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Abstract
Replicable genetic association signals have consistently been found through genome-wide association studies in recent years. 
The recent dramatic expansion of study sizes improves power of estimation of effect sizes, genomic prediction, causal infer-
ence, and polygenic selection, but it simultaneously increases susceptibility of these methods to bias due to subtle population 
structure. Standard methods using genetic principal components to correct for structure might not always be appropriate 
and we use a simulation study to illustrate when correction might be ineffective for avoiding biases. New methods such 
as trans-ethnic modeling and chromosome painting allow for a richer understanding of the relationship between traits and 
population structure. We illustrate the arguments using real examples (stroke and educational attainment) and provide a 
more nuanced understanding of population structure, which is set to be revisited as a critical aspect of future analyses in 
genetic epidemiology. We also make simple recommendations for how problems can be avoided in the future. Our results 
have particular importance for the implementation of GWAS meta-analysis, for prediction of traits, and for causal inference.

Introduction

Is population structure relevant in genetic 
epidemiology?

It could be taken for granted that the problem of population 
structure (see “Box 1”), in genetic epidemiology, is “solved”. 
Despite early concerns that phenotypes may be stratified by 
population (Cardon and Palmer 2003; Freedman et al. 2004; 
Klein et al. 2005; Marchini et al. 2004) replication rates have 
been high since the arrival of the genome-wide association 
study (GWAS) (Pe’er et al. 2008) and consequent adoption 
of stringent genome-wide significance levels. Phenotype 
stratification is routinely corrected for using principal com-
ponents analysis (PCA) (Price et al. 2006) and a range of 
simple methods (Bouaziz et al. 2011) all appear effective at 

controlling false positives. State-of-the-art methods use lin-
ear mixed models (LMMs, Hoffman 2013; Loh et al. 2015; 
Zhang et al. 2010) which also control for kinship (“Box 1”). 
Furthermore, large-scale collaborations in genetic consortia, 
such as GIANT which examined over 300K individuals in 
over 100 studies (Locke et al. 2015), enable both replication 
and the pooling of effect estimates from independent popu-
lations. Heterogeneity analyses (Kulminski et al. 2016) are 
often used to quantify and understand variation.

Indeed, any residual relatedness or familial structure in 
its broadest sense can now be recruited to help analyses 
and potentially gain information. The restricted maximum 
likelihood (REML) method underlying inference in LMMs 
can be exploited to estimate the “heritability”, or proportion 
of variation in a phenotype explained by genotyped single 
nucleotide polymorphisms (SNPs) (Yang et al. 2011). These 
methods exploit population structure using the genetic relat-
edness matrix—a particular choice for the measurement of 
kinship based on SNP similarity—to assess if more geneti-
cally similar individuals are more phenotypically similar.

Despite the success of GWAS and heritability analysis, 
we are entering a new biobank era of massive scale single 
data collection exercises. Examples of these include 500K 
participants in the UK Biobank (Sudlow et al. 2015), 500K 
enrolled into the China Kadoorie Biobank (Chen et al. 2011) 
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and the million veterans program in the US (Gaziano et al. 
2016). Importantly, they are of a scale sufficient to both cap-
ture signatures of historic demographic events but also be 
sufficiently influenced by their sampling structure to gener-
ate properties in data that can bias association results or 
their interpretation. This article sets out some reasons to 
characterize population structure, and specifically:

1.	 A bias may remain in either direction of the estimated 
causal effect of a SNP on a trait, after correction for 
population structure.

2.	 The effect of correction for structure is a function of 
the dataset, especially when there isdifferent detection 
power.

As a consequence:

3.	 Prediction and heritability analyses require a thoughtful 
investigation regarding the types of causal pathway that 
are useful to retain, depending on the intended use of the 
analysis.

4.	 Applied analyses such as two-sample Mendelian rand-
omization estimation of the effect of an exposure on an 
outcome may be biased by population structure when the 
two samples differ in composition or when they differ in 
size.

But there are some upsides:

5.	 Comparison of datasets against a standard reference 
population structure will resolve many of these issues.

6.	 Population structure can be very informative about plei-
otropy or other biases in causal estimates.

Having argued that population structure is not simply 
“solved”, this article continues with the following struc-
ture. We next address the “challenges” being faced in routine 
analyses. This begins by defining a goal of correction for 
population structure and show that it has worked in GWAS, 
but that there are still open problems in the understanding 
of selection, Mendelian randomization, and prediction. In 
“opportunities” we describe ways that population structure 
can be exploited to learn more about the causal link between 
genetics and biology, as well as describing methodology that 
might solve the problems. To validate the high-level claims 
being made, we will consider simple simulations as well as 
re-examining examples from the literature. Finally, in the 
discussion we consider what the problems might imply bio-
logically and give some first steps towards solving them.

Challenges in population structure 
and phenotype stratification

In this section, we will demonstrate that in theory and in 
practice, most methods that use genetic associations are 
vulnerable to subtle, but important problems that derive 
from population structure. A key claim in this paper is that 
associations between genetic loci and traits have been reli-
ably established, but estimates of effect sizes are less robust. 
Many uses of population structure depend crucially on unbi-
ased effect size estimates.

The claim that population structure may have been under-
explored is not new. It is now understood that structure may 
have led to different signatures of selection between UK 
Biobank and the GIANT consortium in height (Berg et al. 
2018; Sohail et al. 2018). The problems may not be specific 
to the study of selection: Berg et al. note that “population 
structure corrections in GWAS may not always work exactly 
as expected” whilst Sohail et al. conclude that “polygenic 
adaptation signals based on large numbers of SNPs below 
genome-wide significance are extremely sensitive”. Popula-
tion structure has been recently confirmed as a key part of 
the problem (Barton et al. 2019; Berg et al. 2019; Sohail 
et al. 2019), and other authors report residual associations 
between PCs, geography and traits in the UK Biobank 
(Haworth et al. 2018; Liu et al. 2018).

