Skip to main content

Advertisement

Log in

Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Increased mineralization of the organic matter (OM) stored in permafrost is expected to constitute the largest additional global warming potential from terrestrial ecosystems exposed to a warmer climate. Chemical composition of permafrost OM is thought to be a key factor controlling the sensitivity of decomposition to warming. Our objective was to characterise OM from permafrost soils of the European Arctic: two mineral soils—Adventdalen, Svalbard, Norway and Vorkuta, northwest Russia—and a “palsa” (ice-cored peat mound patterning in heterogeneous permafrost landscapes) soil in Neiden, northern Norway, in terms of molecular composition and state of decomposition. At all sites, the OM stored in the permafrost was at an advanced stage of decomposition, although somewhat less so in the palsa peat. By comparing permafrost and active layers, we found no consistent effect of depth or permafrost on soil organic matter (SOM) chemistry across sites. The permafrost-affected palsa peat displayed better preservation of plant material in the deeper layer, as indicated by increasing contribution of lignin carbon to total carbon with depth, associated to decreasing acid (Ac) to aldehyde (Al) ratio of the syringyl (S) and vanillyl (V) units, and increasing S/V and contribution of plant-derived sugars. By contrast, in Adventdalen, the Ac/Al ratio of lignin and the Alkyl C to O-alkyl C ratio in the NMR spectra increased with depth, which suggests less oxidized SOM in the active layer compared to the permafrost layer. In Vorkuta, SOM characteristics in the permafrost profile did not change substantially with depth, probably due to mixing of soil layers by cryoturbation. The composition and state of decomposition of SOM appeared to be site-specific, in particular bound to the prevailing organic or mineral nature of soil when attempting to predict the SOM proneness to degradation. The occurrence of processes such as palsa formation in organic soils and cryoturbation should be considered when up-scaling and predicting the responses of OM to climate change in arctic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amelung W, Zech W (1996) Organic species in ped surface and core fractions along a climosequence in the prairie, North America. Geoderma 74:193–206. doi:10.1016/S0016-7061(96)00063-8

    Article  Google Scholar 

  • Amelung W, Flach KW, Zech W (1997) Climatic effects on soil organic matter composition in the great plains. Soil Sci Soc Am J 61:115–123. doi:10.2136/sssaj1997.03615995006100010018x

    Article  Google Scholar 

  • Amelung W, Flach KW, Zech W (1999) Neutral and acidic sugars in particle-size fractions as influenced by climate. Soil Sci Soc Am J 63:865–873. doi:10.2136/sssaj1999.634865x

    Article  Google Scholar 

  • Aune B (1993) Temperature normals for the period 1961-1990. DNMI—The Norwegian Meteorological Institute, Oslo

    Google Scholar 

  • Bahri H, Dignac M-F, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988. doi:10.1016/j.soilbio.2006.01.003

    Article  Google Scholar 

  • Baldock JA, Preston CM (1995) Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. Carbon forms and functions in forest soils. SSSA, Madison, pp 89–117

    Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083. doi:10.1071/S97004

    Article  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22. doi:10.1016/S0378-1127(99)00294-7

    Article  Google Scholar 

  • Bryant ID (1982) Loess deposits in lower Adventdalen, Spitsbergen. Polar Res 1982:93–103. doi:10.1111/j.1751-8369.1982.tb00479.x

    Article  Google Scholar 

  • Christiansen HH (2005) Thermal regime of ice-wedge cracking in Adventdalen, Svalbard. Permafrost Periglac Process 16:87–98. doi:10.1002/ppp.523

    Article  Google Scholar 

  • Dignac M-F, Bahri H, Rumpel C, Rasse DP, Bardoux G, Balesdent J, Girardin C, Chenu C, Mariotti A (2005) Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France). Geoderma 128:3–17. doi:10.1016/j.geoderma.2004.12.022

    Article  Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Chang Biol 12:2336–2351. doi:10.1111/j.1365-2486.2006.01259.x

    Article  Google Scholar 

  • Eder E, Spielvogel S, Kolbl A, Albert G, Kögel-Knabner I (2010) Analysis of hydrolysable neutral sugars in mineral soils: improvement of alditol acetylation for gas chromatographic separation and measurement. Org Geochem 41:580–585. doi:10.1016/j.orggeochem.2010.02.009

    Article  Google Scholar 

  • Førland EJ (1993) Precipitation normals for the period 1961-1990. DNMI—The Norwegian Meteorological Institute, Oslo

