestingly, the oxidative/nitrosative stress
which is associated with elevated generation of reactive oxy-
gen species (ROS) and/or reactive nitrogen species (RNS) is
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increasingly being recognized as one of the pathophysiologi-
cal mechanisms of LV remodelling responsible for HF pro-
gression [24]. Additionally, Dong et al. have shown that ID in
rats upregulated an expression of apoptosis-promoting protein
caveolin-1 in myocardium and also triggered mitochondrial-
to-cytosolic translocation of cytochrome c, which constitutes
both an indicator of mitochondrial damage and the major pre-
apoptotic mitochondrial phenomenon [23, 25, 26]. Further, in
myocardium, ID also contributes to the impaired mitochon-
drial oxidative energy production within ETC, as the activities
of the respiratory chain enzymes such as Complexes I-II and
IV, succinic cytochrome c reductase (SCCR) and NADH fer-
ricyanide oxidoreductase are reduced as well as mitochondrial
oxygen uptake is lower [27]. Importantly, there is a study
reporting that intravenous (i.v.) iron sucrose treatment of die-
tary iron-restricted mice reversed LV remodelling and
prevented cardiac fibrosis, despite the fact that it did not fully
correct IDA. Furthermore, i.v. iron reduced nitrosative and
oxidative stress and attenuated inflammation in the heart [13].

Cardiac-specific iron deficiency

Although the dietary iron restriction studies provided evi-
dence on abnormalities in the heart muscle induced by sys-
temic ID, it was extremely difficult to define the actual func-
tional implications of myocardial iron deficiency (MID) inde-
pendent of systemic ID and/or anaemia. Currently, there is a
considerable interest in developing animal models of cardiac-
specific ID in the absence of anaemia in order to circumvent
the ambiguity in interpretation. In this paragraph, we discuss
different approaches applied to induce cardiac-specific ID and
present recent findings in this field (Fig. 1).

Cardiomyocyte-specific Tfr1 knock-out

Ubiquitously expressed transferrin receptor 1 (Tfr1) is a mem-
brane glycoprotein that serves as a gatekeeper in regulating
cellular uptake of iron from transferrin [28, 29]. Total Tfr1
knockout embryos were abnormal and died before embryonic
day 12.5 with oedema and diffuse necrosis in all tissues con-
sistent with anaemia and hypoxia. However, they presented no
anatomical defects in the embryonic heart, suggesting that
cardiac structures did not require Tfr1 to development [30].

To determine the importance of TfR1 in the heart, Xu et al.
disrupted Tfr1 using a heart-specific promoter [31]. Tissue non-
haemic and total iron concentration in Tfr1hrt/hrt hearts was de-
creased at birth and did not change substantially during the post-
natal period. Mice died by post-natal day 11 with cardiac hyper-
trophy and cardiomegaly. Tfr1hrt/hrt hearts showed left ventricular
dilatation, decreased fractional shortening, enlarged
cardiomyocytes and significantly increased cardiac hypertrophy
biomarkers, indicating that cardiomyocyte-specific TfR1

knockout leads to the phenotype of dilated cardiomyopathy. Fe-
S cluster biogenesis, estimated by decreased expression of Dpyd
and Ppat proteins [32], was compromised due to ID or mitochon-
drial dysfunction. Mitochondria from Tfr1hrt/hrt hearts were also
severely disrupted and enlarged, and expression and activity of
ETC mitochondrial complexes (I-IV, where iron is necessary
[33]) were significantly decreased. Notably, non-iron-containing
Complex V expression and activity remained unchanged.
Moreover, mitochondria-encoded mRNA levels were decreased,
indicating fewer mitochondria or mitochondria unable to normal
gene expression. mRNA expression profile also showed down-
regulation of genes associated with peroxisome proliferator-
activated receptor signalling (PRAR) and PGC1-a (stimulator of
mitochondrial biogenesis), myogenesis and insulin signalling as
well as upregulation of hypoxia-inducible targets,Myc targets and
glycolytic enzymes. Tfr1hrt/hrt hearts also showed metabolic
changes, increased apoptosis in addition to impaired mitophagy.