Population structure is correlated with phenotypes

To understand why effect estimates may be biased, it is 
helpful to revisit ideas in population genetics. Populations 
do differ genetically by genetic drift and/or selection, and 
as a consequence these populations will also have differ-
ent genetic phenotypes. For example, ancient populations 
had different “genetic heights” (Mathieson et al. 2015), with 
some potentially being taller than any modern population. 
Height, and other traits, appear to be “omnigenic” (Boyle 
et al. 2017); that is, there is no region of the genome not 
in linkage disequilibrium (LD) with SNPs causal for these 
traits. Since modern populations are a mixture of older popu-
lations, SNPs causal for the trait are themselves correlated 
with ancestry. It follows that the estimate of the effect of a 
SNP on a trait can be an underestimate when correcting for 
population structure.

The justification for PCA correction for population struc-
ture (Price et al. 2006) is to correct for non-causal linear 
associations between ancestry and phenotype (Fig. 1a). Cau-
sality is hard to define because we rarely measure the exact 
cause, but proxy it; here we are interested in proxies that are 
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genetic and act through biological pathways. A non-causal 
association can be generated when population structure is 
associated with both allele frequency and the phenotype 
(Fig. 1a). For example, genetic drift simultaneously changes 
phenotype and SNP frequencies by chance. Weak genetic 
drift as experienced by larger populations over short time-
scales is additive, which corresponds to an additive effect 
on PCs (McVean 2009). Larger genetic drift, as produced 
by extreme bottlenecks or consanguinity, is not additive as 
the SNP frequency distribution becomes skewed and SNPs 
may become fixed or lost from a population. PCA correc-
tion and related methods are less useful when such drifted 
populations are included (Lawson et al. 2018).

Admixture can change SNP frequencies genome-wide, 
and small admixture variation is ubiquitous. Even large 
modern human populations not homogeneous—each indi-
vidual has a slightly different ancestry proportion from ear-
lier populations. The most ancient detectible human admix-
ture event—Neanderthal introgression into Eurasians—has 
a mean of around 2% (Sankararaman et al. 2014), but varies 
substantially between populations and individuals (Wall 
et al. 2013). Many features of Neanderthal ancestry can 
be correctly understood using GWAS, which is associated 
causally with some phenotypes including increasing the risk 
of depression (Simonti et al. 2016), and non-causally with 
others, for example skin color (because Neanderthal genes 
entered the modern human gene pool outside of Africa).

Admixture has the potential to interact with family stud-
ies. Siblings have the same expected value of ancestry, with 
them both receiving a random realized amount. Realized, 
rather than expected, ancestry is a better predictor of pheno-
types (Speed and Balding 2015). Such admixture variation 
can tag an environmental covariate, for example alcohol con-
sumption influenced by ALDH2 (Price et al. 2002). It could 
also tag another phenotype that has a confounding relation-
ship, for example, when mixed-race siblings vary in skin 
tone they may experience different societal pressures (Song 
2010), which would be plausibly associated with educational 
attainment (Light and Strayer 2002) and other phenotypes. 
A causal analysis would include this pathway—i.e., in the-
examples, ALDH2 is causal for alcohol consumption and 
skin tone for education. However, in the second example 
the inference does not fit our definition of being biologi-
cally caused since it is mediated solely through modifiable 
societal norms.

Whilst genetic drift can create phenotypic variation 
between populations, selection does so much more rap-
idly (Nielsen 2005). If a phenotype is under selection in 
a particular population, all SNPs that causally affect that 
phenotype (and also those in linkage disequilibrium) will 
change in frequency, inducing an association between 
ancestry and phenotype. Further, where some of the vari-
ants affecting a selected phenotype are pleiotropic or in LD 
with SNPs for another phenotype, selection can generate 

Fig. 1   Causal models including ancestry for the effect of a SNP (G) 
on a trait (T). a Correction for structure will be accurate when ances-
try (A) is confounding T. b Correction for structure may give biased 
inference when ancestry is associated with the causal pathway (TA, 
which may not be measured) by which the SNP acts. For example, 
T = skin cancer is associated with TA = skin tone. c Correction for 
structure will be incomplete when ancestry is associated with the 

environment (E) due to shared history and geography (H), for exam-
ple T = BMI with E = diet choice. d Correction for structure when 
using causal inference is robust to complexity, provided the assump-
tions of Mendelian randomization (see text) are met; particularly all 
remaining effects of ancestry go through the trait (T) so there is no 
direct effect of ancestry (A) on the outcome (O)
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genetic associations between the phenotype under selection 
and other phenotypes. In extreme cases selection can lead 
to allele frequencies being almost perfectly correlated with 
population structure. The LCT gene (Bersaglieri et al. 2004) 
which is associated with lactase persistence, and similarly a 
variant in ADH1B (Galinsky et al. 2016) which influences 
alcohol metabolism, both stratify by population.

Impact on Mendelian randomization

Population structure bias has also been discussed in rela-
tion to Mendelian randomization (Davey Smith and Ebrahim 
2003; Davey Smith and Hemani 2014; Didelez and Shee-
han 2007; Lawlor et al. 2008), an approach which uses a 
SNP or groups of SNPs as an instrument or “proxy” to test 
whether an exposure causes an outcome. Mendelian rand-
omization estimates the causal effect under the assumptions 
(Davies et al. 2018) that; (a) SNPs are associated with the 
exposure; (b) SNPs do not influence the outcome through 
a pathway independent of the exposure; (c) that there are 
no confounders of the SNPs–outcome relationship. Popula-
tion substructure differences can in theory affect both the 
strength of genetic instruments and induce confounding, for 
example in the study of lactase persistence (Campbell et al. 
2005; Davey Smith et al. 2009), but there is little evidence 
the problem is widespread.