    Google Scholar 

  • Fronzek S, Luoto M, Carter TR (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12. doi:10.3354/cr032001

    Article  Google Scholar 

  • Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243. doi:10.1016/S0038-0717(03)00186-X

    Article  Google Scholar 

  • Grewer DM, Lafrenière MJ, Lamoureux SF, Simpson MJ (2016) Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic. Biogeochem 128:397–415. doi:10.1007/s10533-016-0215-7

    Article  Google Scholar 

  • Guggenberger G, Zech W (1994) Composition and dynamics of dissolved carbohydrates and lignin-degradation products in 2 coniferous forests, NE Bavaria, Germany. Soil Biol Biochem 26:19–27. doi:10.1016/0038-0717(94)90191-0

    Article  Google Scholar 

  • Guggenberger G, Christensen BT, Zech W (1994) Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. Eur J Soil Sci 45(4):449–458. doi:10.1111/j.1365-2389.1994.tb00530.x

    Article  Google Scholar 

  • Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol Biochem 90:87–100. doi:10.1016/j.soilbio.2015.07.021

    Article  Google Scholar 

  • Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11:1092–1100. doi:10.1111/j.1461-0248.2008.01223.x

    Article  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178. doi:10.1021/ac00239a007

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Chang Biol 6:196–210. doi:10.1046/j.1365-2486.2000.06021.x

    Article  Google Scholar 

  • Hofgaard A (2003) Effects of climate change on the distribution and development of palsa peatlands: background and suggestions for a national monitoring project. NINA project report, vol 21. Norwegian Institute for Nature Research (NINA), Trondheim

    Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593. doi:10.5194/bg-11-6573-2014

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

  • Kaiser C, Meyer H, Biasi C, Rusalimova O, Barsukov P, Richter A (2007) Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Geophys Res 112:G02017. doi:10.1029/2006JG000258

    Article  Google Scholar 

  • Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18:589–594. doi:10.1016/0038-0717(86)90080-5

    Article  Google Scholar 

  • Kögel I, Bochter R (1985) Characterization of lignin in forest humus layers by high-performance liquid-chromatography of cupric oxide oxidation-products. Soil Biol Biochem 17:637–640. doi:10.1016/0038-0717(85)90040-9

    Article  Google Scholar 

  • Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80:243–270. doi:10.1016/S0016-7061(97)00055-4

    Article  Google Scholar 

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625. doi:10.1016/S0146-6380(00)00042-5

    Article  Google Scholar 

  • Luo D, Wu Q, Jin H, Marchenko SS, Lü L, Gao S (2016) Recent changes in the active layer thickness across the northern hemisphere. Environ Earth Sci. doi:10.1007/s12665-015-5229-2

    Google Scholar 

  • Major H, Nagy J (1972) Geology of the Adventdalen map area, vol 138. Norsk Polarinstitut Skrifter, Oslo

    Google Scholar 

  • Mangerud J, Bolstad M, Elgersma A, Helliksen D, Landvik JY, Lonne I, Lycke AK, Salvigsen O, Sandahl T, Svendsen JI (1992) The last glacial maximum on Spitsbergen, Svalbard. Quat Res 38:1–31. doi:10.1016/0033-5894(92)90027-G

    Article  Google Scholar 

  • Mazhitova G, Malkova G, Chestnykh O, Zamolodchikov D (2004) Active-layer spatial and temporal variability at European Russian circumpolar-active-layer-monitoring (CALM) sites. Permafrost Periglac Process 15:123–139. doi:10.1002/ppp.484

    Article  Google Scholar 

  • McGuire AD, Macdonald RW, Schuur EAG, Harden JW, Kuhry P, Hayes DJ, Christensen TR, Heimann M (2010) The carbon budget of the northern cryosphere region. Curr Opin Environ Sustain 2:231–236. doi:10.1016/j.cosust.2010.05.003

    Article  Google Scholar 

  • Michaelson GJ, Ping CL (2003) Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska. J Geophys Res Atmos 108:2156–2202. doi:10.1029/2001JD000920

    Article  Google Scholar 

  • Michaelson GJ, Dai XY, Ping CL (2004) Organic matter and bioactivity in cryosols of arctic Alaska. In: Kimble JM (ed) Cryosols. Permafrost-affected soils. Springer, New York, pp 463–477

    Google Scholar 

  • Moen A (1999) Atlas of Norway: vegetation. Norwegian Mapping Authorities, Hønefoss. ISBN 82-7945-000-9