The survival of Tfr1hrt/hrt mice has been prolonged by car-
diac iron repletion via intravenous (i.v.) treatment with iron
dextran, but mice still died at 4–5 weeks with severe
cardiomegaly. However, iron-supplemented Tfr1hrt/hrt mice
assimilated and used given iron which was reflected by the
fact that at day 10, Fe-S proteins (Dpyd and Ppat) as well as
ETC proteins were at the similar level compared to WT mice.
Moreover, heart-to-body weight ratios in iron-treated Tfr1hrt/
hrt mice after 10 days were similar to WT littermates. Notably,
the administration of a second dose of dextran delayed the
pathological changes and consequent death up to 13 weeks.

Cardiomyocyte-specific HAMP knockout and FPN
resistant to HAMP knock-in

Systemic iron homeostasis is regulated by the hepcidin-
ferroportin interactions at the sites of iron release into the circula-
tion. At this moment, ferroportin (FPN), also termed as Slc40a1,
MTP1 or Ireg1, is the only known mammalian efflux channel for
iron, which is localized on the surface of hepatocytes, enterocytes
and macrophages—the cells responsible for iron storage, absorp-
tion and recycling, respectively [34]. The rate of FPN-mediated
iron release depends on the plasma level of iron regulatory hor-
mone hepcidin (HAMP, hepcidin antimicrobial peptide), which is
known to inhibit FPN as a part of a homeostatic negative feed-
back loop [35]. Generated predominantly in liver, hepcidin binds
FPN and triggers its endocytosis and subsequent degradation,
which results in limited iron efflux into circulation and its lower
availability to peripheral tissues [36]. Surprisingly, hepcidin is also
expressed in other tissues, such as heart [37], kidney [38], brain
[39] and placenta [40]. The exact role of this locally produced
hepcidin is still unclear; however, there is some evidence that it
may be associated with tissue-specific iron regulation [4, 41].

Lakhal-Littleton et al. have recently discovered expression
of FPN in cardiomyocytes, where it was necessary for main-
tenance of iron homeostasis. Furthermore, the cardiomyocyte-
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specific deletion of FPN resulted in fatal cardiac iron overload
in mice [42]. Given that, they further speculated that cardiac
FPNmay be under the control of cardiac HAMP and that their
interaction may be essential for regulation of local iron ho-
meostasis and proper cardiac function. Having first demon-
strated that HAMP is expressed in cardiomyocytes, two novel
mouse models were next generated: the one carrying a
cardiomyocyte-specific deletion of the Hamp gene (Hampfl/
f l;Myh6.Cre+ genotype) [43] and the other with a
cardiomyocyte-specific knock-in of Slc40a1 C326Y gene
(Slc40a1 C326Yfl/fl;Myh6.Cre+ genotype), which encoded
FPN completely resistant to hepcidin inhibition but with pre-
served iron export function [44, 45].

The results showed that in Hampfl/fl;Myh6.Cre+ mice, the
cardiac Hamp mRNA and HAMP protein were almost un-
detectable, while the liver levels of mRNA and HAMP pro-
tein as well as liver iron stores and circulating markers of
iron homeostasis remained intact. This is the first evidence
that cardiomyocytes are the essential site of hepcidin expres-
sion in the heart and that systemic iron homeostasis is not
influenced by cardiac hepcidin depletion. Moreover, the
hearts of both Hampfl/fl;Myh6.Cre+ and Slc40a1 C326Yfl/
fl;Myh6.Cre+ mice developed deadly LV dysfunction char-
acterized by reduced LVEF as well as enlargement of

cardiomyocytes in addition to significantly greater mortality
when compared to controls. The loss of cardiac HAMP
stimulated upregulation of cardiomyocyte FPN in the hearts
of both Hampfl/fl;Myh6.Cre+ and Slc40a1 C326Yfl/

fl;Myh6.Cre+ mice which in turn resulted in increased iron
efflux that finally lead to cardiomyocyte ID. Additional stud-
ies revealed the reduced activities of iron-containing meta-
bolic enzymes, signs of mitochondrial failure, significantly
greater apoptosis and increased glycolysis in Hampfl/
fl;Myh6.Cre+ hearts.

