Skip to main content
Log in

Self-Interactions of Strands and Sheets

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Physical strands or sheets that can be modelled as curves or surfaces embedded in three dimensions are ubiquitous in nature, and are of fundamental importance in mathematics, physics, biology, and engineering. Often the physical interpretation dictates that self-avoidance should be enforced in the continuum model, i.e., finite energy configurations should not self-intersect. Current continuum models with self-avoidance frequently employ pairwise repulsive potentials, which are of necessity singular. Moreover the potentials do not have an intrinsic length scale appropriate for modelling the finite thickness of the physical systems. Here we develop a framework for modelling self-avoiding strands and sheets which avoids singularities, and which provides a way to introduce a thickness length scale. In our approach pairwise interaction potentials are replaced by many-body potentials involving three or more points, and the radii of certain associated circles or spheres. Self-interaction energies based on these many-body potentials can be used to describe the statistical mechanics of self-interacting strands and sheets of finite thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Yamakawa, Modern Theory of Polymer Solutions (Harper and Row, New York, 1971).

    Google Scholar 

  2. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  3. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, New York, 1993).

    Google Scholar 

  4. G. des Cloiseaux and J. F. Jannink, Polymers in Solution: Their Modeling and Structure (Clarendon Press, Oxford, 1990).

    Google Scholar 

  5. D. R. Nelson, T. Piran, and S. Weinberg, eds., Statistical Mechanics of Membranes and Surfaces, Vol. 5 (Jerusalem Winter School for Theoretical Physics, World Scientific, Singapore, 1989).

    Google Scholar 

  6. K. J. Wiese, Polymerized membranes: A review, in Phase Transitions and Critical Phenomena, Vol. 19, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 2000).

    Google Scholar 

  7. K. G. Wilson and M. E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28:240-243 (1972).

    Google Scholar 

  8. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, New York, 1993).

    Google Scholar 

  9. L. P. Kadanoff, Critical behavior, universality and scaling in critical phenomena, in Proc. of the Int. School of Phys. “E. Fermi” (Varenna) Course LI, M. S. Green, ed. (Academic Press, New York, 1971).

    Google Scholar 

  10. H. E. Stanley, Scaling, universality and renormalization: three pillars of modern critical phenomena, Rev. Mod. Phys. 71:S358-S366 (1999).

    Google Scholar 

  11. J. Cantarella, R. Kusner, and J. M. Sullivan, On the minimum ropelength of knots and links, Inventiones Math, to appear.

  12. O. Gonzalez and R. de la Llave, Existence of ideal knots, Journal of Knot Theory and its Ramifications, to appear.

  13. O. Gonzalez, J. H. Maddocks, F. Schuricht, and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods, Calculus of Variations 14:29-68 (2002) (DOI 10.1007/s005260100089, April 2001).

    Google Scholar 

  14. F. Schuricht and H. von der Mosel, Global curvature for rectifiable loops, Mathematische Zeitschrift, to appear.

  15. V. Katritch, J. Bednar, D. Michoud, R. G. Scharein, J. Dubochet, and A. Stasiak, Geometry and physics of knots, Nature 384:142-145 (1996).

    Google Scholar 

  16. O. Gonzalez and J. H. Maddocks, Global curvature, thickness and the ideal shapes of knots, Proc. Natl. Acad. Sci. USA 96:4769-4773 (1999).

    Google Scholar 

  17. A. Maritan, C. Micheletti, A. Trovato, and J. R. Banavar, Optimal shapes of compact strings, Nature 406:287-290 (2000).

    Google Scholar 

  18. O. Gonzalez, J. H. Maddocks, and J. Smutny, Curves, circles, and spheres, to appear in Contemporary Mathematics (American Mathematical Society, Providence, R.I., 2002).

    Google Scholar 

  19. A. Stasiak, V. Katritch, and L. H. Kauffman, eds., Ideal Knots (World Scientific Publishing, Singapore, 1998).

    Google Scholar 

  20. D. J. Struik, Lectures on Classical Differential Geometry, 2nd Edn. (Dover, New York, 1988).

    Google Scholar 

  21. K. J. Wiese and F. David, Self-avoiding tethered membranes at the tricritical point, Nucl. Phys. B 450:495-557 (1995).

    Google Scholar 

  22. A. Baumgärtner, Does a polymerized membrane crumple?, J. Phys. I France 1:1549-1556 (1991).

    Google Scholar 

  23. A. Baumgärtner and W. Renz, Crumpled self-avoiding tethered surfaces, Europhys. Lett. 17:381-386 (1992).

    Google Scholar 

  24. D. M. Kroll and G. Gompper, Floppy tethered networks, J. Phys. I France 3:1131(1993).

    Google Scholar 

  25. R. B. Kusner and J. M. Sullivan, Möbius invariant knot energies, in Ideal Knots, Chap. 17, A. Stasiak, V. Katritch, and L. H. Kauffman, eds. (World Scientific Publishing, Singapore, 1998).

    Google Scholar 

  26. C. Anfinsen, Principles that govern the folding of protein chains, Science 181:223-230 (1973).

    Google Scholar 

  27. C. Chothia, One thousand families for the molecular biologist, Nature 357:543-544 (1992).

    Google Scholar 

  28. J. R. Banavar, A. Maritan, C. Micheletti, and A. Trovato, Geometry and physics of proteins, Proteins 47:315-322 (2002) (DOI 10.1002/prot.10091).J. R. Banavar, A. Flammini, D. Marenduzzo, A. Maritan, and A. Trovato, Geometry of compact tubes and protein structures, ComPlexUs (in press).

    Google Scholar 

  29. G. N. Ramachandran and V. Sasisekharan, Conformations of polypeptides and proteins, Adv. Protein Chem. 23:283-438 (1968).

    Google Scholar 

  30. R. Srinivasan and G. D. Rose, LINUS-A hierarchical procedure to predict the fold of a protein, Proteins 22:81-99 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banavar, J.R., Gonzalez, O., Maddocks, J.H. et al. Self-Interactions of Strands and Sheets. Journal of Statistical Physics 110, 35–50 (2003). https://doi.org/10.1023/A:1021010526495

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021010526495

Navigation