The loci that are particularly useful for Mendelian rand-
omization may be particularly susceptible to bias from popu-
lation structure. This is because strong associations are gen-
erated through strong selection, which as discussed above 
is typically structured. For example, Mendelian randomiza-
tion studies for alcohol consumption in Europeans typically 
use the variant in ADH1B as a genetic proxy (Holmes et al. 
2014; Howe et al. 2019; Lawlor et al. 2013, 2014; Zuccolo 
et al. 2013). The ADH1B variant is associated with ancestry 
at the country and continental level (Li et al. 2011).

Understanding ancestry correction

For detection in GWAS, a sensible aim is to have the most 
stringent control of any potential bias, including for pheno-
type stratification. In addition to PCA correction for stratifi-
cation, GWAS has also been controlled using genomic con-
trol (Devlin et al. 2001) which accounts for confounding 
by scaling test statistics using an inflation factor to ensure 
that “null” SNPs (as represented by the median) behave as 
expected under the null model. However, if all SNPs have a 
true effect this approach is under-powered. Linkage disequi-
librium can be exploited to separate real from confounding 
signals, implemented in the popular tools LDAK (Speed 
et al. 2012; Speed and Balding 2019) and LDSC (Bulik-
Sullivan et al. 2015). The premise is that if every SNP has 
an effect then SNPs that are in regions of higher LD will 

have larger measured associations because they are compos-
ites of their own effects and those around it. These methods 
confirmed that large-scale GWAS results detect real associa-
tions, but what about the size of the effect?

A central goal of genetic association studies is to esti-
mate the “true” causal effect of a SNP (G) on a trait (T). 
The “true” effect is defined as the effect of G on T when 
all other traits that are not in the pathway between G and T 
(i.e., confounders) are accounted for (Fig. 1). Correction of 
GWAS for ancestry (A) is designed to remove non-causal 
associations when observable ancestry (CA, which might be 
PCs) not in the causal pathway (Fig. 1a). However, it also 
removes causal associations when ancestry is associated 
with traits in the pathway (Fig. 1b); a phenomenon often 
called vertical pleiotropy. Corrected estimates of the G–T 
associations exclude the G–A–T association. However, they 
also exclude the G–TA–T association and hence may under-
estimate the effect size. For example, if G increases the risk 
of skin cancer by changing skin tone, its effect size will be 
underestimated if skin tone is predicted by ancestry. In gen-
eral, because modern populations are mixtures of ancient 
populations, many SNPs with a biological effect (including 
ADH1B and Lactase) may associate with ancestry PCs due 
to having been common in only one ancestral population.

Ancestry can also associate with the environment (E) and 
hence also environmental confounders (CE) (Fig. 1c). There 
is no causal relationship between A and T via CE and so if G 
is associated with E then correction is desirable to obtain 
a less biased estimate of the causal effect of G on T. How-
ever, the measured ancestry A is unlikely to account for all 
association between E and T, so observing an environmental 
effect indicates the need for additional phenotyping of that 
environment. For example, if a culture has a diet that reduces 
BMI then controlling for ancestry only partially corrects for 
diet. The same problem occurs if observable ancestry (e.g., 
PCs) do not completely capture the true ancestry.

Genome‑wide genetic measures are strongly 
affected by population structure

A SNP–trait association estimate may be biased after ances-
try correction when there is a correlation between the (true) 
SNP–trait effect and the contribution to an ancestry observable 
from the SNP (e.g., PC loading). There are many SNPs con-
tributing to ancestry measures, so the bias for each SNP–trait 
estimate is likely to be small, but genome-wide estimates sum 
this bias. For example, heritability estimates can in theory be 
biased by population structure through the prediction of non-
genetic covariates (Browning and Browning 2011; Dandine-
Roulland et al. 2016), though the scale of the problem is not 
well quantified for most phenotypes. The robustness of herit-
ability estimates to the existence of internal population struc-
ture can at least be tested (Speed et al. 2012, 2014).
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Another genome-wide task is to use genetic data to 
directly predict phenotypes (called genomic prediction, 
Meuwissen et al. 2001). A predictor is learned using one 
dataset, then applied to genetic data from others which may 
be more or less similar in terms of the populations than 
make it up. This “out of sample” use case makes prediction 
particularly vulnerable to bias. As demonstrated in Fig. 2, 
conservative estimates of effect sizes are less useful than a 
bias–variance tradeoff accounting for the intended popula-
tions to be predicted. Adjustment for the PCs is likely to cre-
ate a higher mean-square error, and it systematically reduces 
the variance explained in a heritability analysis. The model 
correcting for ancestry would be preferred for prediction 
only if (a) it contained enough predictive power to capture 
real phenotypic differences, and (b) the use case involved 
generalization into populations for which ancestry may have 
different effects; for example, predicting skin cancer would 

be concerning if the predicted population’s skin tone fell 
outside the range of study population or was caused by dif-
ferent underlying SNPs.