However, the most striking discovery was that all morpho-
logical abnormalities and metabolic and contractile dysfunc-
tions were entirely suppressed by intravenous iron treatment
[43].

Cardiomyocyte-specific Irp1 and Irp2 knock-out

Maintenance of intracellular iron content is secured by two
cytoplasmic iron-regulatory proteins 1 and 2 (IRP1 and
IRP2, also known as ACO1 and IREB2) [46]. Cellular ID
stimulates binding of IRPs to cis-regulatory iron-responsive
elements (IREs) in the 5′ or 3′ untranslated regions of target
mRNAs encoding proteins responsible for iron import (trans-
ferrin receptor, TfR1; divalent metal transporter 1, DMT1),

Fig. 1 Molecular elements of intracellular iron metabolism in cardiomyocytes in different transgenic models of cardiac specific ID. a

Physiologic conditions, b TfR1 knock-out, c Hepcidin knock out/loss of hepcidin responsiveness, d IRP 1/2 knock-out. • iron; TfR1–

transferrin receptor 1; IRP1/2–iron regulatory proteins 1 and 2; FPN–ferroportin; HAMP–hepcidin; NTBI–non-transferrin-bound iron
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sequestration (ferritin H- and L-chains; FTH1, FTL, respec-
tively) and export (ferroportin) [47]. IRPs interact with 5′
IRES in ferroportin and ferritin mRNAs to inhibit their trans-
lation and with 3′ IREs in TfR1 to increase its stability and to
protect from degradation [48]. In that manner, IRPs promote
iron efflux and increase its availability for production of
haem- and iron-sulphur proteins in cytosol or mitochondria
[47]. Conversely, when intracellular iron is in excess, IRP1
loses ability to bind IREs, and instead binds an iron-sulphur
cluster to start functioning as an aconitase enzyme, while IRP2
is targeted for proteasomal degradation [49]. IRP activity is
significantly reduced in LV tissue in patients with advanced
HF and LV tissue ID [50].

Functional implications of ID in the heart independently of
systemic ID and anaemia were recently investigated by Haddad
et al. [50]. In the study, cardiomyocyte-specific deletion of Irp1
and Irp2 (Cre-Irp1/2f/f) inmice resulted in significant reduction of
iron concentration in LVand also in isolated cardiomyocyteswith
no evident change in the phenotype under the baseline condi-
tions. Interestingly, under acute dobutamine hemodynamic stress,
Cre-Irp1/2f/f mice exhibited functional abnormalities, in particu-
lar inability to increase LV systolic function. After induction of
myocardial infarction (MI), Irp-targeted mice presented more
pronounced LV hypertrophy, greater increase in cardiomyocyte
size and higher expression of embryonic marker genes.
Additionally, LV dilatation and systolic dysfunction were more
evident than in control mice. Furthermore, Cre-Irp1/2f/f mice
exhibited symptoms of ongoing HF failure, such as pulmonary
congestion, accumulation of serous fluid in the chest cavity and
increased mortality. Considering cardiomyocyte mitochondria,
there were no significant differences between IRP-targeted mice
and controls. However, the activity of ETC Complex I was
significantly decreased, while the activity of complex IV was
not affected. The oxygen consumption rate (OCR) in
cardiomyocytes was not remarkably different in baseline con-
ditions, showing that ATP production was comparable in both
Cre-Irp1/2f/f and control mice. However, upon maximal respi-
ration, OCR increase in IRP1/2-deficient mice was strongly
weakened when compared to the control mice. At baseline
conditions, glycolytic activity of IRP-targeted mice was not
affected; however, in maximal respiration, it increased to a
smaller extent compared to control. In vivo cardiac energy
metabolism study by 31P-magnetic resonance spectroscopy
did not show any differences in PCr/ATP ratio in LV between
Cre-Irp1/2f/f and control. Nevertheless, after dobutamine
stress, PCr/ATP ratio fell down significantly only in Cre-Irp1/
2f/f, indicating limitation of high-energy phosphate deposits in
IRP cardiomyocyte-knockout.

