Skip to main content

Advertisement

Log in

Development of validated QSPR models for O–H bond dissociation energy in substituted phenols

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A quantitative structure–property relationship (QSPR) study was reported to predict the O–H bond dissociation energy in substituted phenols based on a training set of 60 compounds and a test set of 18 compounds divided by DUPLEX algorithm. The QSPR models were built by stepwise multiple linear regression (MLR) and nonlinear artificial neural network (ANN), respectively. The mean relative error (MRE) provided by the MLR model was 1.51 %, indicating satisfactory predictive ability; while the MRE was further improved to 1.28 % by the ANN model. The results from Y-randomization tests, LMO cross-validations, and external validation through test set confirmed the reliability and robustness of the models. Moreover, the applicability domain of the developed models was assessed and visualized by the Williams plot.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Denisov ET, Afanas’ev IB, Denisova TG, Trepalin SV, Drozdova TI (2005) Oxidation and antioxidants in organic chemistry and biology. CRC, Boca Raton

    Book  Google Scholar 

  2. Borges dos Santos RM, Martinho Simões JA (1998) J Phys Chem Ref Data 27:707

    Article  CAS  Google Scholar 

  3. Denisov ET, Denisova TG (2011) In: Tadashi M (ed) Application of thermodynamics to biological and materials science. InTech, New York

    Google Scholar 

  4. Bean GP (2002) Tetrahedron 58:9941

    Article  CAS  Google Scholar 

  5. Wright JS, Johnson ER, Dilabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  6. Silva GD, Chen CC, Bozzelli JW (2006) Chem Phys Lett 424:42

    Article  Google Scholar 

  7. Aliaga C, Almodovar I, Rezende MC (2015) J Mol Model 21:2572

    Article  Google Scholar 

  8. Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, The Netherlands

    Google Scholar 

  9. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley-Interscience, New York

    Google Scholar 

  10. Yao XJ, Wang YW, Zhang XY, Zhang RS, Liu MC, Hu ZD, Fan BT (2002) Chemom Intell Lab Syst 62:217

    Article  CAS  Google Scholar 

  11. Xu J, Chen B, Zhang Q, Guo B (2004) Polymer 45:8651

    Article  CAS  Google Scholar 

  12. Xu J, Guo B, Chen B, Zhang Q (2005) J Mol Model 12:65

    Article  CAS  Google Scholar 

  13. Xu J, Liu L, Xu W, Zhao S, Zuo D (2007) J Mol Graph Model 26:352

    Article  CAS  Google Scholar 

  14. Xu J, Liang H, Chen B, Xu W, Shen X, Liu H (2008) Chemom Intell Lab Syst 92:152

    Article  CAS  Google Scholar 

  15. Xu J, Zhang H, Wang L, Ye W, Xu W, Li Z (2010) Fluid Phase Equil 291:111

    Article  CAS  Google Scholar 

  16. Xu J, Wang L, Wang L, Shen X, Xu W (2011) J Comput Chem 32:3241

    Article  CAS  Google Scholar 

  17. Liang G, Xu J, Liu L (2013) Fluid Phase Equil 353:15

    Article  CAS  Google Scholar 

  18. Wang X, Sun Y, Wu L, Gu S, Liu R, Liu L, Liu X, Xu J (2014) Chemom Intell Lab Syst 134:1

    Article  CAS  Google Scholar 

  19. Yuan Y, Sun Y, Wang D, Liu R, Gu S, Liang G, Xu J (2015) Fluid Phase Equil 391:31

    Article  CAS  Google Scholar 

  20. Wang D, Yuan Y, Duan S, Liu R, Gu S, Zhao S, Liu L, Xu J (2015) Chemom Intell Lab Syst 143:7

    Article  CAS  Google Scholar 

  21. Yu X, Yi B, Xie Z, Wang X, Liu F (2007) Chemom Intell Lab Syst 87:247

    Article  CAS  Google Scholar 

  22. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Igglessi-Markopoulou O, Kollias G (2010) Mol Divers 14:225