  • Moni C, Lerch TZ, Knoth de Zarruk K, Strand LT, Forte C, Certini G, Rasse DP (2015) Temperature response of soil organic matter mineralisation in arctic soil profiles. Soil Biol Biochem 88:236–246. doi:10.1016/j.soilbio.2015.05.024

    Article  Google Scholar 

  • Mueller CW, Rethemeyer J, Kao-Kniffin J, Löppmann S, Hinkel KM, Bockheim JG (2015) Large amounts of labile organic carbon in permafrost soils of northern Alaska. Glob Chang Biol 21:2804–2817. doi:10.1111/gcb.12876

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253. doi:10.2307/1938918

    Article  Google Scholar 

  • Nocentini C, Certini G, Knicker H, Francioso O, Rumpel C (2010) Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Org Geochem 41:682–689. doi:10.1016/j.orggeochem.2010.03.010

    Article  Google Scholar 

  • Oades JM (1984) Soil organic-matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. doi:10.1007/BF02205590

    Article  Google Scholar 

  • Paré MC, Bedard-Haughn A (2013) Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic. Glob Chang Biol 19:1126–1140. doi:10.1111/gcb.12125

    Article  Google Scholar 

  • Pengerud A, Cecillon L, Johnsen LK, Rasse DP, Strand LT (2013) Permafrost distribution drives soil organic matter stability in a subarctic palsa peatland. Ecosystems 16:934–947. doi:10.1007/s10021-013-9652-5

    Article  Google Scholar 

  • Ping CL, Jastrow JD, Jorgenson MT, Michaelson GJ, Shur YL (2015) Permafrost soils and carbon cycling. Soil 1:147–171. doi:10.5194/soil-1-147-2015

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Niu J, Fyfe CA (1998) 13C CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. For Ecol Manag 111:51–68. doi:10.1016/S0378-1127(98)00307-7

    Article  Google Scholar 

  • Rasse DP, Dignac M-F, Bahri H, Rumpel C, Mariotti A, Chenu C (2006) Lignin turnover in an agricultural field: from plant residues to soil-protected fractions. Eur J Soil Sci 57:530–538. doi:10.1111/j.1365-2389.2006.00806.x

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46:1029–1058. doi:10.1017/S0033822200032999

    Article  Google Scholar 

  • Rodionow A, Flessa H, Kazansky O, Guggenberger G (2006) Organic matter composition and potential trace gas production of permafrost soils in the forest tundra in northern Siberia. Geoderma 135:49–62. doi:10.1016/j.geoderma.2005.10.008

    Article  Google Scholar 

  • Rodionow A, Flessa H, Grabe M, Kazansky OA, Shibistova O, Guggenberger G (2007) Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone. Eur J Soil Sci 58:1260–1272. doi:10.1111/j.1365-2389.2007.00919.x

    Article  Google Scholar 

  • Rumpel C, Dignac M-F (2006) Chromatographic analysis of monosaccharides in a forest soil profile: analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation. Soil Biol Biochem 38:1478–1481. doi:10.1016/j.soilbio.2005.09.017

    Article  Google Scholar 

  • Rumpel C, Kogel-Knabner I (2011) Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi:10.1007/s11104-010-0391-5

    Article  Google Scholar 

  • Rumpel C, Skjemstad JO, Knicker H, Kogel-Knabner I, Huttl RF (2000) Techniques for the differentiation of carbon types present in lignite-rich mine soils. Org Geochem 31:543–551. doi:10.1016/S0146-6380(00)00026-7

    Article  Google Scholar 

  • Schädel C, Schuur EAG, Bracho R, Elberling B, Knoblauch C, Lee H, Luo Y, Shaver GR, Turetsky MR (2014) Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob Chang Biol 20:641–652. doi:10.1111/gcb.12417

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberg G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning M, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    Article  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714. doi:10.1641/B580807

    Article  Google Scholar 

  • Seppala M (1986) The origin of palsas. Geogr Ann A 68:141–147

    Article  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–753. doi:10.1111/j.1365-2745.2006.01139.x

    Article  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, Newman RH (1994) The removal of magnetic-materials from surface soils—a solid state C-13 CP/MAS NMR-study. Aust J Soil Res 32:1215–1229. doi:10.1071/SR9941215

    Article  Google Scholar 

  • Skjemstad JO, Taylor JA, Smernik RJ (1999) Estimation of charcoal (char) in soils. Commun Soil Sci Plant Anal 30:2283–2298. doi:10.1080/00103629909370372

    Article  Google Scholar 

  • Slota PJ et al (1987) Preparation of small samples for C-14 accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303–306