Noteworthy, cardiomyocyte single IRP1- or single IRP2-
targeted mice did not develop MID and did not exhibit any of
aforementioned symptoms.

Intravenous ferric carboxymaltose (FCM) injection restored
both iron concentration in IRP-targeted left ventricle and OCR

in maximal respiration in Cre-Irp1/2f/f cardiomyocytes as well
as restituted systolic function in dobutamine-stimulated Cre-
Irp1/2f/f mice. Moreover, i.v. iron treatment additionally
prevented from increased hypertrophy after MI. FCM treat-
ment in post-infarct IRP-targeted mice also improved LV sys-
tolic function and attenuated LV dilatation.

Iron homeostasis and deficiency in the failing
human heart

In patients with HF, the role of ID in pathophysiology is high-
ly pronounced and deeply investigated. Accordingly to the
broad definition of ID (serum ferritin < 100 μg/l or serum
ferritin 100–300 μg/l in combination with TSAT < 20%), up
to 50% of chronic HF patients suffer from ID (57% of anaemic
and 32% of non-anaemic) [7, 51]. ID is more prevalent in
women sex and in those with advanced NYHA class, higher
serum levels of N-terminal pro-type B natriuretic peptide (NT-
pro-BNP) and higher serum concentrations of C-reactive pro-
tein (CRP) [51]. ID is considered as a predictor of
unfavourable outcome and is associated with impaired exer-
cise capacity, independently of the presence of anaemia [6–8,
51]. In acute HF, where ID is also highly prevalent [52], ID
was found as a predictor of increased mortality in both anae-
mic and non-anaemic patients [5, 53].

Recently, Melenovsky et al. performed a direct tissue anal-
ysis of myocardial iron content and mitochondrial function in
HF [54]. As it has been showed before [18, 55], iron content in
LV tissue was significantly decreased in failing human hearts
compared to HF-free organ donors, independently of anaemia
[54]. MID was associated with more pronounced coronary
disease and lower beta-blocker usage compared with non-
MID HF patients. Except that, MID in HF was accompanied
by reduced activity of aconitase and citrate synthase as well as
reduced expression of reactive oxygen species (ROS)-protec-
tive enzymes (catalase, glutathione peroxidase and superoxide
dismutase 2), indicating that MID may contribute to worsen-
ing of mitochondrial dysfunction that exists in HF [54]. These
findings are consistent with the recent research from Hoes
et al., who demonstrated reduced energy production and con-
tractile dysfunction in iron-deficient human cardiomyocytes
[56]. Cells treated with iron chelator deferoxamine (DFO)
exhibited reduced activity of iron-sulphur containing mito-
chondrial complexes (I, II, III) and also displayed significantly
lower level of cellular ATP and reduced contractile force.
Interestingly, supplementation of transferrin-bound iron re-
versed all functional and morphological abnormalities.
Additionally, our recent research showed that intracellular iron
depletion is detrimental for functioning of cardiomyocytes
and skeletal myocytes and leads to increased apoptosis and
reduces cell viability [57, 58].
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It is also worth to notice that MID in human failing heats
not only reflects reduced iron availability due to systemic iron
deficiency but might also be influenced by a dysregulation of
cardiomyocyte iron homeostasis, e.g. downregulation of TfR1
[18] and IRP inactivation [50]. Restoring myocardial iron
content may be considered as a strategy to improve substrate
utilization and myocardial energetics.

Clinical options to non-invasive detection of MID are
strongly limited. Leszek et al. showed that out of all serum
markers, only sTfR correlated with the depletion of myocar-
dial iron (r = − 0.44, p = 0.03 for right ventricle and r = − 0.38,
p = 0.07 for left ventricle) [55]. However, cardiac T2* mag-
netic resonance imaging has shown recently a potential utility
for evaluating myocardial iron deficiency [59–61].