Genetic “prediction … is generally not robust to minor 
changes in the population” (Goddard et al. 2016). LD in 
Africans is lower than in Europeans, which makes predic-
tion harder (de los Campos et al. 2010, 2015). A recent 
study claims that “effect sizes for European ancestry-derived 
polygenic scores are only 36% as large in African ancestry 
samples” (Duncan et al. 2018). Yet in consumer genom-
ics (Multhaup and Lehman 2017) and many applications in 
medicine (Bloss et al. 2011) including drug response (Roden 
and George 2002), prediction is the primary goal, and ances-
try is known to be important (Foll et al. 2014). Prediction is 
also important for ancient genomics, for example the recent 
reconstruction of the facial features and dark skin tone of 
“Cheddar Man” in Neolithic Britain (Brace et al. 2018). 

Fig. 2   When should we use PCA correction? a In simulation settings 
(see “Methods”) it is straightforward to construct scenarios where 
correction helps or hinders prediction of traits. Top: two popula-
tions are produced with different genetic phenotype, either by drift or 
selection. Middle: these are mixed to make modern populations. Bot-
tom: in Case 1 the phenotype is associated with true population struc-
ture, which can be overcorrected. In Case 2 confounding non-genetic 

association is included in the prediction. b–d Show results for this 
simulation. b Correcting for confounding using PCA reduces predic-
tion accuracy when traits are genetically associated with population 
structure. c Genetic structure can predict non-genetic confounding 
leading to apparently good performance on similarly biased popula-
tions. d PC correction can protect against this confounding at the cost 
of reduced performance
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Prediction protocols typically involve summing the effect 
of all SNPs that are reliably associated with phenotype to 
make a “genetic score”—two early examples include coro-
nary heart disease (Ripatti et al. 2010) and gout (Dehghan 
et al. 2008). However, other prediction models may be nec-
essary when the genetic architecture of the trait does not 
follow the infinitesimal and additive assumptions (Morgante 
et al. 2018).

With the availability of much larger datasets, there is 
increasing discussion about whether polygenic risk predic-
tion should be included in clinical care. For example, Khera 
et al. (2018) created a polygenic risk score consisting of mil-
lions of variants. The top 8% of the population by this score 
had comparable risk of coronary heart disease to carriers of 
rare monogenic mutations. While key coronary heart disease 
loci such as 9P21 have been replicated worldwide (Battram 
et al. 2018; Dong et al. 2013; Kral et al. 2011; Schunkert 
et al. 2011), the generalizability of polygenic risk scores 
of millions of SNPs across different populations requires 
further study.

Interaction between Mendelian randomization 
and population structure

Causal inference via Mendelian randomization exploits the 
effect of G on O that goes via the trait T. If the assumptions 
are met, Mendelian randomization estimates are robust to 
bias in G–T estimates, as long as there is no (uncorrected) 
direct A–O effect. One important mechanism by which G–O 
(gene–outcome) associations might go via A is linkage dis-
equilibrium (LD). If the instrument SNP G is only a proxy 
for the true causal SNP, and LD differs between populations, 
then in theory G can be a strong genetic instrument in one 
population but weak in another. There is an absence of evi-
dence for this phenomenon, likely due to a lack of large Afri-
can datasets for whom LD is very different than Europeans.

In recent years, Mendelian randomization studies have 
increasingly used a two-sample design (Hartwig et al. 2016); 
in which estimates of the SNP–exposure and SNP–outcome 
relationships are taken from separate GWAS using non-over-
lapping samples. Here, an implicit assumption is that the two 
different samples used to estimate these relationships are 
drawn from the same underlying population. Typically, the 
two-sample design will use individuals of similar ancestry 
(e.g., restricting to individuals of recent European ancestry), 
however the effect of using two similar but ancestrally dis-
tinct samples within a broad definition such as Europeans 
is currently unclear. We will show below that even if the 
two samples are from the same population, there may be 
less power to detect the PCs in a smaller population. This 
can theoretically result in differential correction and, as a 
consequence, may bias causal estimates.

Simulating phenotypes with population 
stratification

For genome-wide questions including heritability analyses 
and prediction, it is easy to construct scenarios in which 
either correction or non-correction for structure can be mis-
leading. Figure 2 describes two simulation scenarios: case 
1 in which true genetic signal for a trait is associated with 
population structure (e.g., height), and case 2 in which popu-
lation structure associates non-causally with the trait through 
the environment. PC correction is conservative when phe-
notypes are truly associated with ancestry (Fig. 2b). When 
ancestry is predictive of the environment (Fig. 2c) it can 
even increase genetic associations through non-causal path-
ways. However, when genes have moved into new environ-
ments, PC correction reduces bias (Fig. 2d).

Detecting population structure is essential 
for correcting for it

If not appropriately modeled, phenotype stratification can 
bias GWAS, heritability estimation, prediction, and Men-
delian randomization. However, no single bias-correction 
approach is necessarily the correct choice for all scenarios. 
Even if the correct strategy is known, measurement of popu-
lation structure is critical. As with any parameters estimated 
from a dataset, increasing sample size increases the abil-
ity to detect population structure (Patterson et al. 2006). 
Within the UK, there was no detectible structure in a sub-
set of around 1000 people from the UK10K project (The 
UK10K Consortium 2015). However, with over 100,000 
people (Galinsky et al. 2016) from the UK Biobank project 
(Sudlow et al. 2015) several axes of variation are visible in 
the PCs. Importantly, the latent structure proxied by these 
axes of variation were still in the data before they could 
be detected, and so correction on smaller datasets will sys-
tematically under-correct for stratification. This may explain 
why estimates from a single large study are different from a 
meta-analysis of smaller ones, though to our knowledge this 
has not been studied.