    Article  CAS  Google Scholar 

  23. Deeb O, Khadikar PV, Goodarzi M (2011) J Iran Chem Soc 8:176

    Article  CAS  Google Scholar 

  24. Guendouzi A, Mekelleche SM (2012) Chem Phys Lipids 165:1

    Article  CAS  Google Scholar 

  25. Melagraki G, Afantitis A (2013) Chemom Intell Lab Syst 123:9

    Article  CAS  Google Scholar 

  26. Xu Q, Wei C, Liu R, Gu S, Xu J (2015) Chemom Intell Lab Syst 146:313

    Article  CAS  Google Scholar 

  27. OECD principles for the validation, for Regulatory purposes, of (Quantitative) structure-activity relationship models (2004). http://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf

  28. Bosque R, Sales J (2003) J Chem Inf Comput Sci 43:637

    Article  CAS  Google Scholar 

  29. Xue CX, Zhang RS, Liu HX, Yao XJ, Liu MC, Hu ZD, Fan BT (2004) J Chem Inf Comput Sci 44:669

    Article  CAS  Google Scholar 

  30. Nantasenamat C, Naenna T, Prachayasittikul V (2008) J Mol Graph Model 27:188

    Article  CAS  Google Scholar 

  31. EC (2006) Regulation No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH). EC, Brussels

    Google Scholar 

  32. Todeschini R, Consonni V, Mauri A, Pavan M (2006) TALETE srl. Italy, Milan

    Google Scholar 

  33. Kiralj R, Ferreira MMC (2009) J Braz Chem Soc 20:770

    Article  CAS  Google Scholar 

  34. Ramsey LF, Schafer WD (1997) The statistical Sleuth. Wadsworth Publishing Company, USA

    Google Scholar 

  35. Kiralj R, Ferreira MMC (2010) J Chemometr 24:681

    Article  CAS  Google Scholar 

  36. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269

    Article  CAS  Google Scholar 

  37. Roy PP, Roy K (2008) QSAR Comb Sci 27:302

    Article  CAS  Google Scholar 

  38. Ojha PK, Mitra I, Das RN, Roy K (2011) Chemom Intell Lab Syst 107:194

    Article  CAS  Google Scholar 

  39. Zheng F, Bayram E, Sumithran SP, Ayers JT, Zhan C-G, Schmitt JD, Dwoskin LP, Crooks PA (2006) Bioorg Med Chem 14:3017

    Article  CAS  Google Scholar 

  40. Hemmer MC, Steinhauer V, Gasteiger J (1999) Vib Spectrosc 19:151

    Article  CAS  Google Scholar 

  41. Wessel MD, Jurs PC (1994) Anal Chem 66:2480

    Article  CAS  Google Scholar 

  42. Jansson PA (1991) Anal Chem 63:357A

    Article  Google Scholar 

  43. Xu L, Ball JW, Dixon SL, Jurs PC (1994) Environ Sci Chem 13:841

    CAS  Google Scholar 

  44. Allinger NL, Yuh YH, Lii JH (1989) J Am Chem Soc 111:8551

    Article  CAS  Google Scholar 

  45. Klein CT, Polheim D, Viernstein H, Wolschann P (2000) Pharm Res 17:358

    Article  CAS  Google Scholar 

  46. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902

    Article  CAS  Google Scholar 

  47. Liu H, Gramatica P (2007) Bioorg Med Chem 15:5251

    Article  CAS  Google Scholar 

  48. Snee RD (1977) Technometrics 19:415

    Article  Google Scholar 

  49. Famini GR, Penski CA, Wilson LY (1992) J Phys Org Chem 5:395

    Article  CAS  Google Scholar 

  50. Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69

    Article  CAS  Google Scholar 

  51. Atkinson A (1985) Plots, transformations, and regression. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hubei Province (No. 2012FFA098), the Scientific Innovation Team Project of the Education Department of Hubei Province (No. T201507), and Hubei Collaborative Innovation Center for Key Technologies in Textiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Xu, J. Development of validated QSPR models for O–H bond dissociation energy in substituted phenols. Monatsh Chem 148, 645–654 (2017). https://doi.org/10.1007/s00706-016-1794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1794-7

Keywords

Navigation