Beneficial effects of intravenous iron
supplementation in human hearts

Clinical research into a treatment of ID and anaemia in HF
lead to a conclusion that the administration of erythropoiesis-
stimulating agents together with intravenous iron does not
yield better clinical outcomes than intravenous iron alone
[62]. Further, there is no documented clinical benefit from
usage of oral iron preparations [63, 64]. However, two
main clinical trials (FAIR-HF and CONFIRM-HF) have
proven that intravenous iron supplementation improves
quality of life, exercise tolerance and reduces risk of hos-
pitalizations for worsening of HF [65, 66]. Interestingly, the
improvement in aforementioned parameters occurred in
both anaemic and non-anaemic patients and was equally
efficacious [67]. In smaller trials, where HF patients with
ID were subjected to i.v. iron supplementation, more bene-
ficial effects have been observed. The favourable changes
have been reported in regard to both biochemical parame-
ters such as a reduction in plasma level of NT-proBNP and
the echocardiographic measures reflecting myocardial func-
tion including an increase in LVEF and attenuation in hy-
pertrophic cardiac remodelling: reduction in LVSD (left
ventricular end-systolic dimension), LVDD (left ventricular
end-diastolic dimension), LVPW (left ventricular end dia-
stolic posterior wall dimension), IVS (interventricular septal
end diastolic dimension thickness), LV mass index, LV end
systolic volume and in peak systolic strain rate as well as a
decline in E/E0 together with an improvement in S0 and
E0 [68–72].

Conclusions

Several animal studies in which ID was induced by low-iron
diet or bleeding developed numerous structural and functional
cardiac abnormalities. However, because ID and IDA are

inseparably related, it was difficult to establish the importance
of each of these factors independently.

In this review, we summarized different approaches to in-
duce cardiac-specific ID and discussed most important struc-
tural and functional consequences of this state. First of all,
transgenic myocardial downregulation of iron import as well as
iron export upregulation resulted in intracellular ID.Moreover, in
a cardiac-specific TfR1 knock-out, cardiomyocytes were unable
to import transferrin-bound iron into cell [31]. Furthermore,
both cardiac hepcidin knock-out and loss of hepcidin re-
sponsiveness (via cardiac ferroportin knock-in) lead to
uncontrolled iron export indicating that cardiac hepcidin
controls cardiomyocyte iron homeostasis in an autocrine
manner by regulating local ferroportin [43]. Over and
above that, IRP1/2-deficient hearts exhibited intracellular
ID as a result of simultaneous iron uptake reduction
(transferrin receptor downregulation) and an increase in
iron export (ferroportin upregulation) [50].

Regarding all transgenic mouse models discussed above,
we can observe that most of heart abnormalities induced by
systemic ID are also observable in the myocardial-specific ID,
independently of anaemia (Table 1). All of these cardiac-
specific ID models were characterized by structural aberra-
tions, mitochondrial and metabolic dysfunctions as well as
exhibited increased mortality, indicating a strong connection
between MID and cardiac dysfunction. Interestingly, the se-
verity of cardiac dysfunction differs in aforementioned animal
models. This might be related to the genetic background of the
mice, or more importantly to the amount of iron deficiency
achieved in the hearts.