To the extent that detection of population structure is 
a problem, better methodology offers a solution. Methods 
based on “chromosome painting” (Lawson et  al. 2012) 
exploit linkage disequilibrium to better detect population 
structure. Specifically, the approach counts recent sharing 
of segments of DNA that are identical by descent, rather 
than SNP frequencies, to detect recent structure. From the 
2039 individuals in the People of the British Isles (PoBI) 
dataset (Leslie et al. 2015) there was only 1 geographically 
meaningful PC but over 50 populations detectable with chro-
mosome painting. Studies sampled from a single location 
such as many cohort studies (for example ALSPAC, Boyd 
et al. 2013) are typically PCA corrected but the PCs are too 
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weak to capture the real variation and thus the population is 
assumed to be “homogeneous”. There is a “detection thresh-
old” in ancestry for which we can calculate the sample size 
required to detect ancestry variation of a given size (McVean 
2009). To our knowledge, there has been no systematic study 
of the importance of residual population structure in small 
samples.

Exploiting the PoBI dataset, chromosome painting in 
ALSPAC (Haworth et al. 2018) (Fig. 3) reveals dramatic 
genetic heterogeneity which is associated with phenotype, 
here shown for educational attainment. In this case, the bias 
is predominantly associated with migration: people who 

move are more likely to be educated. In ALSPAC, genetic 
ancestry can predict 8% of the variation in education; for 
comparison, the most recent published whole-genome 
genetic score explains 3.2% (Okbay et  al. 2016), and a 
mega-scale analysis is expected to generate a genetic score 
explaining 10% of the variance (Martin 2018). These results 
are based on meta-analyses of many studies, in which PC 
correction may not have sufficiently controlled for popula-
tion structure.

It is unclear how many of these GWAS hits are in fact 
hits for ancestry and hidden population structure or migra-
tion. The problem exists in many other phenotypes (Martin 

Fig. 3   Population structure can be detected in ALSPAC using the 
external UK reference dataset PoBI and chromosome painting (see 
“Methods”). This structure is associated with phenotype, and is not 
found using regular PCA. a Inferred (see “Methods”) education 
level of people migrating from different regions of the UK into the 
ALSPAC cohort based in Bristol;scale is 1 = no education, 2 = voca-
tional, 3 = GSCEs (age 16), 4 = further education (age 18), 5 = degree 
(reproduced from Haworth et  al. 2018). Participants with ancestry 

further from Bristol have considerably higher education, suggesting 
differential migration by education. b Variance explained in educa-
tion by chromosome painting PCs (8%) and regular PCA (0.8%). c 
The chromosome painting PC locations of individuals and popula-
tions for chromosome painting PC 3 and 5, which have the largest 
associations with education. PoBI mean label locations are shown, 
along with ALSPAC individuals (white dots) and a kernel smoothing 
of education
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et al. 2017): for example “height is predicted to decrease 
with genetic distance from Europeans” which is not empiri-
cally observed. Interpretation of these results is left to the 
discussion.

Opportunities from structured populations

Opportunities from natural genetic drift 
experiments

There are many inferential opportunities offered by popu-
lation structure, of which two are widely exploited. The 
first is natural experiments caused by genetic drift. Phe-
notypic variation decreases on average with distance from 
Africa (Manica et al. 2007), but any given phenotype may 
experience extreme variation in a small population. A clas-
sic example is the Kosrae islanders in the middle of the 
Pacific (Lowe et al. 2009) who are at high risk of type 
2 diabetes. Similarly, Greek islanders vary dramatically 
in longevity (Panoutsopoulou et al. 2014) and Ashkenazi 
Jews (Levy-Lahad et al. 1997) are at high risk of breast 
cancer; in all three cases, examining drifted populations 
has led to better understanding of disease for a wider pop-
ulation. In a more extreme example, only 85 individuals 
were required to identify the gene responsible for blonde 
hair in Melanesians (Kenny et al. 2012).

Exploiting genetic drift in genetic epidemiology is not 
limited to extreme founder events such as Finland (Cannon 
et al. 1998) but is actually routinely (if incidentally) used. 

The well-studied European populations experienced the 
out-of-Africa bottleneck as well as further founder events 
(Pagani et al. 2016) and are (due to availability) oversam-
pled. Whilst much variation is missing in Europe (1000 
Genomes Consortium 2015), the benefit is that some vari-
ants are at higher frequency than selection would allow 
in the larger effective population size within Africa. Fig-
ure 4a describes the GWAS results of a meta-analysis of 
stroke, for individuals with European, African and Asian 
ancestry sampled worldwide (Pulit et al. 2016). Seven 
SNPs were significant in the meta-analysis, which we 
consider in the context of European or African ancestry. 
Genetic drift has changed the genomic architecture of the 
disease; two significant SNPs have increased massively 
in frequency in the (more drifted) Europeans. Under the 
assumption that this is drift and not European-specific 
selection, there may not have been power to detect them 
in the same sized sample of Africans.

Opportunities from replication in varied 
populations

The second widely exploited opportunity from population 
structure is replication. Replication—or more generally, joint 
analyses of independent datasets (McCarthy et al. 2008)—is 
justifiably required for a GWAS result to be accepted. How-
ever, replication should be seen as a function of the proper-
ties of the populations being studied; Li and Keating (2014) 
list 11 examples where trans-ethnic replication has contrib-
uted to better understanding of GWAS results. When either 

x

xx

x x

x
x

Minor Allele Frequency

E
ffe

ct
 S

iz
e

+

+

+

+
+

+
+

0.0 0.1 0.2 0.3 0.4 0.5

−0
.2

0.
0

0.
2

0.
4

0.
6

+
x

Africa
Europe
Same SNP

rs12122341

rs2634074rs2200733

rs11984041 rs2107595

rs10744777
rs7193343

(a) Cross−population Genetic architecture of stroke

Effect size in Europe

E
ffe

ct
 s

iz
e 

in
 A

fri
ca

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.2

0.
0

0.
2

0.
4

0.
6

rs12122341

rs2634074

rs2200733

rs11984041

rs2107595

rs10744777

rs7193343

(b) Cross−population effect sizes of stroke

Fig. 4   Genetic architecture of significant stroke SNPs, from the 
GWAS meta-analysis of data from Pulit et  al. (2016). a Compares 
minor allele frequency against inferred effect size for Africans and 