    Article  Google Scholar 

  • Smernik RJ, Eckmeier E, Schmidt MWI (2008) Comparison of solid-state C-13 NMR spectra of soil organic matter from an experimental burning site acquired at two field strengths. Aust J Soil Res 46:122–127. doi:10.1071/SR0712

    Article  Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. United States Department of Agriculture, Natural Resources Conservation Service, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Sparling G, Vojvodic-Vukovic M, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol Biochem 30:1469–1472. doi:10.1016/S0038-0717(98)00040-6

    Article  Google Scholar 

  • Spielvogel S, Prietzel J, Kögel-Knabner I (2007) Changes of lignin phenols and neutral sugars in different soil types of a high-elevation forest ecosystem 25 years after forest dieback. Soil Biol Biochem 39:655–668. doi:10.1016/j.soilbio.2006.09.018

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Reporting of C-14 data—discussion. Radiocarbon 19(3):355–363

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1987) User’s guide to the programs CALIB & DISPLAY 2.1. Quaternary Isotope Lab, University of Washington, Seattle

    Google Scholar 

  • Suggate RP, Dickinson WW (2004) Carbon NMR of coals: the effects of coal type and rank. Int J Coal Geol 57:1–22. doi:10.1016/S0166-5162(03)00116-2

    Article  Google Scholar 

  • Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingolfsson O, Jakobsson M, Kjaer KH, Larsen E, Lokrantz H, Lunkka JP, Lysa A, Mangerud J, Matiouchkov A, Murray A, Moller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271. doi:10.1016/j.quascirev.2003.12.008

    Article  Google Scholar 

  • Tarnocai C (2009) Arctic permafrost soils. In: Margesin R (ed) Soil biology. Permafrost soils, vol 16. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Tesi T, Muschitiello F, Smittenberg RH, Jakobsson M, Vonk JE, Hill P, Andersson A, Kirchner N, Noormets R, Dudarev O, Semiletov I, Gustafsson Ö (2016) Massive remobilization of permafrost carbon during post-glacial warming. Nat Commun 7:13653. doi:10.1038/ncomms13653

    Article  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211. doi:10.1016/j.soilbio.2010.03.017

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH (2002) Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–912. doi:10.1016/S0038-0717(02)00022-6

    Article  Google Scholar 

  • Ugolini FC, Corti G, Certini G (2006) Pedogenesis in the sorted patterned ground of Devon plateau, Devon Island, Nunavut, Canada. Geoderma 136:87–106. doi:10.1016/j.geoderma.2006.03.030

    Article  Google Scholar 

  • Uhlirova E, Santruckova H, Davidov SP (2007) Quality and potential biodegradability of soil organic matter preserved in permafrost of Siberian tussock tundra. Soil Biol Biochem 39:1978–1989. doi:10.1016/j.soilbio.2007.02.018

    Article  Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163. doi:10.2307/1942060

    Article  Google Scholar 

  • von Lutzow M, Kögel-Knabner I, Ekschmittb K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207. doi:10.1016/j.soilbio.2007.03.007

    Article  Google Scholar 

  • Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob Chang Biol 16:2543–2554. doi:10.1111/j.1365-2486.2009.02141.x

    Google Scholar 

  • Wang J, Song C, Hou A, Wang L (2014) CO2 emissions from soils of different depths of a permafrost peatland, Northeast China: response to simulated freezing–thawing cycles. J Plant Nut Soil Sci 177:524–531. doi:10.1002/jpln.201300309

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted as a part of the research project “Organic matter in permafrost: molecular composition and associated response to increasing temperature (PERMASOM)” (Norwegian Research Council (NFR) project No. 184754/S30). Additional funding was also provided by the European Science Foundation (ESF) activity entitled “Natural molecular structures as drivers and tracers of terrestrial C fluxes” (MOLTER Network). Valerie Pouteau (Ecosys, France) is highly acknowledged for technical assistance with molecular analyses. We would also like to thank those who facilitated the soil sampling at the three different sites: Hanne H. Christiansen, Paul Eric Aspholm, Tore Sveistrup, Galina Mazhitova and Alexander Pastukhov. We wish to thank two anonymous reviewers for their useful comments, which helped improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-France Dignac.

Additional information

Responsible Editor: Susan E. Crow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pengerud, A., Dignac, MF., Certini, G. et al. Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry 135, 277–292 (2017). https://doi.org/10.1007/s10533-017-0373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0373-2

Keywords

Navigation