Interestingly, benefits of i.v. iron treatment were evident in
each of the aforementioned study. Considering one of the most
severe phenotype developed by cardiac transferrin receptor 1
knock-out, i.v. iron treatment prolonged the survival of mice
up to 13 weeks vs. 9 days without treatment. Additionally, in
cardiac hepcidin knock-out, not-binding-hepcidin ferroportin
knock-in and IRP1/2 knock-out i.v. iron treatment restored
myocardial ID and completely suppressed all morphological
changes as well as metabolic andmitochondrial abnormalities,
including even these alterations which occurred after myocar-
dial infarction. This in turn may suggest that regardless of
decrease in myocardial TfR1 expression, depleted cardiac iron
store can be restored throughout i.v. iron treatment via non-
transferrin-bound iron (NTBI) uptake. Moreover, continuous
iron availability in the Tfr1hrt/hrt knockout mice was accom-
plished by simultaneous knockout of hemojuvelin, which causes
persistent elevation of NTBI (thereby allowing continuous iron
uptake via NTBI). This strategy allowed mice to remain healthy
until they were sacrificed at 12 months, showing that iron is not
only essential to proper cardiac functioning, but also that it must
be constantly available. Of note, there are two main potential
pathways for NTBI uptake which involve divalent metal trans-
porter 1 (DMT1) [73] and myocardial L-type Ca2+ channel [74]
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that acts as a compensatory mechanism for TfR1-mediated iron
import.

The advantageous effects of iron supplementation have also
been reported in clinical studies involving HF patients with ID.

According to the recent ESC/HFA 2016 guidelines, all HF pa-
tients should be screened for the presence of ID, regardless of
the other comorbidities [75]. In symptomatic patients with ID
and HFrEF, i.v. iron supplementation should be considered to

Fig. 2 Effects of ID on structural and functional abnormalities occurring in mitochondria, cardiomyocyte, heart and the whole organism

Table 1 Summary of animal models and clinical data investigating consequences of ID on heart structure and functioning

Animal models Human Heart
Failure

Systemic
ID (ID diet)

Cardiomyocyte specific ID

Tfr1
hrt/hrt 31

Hampfl/fl;Myh6.Cre +
or Slc40a1C326Yfl/fl

Myh6.Cre + 43

Cre-Irp1/2 f/f 50

Baseline After MI

Iron concentration in myocardium/cardiomyocytes ↓22 ↓ ↓ ↓ ↓ ↓18, 55, 54

Anemia +22, 17, 14, 23, 13 − − − − +/−7

Mortality ↑ ↑ • ↑ ↑7

Structural changes Cardiomegaly +22,17, 23, 13 + + • ↑ •54

Cardiac hypertrophy + 17, 14, 23, 13 + + • ↑ •54

Left ventricle dilatation + 22,17, 14, 23, 13 + + • ↑ •54

Hypertrophied cardiomyocytes +14, 23, 13 + + • ↑ •54

Systolic dysfunction +13 + +# + •54

Mitophagy dysfunction +
Apoptosis ↑23 ↑ ↑
Mitochondria Abnormal structure +23 + + •

Number • 23 ↓ •
Mitochondrial DNA expression ↓ • ↓54

Aberrant mitochondrial respiration +23 + +# + +54

Electron transport chain Complex I ↓27 ↓ ↓ ↓ •54

Complex II ↓27 ↓ • •54

Complex III ↓ • •54

Complex IV ↓27 ↓ ↓ • •54

Aconitase ↓ ↓54

Metabolic derangements Glycolysis ↑ ↑ ↑54

Hypoxia inducible genes expression ↑ 14 ↑
Recovery by iron supplementation +13 + + + +53

ID iron deficiency, HF heart failure, MID myocardial iron deficiency, empty cells no data, • no differences, # acute dobutamine challenge
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improve HF symptoms and exercise tolerance as well as quality
of life [65, 66] The influence of iron repletion on improvement
in morbidity, mortality and outcomes is deeply investigated in
the ongoing clinical trials (FAIR-HFpEF; HEART-FID; FAIR-
HF2; Affirm-AHF; MYOCARDIAL-IRON).

In addition to iron supplementation, other possible therapeu-
tic targets to restore MID in HF could be considered as alterna-
tives. According to data from animal studies presented above,
cardiac iron import may be improved by stimulation of NTBI
uptake. Another therapeutic concept that is worth to be explored
may involve regulation of cardiac hepcidin/ferroportin machin-
ery which may provide blockage of iron export. Further studies
investigating the exact role of local iron homeostasis in myo-
cardium and links between ID and malfunctioning of heart are
therefore warranted (Fig. 2).
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