Europeans (larger sample size). b Compares the effect sizes only. 
Effect SNPs are chosen to ensure that the effect directions in the 
meta-analysis are positive



Human Genetics	

1 3

the environment (Kaufman et al. 2013; Zhang et al. 2015; 
Logue et al. 2011) or the genetics (as in European meta-
analyses) do not differ substantially then confounding can 
still lead to an observed association by the same mechanism 
as that which produced the association in the discovery data-
set. Examining these in detail can prove insightful (Zhang 
et al. 2015). In the stroke example, Fig. 4a shows that 3 of 
the SNPs replicate in Africans, despite lower power in that 
population, which increases confidence in their association. 
Less reassuring are the 2 SNPs with different direction of 
effect, however, these results are imprecise and these differ-
ences could be due to estimation error. The current focus on 
European datasets appears to primarily probe variation and 
mutations from after the out-of-Africa bottleneck (Simons 
et al. 2018), meaning that it misses much biology from the 
critical period of the evolution of humans, as well as having 
negative implications for genetic applications in medical sci-
ence (Oh et al. 2015; Martin et al. 2018).

Population structure can be exploited to reach additional 
biological insights. The true effect sizes may differ between 
populations, either due to gene–gene or gene–environment 
interactions. For example, decanalization (Gibson 2009) is a 
relatively common form of genetic interaction involving the 
removal of mechanisms that regulate the genome, allowing 
larger effects. Correct estimation or overcorrection (Fig. 1a, 
b) are both possible scenarios when genetic variation is asso-
ciated with ancestry via a gene–gene interaction. Under-
correction (Fig. 1c) may occur when genetics is associated 
with the environment via a gene–environment interaction. 
However, the scenario can be detected and hence properly 
modeled by observing genotypes in multiple genetic and 
physical environments; see for example Vrieze et al. (2012) 
who examine gene–environment interactions in psychiatric 
disorders.

In the stroke example in Fig. 4b, 1 SNP (rs12122341) 
has different size of effect in Europeans and Africans. This 
is interesting and important as it must be associated with a 
difference in the genetic or environmental background of 
the two populations. This means the SNP will violate the 
Mendelian randomization assumptions within one or both 
populations, but examining multiple populations allows this 
to be detected. Hypothetically, the difference in effect seen 
in stroke may contribute via some other phenotype such as 
smoking behavior or diet.

Opportunities from population‑aware methodology

So far, we have considered what current methodology and/
or simple data analysis can show. Comparisons are there-
fore SNP-wise, focused on strongly associated SNPs, and 
usually result in falsifying hypotheses formed from sin-
gle population analyses. Completely new information can 
be extracted by instead comparing sets of SNPs or whole 

genetic architectures (Timpson et al. 2018) across population 
structures and traits (Simons et al. 2018).

Variation between populations can be exploited as part of 
the statistical methodology, to further learn about the genetic 
structure of a phenotype. Within a population, admixture 
mapping was an early tool (Winkler et al. 2010) to exploit 
variation in ancestry, though there are relatively few recent 
novel discoveries using this method, one being Adhikari 
et al. (2016). Across populations, standard GWAS method-
ology has been successfully applied and extended in “trans-
ethnic” approaches (Li and Keating 2014) which start by 
treating ancestry as a fixed or random effect in regression. 
More sophisticated approaches such as MANTRA (Morris 
2011) and MR-MEGA (Mägi et al. 2017) model heteroge-
neity in ancestry-specific effects, allowing the agreement 
between different populations to be measured. Popcorn 
(Brown et al. 2016) allows this to be done using only GWAS 
summary statistics. The consistent story across all pheno-
types studied in these papers—rheumatoid arthritis, type 2 
diabetes, gene expression, and kidney function—is that that 
both environment and ancestry play an important a role in 
explaining differences in populations. The total contribution 
of both is usually on the same order of magnitude. Although 
not conclusive in human studies, gene–environment interac-
tions have also been explicitly measured and can contribute 
substantially, e.g., adding 11% to accuracy in a plant study 
(Desta and Ortiz 2014).

Current methods for trans-ethnic analysis perform the 
association and heritability stage, but they can also be 
used for causal inference. The Mendelian randomization 
framework can be extended to consider the graph of how 
all traits may be causally related to all other traits (Hemani 
et al. 2017). We have seen that access to estimates from 
multiple populations provides insights into the effect sizes 
of individual SNPs for individual traits. New methodology 
should be able to exploit differences across populations to 
automatically screen SNPs and create causal graphs unique 
to each population.

Discussion

Population structure is relevant for epidemiology

Population structure has always been a feature of genetic 
studies of phenotypic variation. The impact it has had on 
inference has varied considerably as the data and questions 
have changed. Structure confounded the early efforts of 
genetic discovery, but was then sidestepped by larger data-
sets and a focus on discovery and replication. Population 
structure is transitioning from a theoretical problem to a 
practical issue for questions that require an accurate estimate 
of effect sizes. This is especially important for prediction 
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where out-of-sample target populations must be considered 
and Mendelian randomization for which sample size pro-
vides a potential source of bias.

Population structure is still a challenge

The very nature of population structure is challenging, 
requiring approaches that are specific to the analytical con-
text and trait. Figure 2 demonstrates that the use of stratifi-
cation correction in larger datasets may overcorrect, whilst 
Fig. 3 implies that meta-analysis of smaller datasets will 
systematically under-correct for population structure. The 
development of new tools to address and exploit structure is 
an important challenge for epidemiology.

The educational attainment results highlighted by structure 
within the ALSPAC study reveal important complexity. The 
effect sizes in trio studies (Okbay et al. 2016) are theoretically 
not confounded by population structure, and are consistently 
30–40% smaller than the inferred effects for the larger, unre-
lated sample. Our results show that population structure alone 
can predict educational outcome better than was previously 
thought. It is still unclear how this predictive power arises—
this study implicates migration whilst other explanations 
include assortative mating and dynastic effects (Kong et al. 
2018; Young et al. 2018), as well as sampling biases, though 
these are not mutually exclusive. We have discussed reasons to 
adjust GWAS results—or not—using higher quality ancestry 
estimates for the consortium datasets. There are two opposing 
hypotheses, which are both consistent with the available data:

(a)	 Educational attainment is associated with ancestry 
because of causal pathways that should be included in 
our definition of the phenotype. For example, historical 
biased migration could create “brain drain”, or selec-
tion on ancestral populations leading to a difference in 
ability (Clark and Cummins 2018). Alternatively, phe-
notypic differences between populations might exert 
influences over life-choices.

(b)	 Educational attainment is associated with ancestry 
because of non-causal phenotypic pathways. Exam-
ples include access to education, cultural norms, the 
relationship between education and GDP (Nelson and 
Phelps 1966), and discrimination within the educa-
tional system (Light and Strayer 2002; Song 2010).

It is likely that a combination of the above is true. Non-
causal pathways are certainly plausible (Fig. 5): average 
education levels and GDP per capita are correlated within 
countries and between countries in Europe (Mankiw et al. 
1992). GDP is in turn correlated in Northern Europe and the 
UK with high Germanic and Scandinavian ancestry, such 
as England, Germany, Denmark, Netherlands, Belgium and 
Luxembourg.

The difference in selection signal for height between UK 
Biobank and GIANT (Figure 1 of Berg et al. 2018) cannot 
be explained by PC correction, as the difference in effect 
exists even in uncorrected UK Biobank estimates. Stratifica-
tion may play a role, but it is more complex than a simple 
correction issue.

We saw in the stroke example that having access to mul-
tiple populations is transformative for how SNP effects can 
be interpreted. This genetic and cultural diversity is helpful 
in the study of all phenotypes, though we also need new 
methodology to further exploit the rich information avail-
able from these datasets. It may be the case that some phe-
notypes—including educational attainment and psychiatric 
disorders—are associated with traits that are actually creat-
ing the observed population structure. The arrow of causality 
then becomes unclear, and we may need dynamical models 
for historical data to complete the picture.

Epidemiology has much to gain from recognizing 
population structure

Stratified, admixed and otherwise heterogenous populations 
are an opportunity to test and validate the statistical models 
built on inferred genetic contributions to traits.

We also need to revise the data-sharing practices that we 
use. There are at least three different waysto run GWAS, 
which might all inform an understanding of how a SNP is 
associated with a phenotype:

1.	 Unadjusted estimates: These are likely to individually 
be overestimates of the causal effect and contain false 
positives.

2.	 PCA- or LMM-adjusted estimates: In many cases, these 
can individually be underestimates of the causal effect.

3.	 Externally adjusted estimates: Many of the problems 
discussed would disappear by standardizing the correc-
tion: for example, if small studies standardize against 
genetic variation in the UK Biobank then under-correc-
tion will be reduced. These PCs can be included along-
side the standard PCs which would still be required to 
correct for batch effects, residual family structure, etc.

None of these approaches is “correct” for estimating the 
“true” causal effect sizes for individual SNPs, but having 
varied estimates from varied populations allows for trian-
gulation (Lawlor et al. 2016) and hence brings us towards a 
better understanding of the underlying relationship between 
genotype and phenotype. The third approach may be par-
ticularly important for the standardization of varied sizes of 
study included in meta-analysis.

This article has discussed the part that population 
structure may play in the future of genetic epidemiol-
ogy. Observational relationships between genetic variants 
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and phenotypes are validated through external measure-
ments—structured populations and structured environments. 
Examining robustness of association signals in different 
populations is just one form of triangulation, and external 
validation in non-human models, in vitro experiments and 
clinical trials all will continue to play a key role.

Box 1: Structure, stratification, ancestry, 
demography, kinship?

Individuals are not randomly sampled from a large homo-
geneous population. Population structure is the existence 
of correlated variation in allele frequencies between (sub)
populations, meaning that SNPs on different chromo-
somes are predictive of each other. This can lead to phe-
notypic population stratification or “allele frequency dif-
ferences < associated with phenotype > due to systematic 
ancestry differences” (Price et al. 2006). Ancestry refers to 
the proportion of the genome that individuals received from 
historical abstracted populations, which change over time 
and are related through their demography. Populations and 
their history are a modeling construct that makes sense of 

the family tree (or pedigree) relating all individuals that left 
descendants in the sampled individuals. This is often meas-
ured through a kinship matrix or genetic similarity between 
all individuals in a dataset. Principal component analysis 
(PC analysis) is a dimension-reducing method to focus on 
ancestry by measuring the largest-scale variations in kinship, 
but the full kinship matrix also measures recent relatedness.

Correctly accounting for structure is important. If pheno-
typic stratification is insufficiently accounted for, then vari-
ants associated with population structure become associated 
with stratified phenotypes: for example, LCT variation is 
correlated not just with Lactase persistence but also with 
height (Campbell et al. 2005).

Methods

Model for simulating genotypes in varying 
environments

This simulation is designed to describe prediction quality 
in a range of situations where admixture has led to a single, 

Fig. 5   Maps of measures of educational attainment correlate with 
GDP, both within and across countries in Europe. There are large dif-
ferences between North and South Europe, and this is plausibly asso-
ciated with genetic ancestry. This may confound inference by gen-

erating genetic associations with education that are not biologically 
causal but are instead driven by access to education. Data source: 
Eurostat http://ec.europ​a.eu

http://ec.europa.eu
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relatively homogeneous population from two source popula-
tions, which are different in SNP frequency for some reason 
(either selection or drift) that is not explicitly modeled. It 
treats environment as separate from ancestry, so that a “test 
population” can be constructed in a different environment 
to the training population.

We simulated a sample of N individuals at L SNPs. To 
construct a model including correlations between PCs and 
traits, we allow individuals to be admixed between two 
populations (j = 1, 2). We then increase the frequency of the 
SNPs that are associated with the trait within Population 
1. Finally, we add an environmental confounder associated 
with the admixture proportion from Population 1. This leads 
to a situation in which genes are associated with phenotype 
via two pathways, a “causal” genetic pathway and a “non-
causal” environmental confounded pathway.

Under these conditions, prediction accuracy is reduced by 
PC correction (because PCs are associated with the genetics 
of the trait). However, the raw predictor is fitting the envi-
ronmental component as well as the genetic. The environ-
mental effect is removed by correcting for PCs. This lowers 
the prediction accuracy.

Specifically, the admixture fraction for individual i from 
Population 1 is:

where �2
a
= a0

(

1 − a0
)

∕Leff represents the variance expected 
were the admixture fraction to be sampled under a binomial 
with Leff . This simulates recent (small Leff ) or ancient (large 
Leff ) admixture. ai are truncated to lie within (0,1), allowing 
admixture proportions of exactly 0 or 1 to be simulated.

We then simulate ancestral the allele frequency for SNP 
l as pl ∼ Uniform(0.05, 0.5) . Population SNP frequencies are 

plm = TruncNorm
(

pl
(

1 + cis
)

, pl
(

1 − pl
)

�2
p

)

 ,  where �2
p
 

describes genetic drift from the ancestral frequency, s 
approximates a “selection” or extreme drift effect for SNPs 
associated with the trait, and cl = 1 for SNPs that are causal 
for the trait and 0 otherwise. Truncation allows frequencies 
of exactly 0 or 1 to be simulated.

The effect sizes are �l ∼ Uniform
(

0, cl�0pl
(

1 − pl
))

 . 
T h e  S N P  d a t a  Xil  a r e  t h e n  s a m p l e d 
Xil ∼ bern

(

aipl1 +
(

1 − ai
)

pl2
)

 . The genetic contribution to 
the phenotype is YG

i
=
∑L

l=1
Xil�l and standardize YG

i
 to have 

mean 0 and variance 1. We then generate an environmental 
exposure Ei = (ai − a0)∕�a with expected variance 1.

F ina l ly,  we  cons t r uc t  a  f ina l  phenotype 
Yi = hYG

i
+ (1 − h)eEi + (1 − h)(1 − e) ∈i   ,  w h e r e 

∈i ∼ Norm(0, 1) , h describes the “heritability” of the trait 
and e describes the “environmental contribution”. Yi is there-
fore a mixture of components with mean 0 and variance 1 
by construction.

ai ∼ TruncNorm
(

a0, �
2
a

)

,

To generate the plots, we simulate data under this model, 
and then examine new phenotypes in new data generated 
under the same model with estimated �̂l from the function 
“mixed.solve” in the R package rrBLUP. The top 20 PCs are 
calculated using the function “irlba” in the package irlba.

Simulations use h = 0.5, e = 0.5 , N = 2000 , L = 4000 , 
Leff = 20 , a0 = 0.4, �0 = 1 and s = 0.2 by default. Sensitiv-
ity analysis shows that no conclusions are dependent on the 
details of these choices (not shown).

Modeling the ALSPAC data

We created a combined dataset of PoBI and ALSPAC 
mothers, which is described fully in Haworth et al. (2018). 
Briefly, these were jointly phased, and used the imputed 
genotypes of ALSPAC participants at a set of 508,223 SNPs 
chosen by Leslie et al. (2015) for the PoBI dataset. Chro-
mosome painting (Lawson et al. 2012) was used to find the 
haplotypes that each individual shared with each of the 35 
labeled populations from the PoBI dataset (Fig. 2). The PoBI 
data forms a reference dataset for which a mixture model is 
fit for ALSPAC mothers. The map in Fig. 2a shows what the 
genetic score for that region would be, should the observed 
education in ALSPAC mothers be generated by mixing their 
regional education values by the inferred admixture weights.

A singular value decomposition (SVD) was then applied 
to the N = 2039 by K = 35 matrix of the results of chromo-
some painting for the PoBI participants (after centering 
and standardizing variance). Each of the M = 7739 mothers 
for whom genetic and education data were available were 
mapped into the SVD. Variance explained (Fig. 2b) uses a 
linear model predicting education either from chromosome 
painting or raw genotype PCs.

The heatmap (Fig. 2c) is a 2D smoothing of education 
values using chromosome painting PC3 and PC8, using 
“predict.gam” from the R package “mgcv” (restricted to 
where there is an observation within a distance 0.03).
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