Skip to main content
Log in

Chronische Hypoxie und kardiovaskuläres Risiko

Klinische Bedeutung verschiedener Hypoxieformen

Chronic hypoxia and cardiovascular risk

Clinical significance of different forms of hypoxia

  • Übersichten
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Es ist von grundlegender Bedeutung, zu unterscheiden, ob eine chronische Hypoxie intermittierend oder persistierend auftritt. Während eine chronisch-intermittierende Hypoxie (CIH) typischerweise bei Patienten mit obstruktiver Schlafapnoe (OSA) zu finden ist, wird eine chronisch-persistierende Hypoxie (CPH) typischerweise bei Patienten mit chronischen Lungenerkrankungen diagnostiziert. Das kardiovaskuläre Risiko ist bei Patienten mit CIH deutlich erhöht im Vergleich zur Patienten mit CPH. Der häufige Wechsel von Sauerstoffdesaturation und Reoxygenierung bei Patienten mit CIH ist assoziiert mit vermehrtem hypoxischen Stress, gesteigerter systemischer Inflammation und gesteigerter adrenerger Aktivierung, gefolgt von endothelialer Dysfunktion und vermehrter Arteriosklerose. Die pathophysiologischen Konsequenzen der CPH sind weniger gut verstanden. Gesichert ist der Zusammenhang zwischen CPH und der Entstehung einer pulmonalarteriellen Hypertonie, eines Cor pulmonale sowie einer Polyglobulie.

Abstract

It is of fundamental importance to differentiate whether chronic hypoxia occurs intermittently or persistently. While chronic intermittent hypoxia (CIH) is found typically in patients with obstructive sleep apnea (OAS), chronic persistent hypoxia (CPH) is typically diagnosed in patients with chronic lung disease. Cardiovascular risk is markedly increased in patients with CIH compared to patients with CPH. The frequent change between oxygen desaturation and reoxygenation in patients with CIH is associated with increased hypoxic stress, increased systemic inflammation, and enhanced adrenergic activation followed by endothelial dysfunction and increased arteriosclerosis. The pathophysiologic consequences of CPH are less well understood. The relationship between CPH and the development of pulmonary hypertension, pulmonary heart disease as well as polycythemia has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Gami AS, Hodge DO, Herges RM et al (2007) Obstructive sleep apnea, obesity and the risk of incident atrial fibrillation. J Am Coll Cardiol 49:565–571

    Article  PubMed  Google Scholar 

  2. Gami AS, Olson EJ, Shen WK et al (2013) Obstructive sleep apnea and the risk of cardiac sudden death: a longitudinal study of 10701 adults. J Am Coll Cardiol 62:610–616

    Article  PubMed  Google Scholar 

  3. Lavie L (2015) Oxidative stress in obstructive sleep apnea and intermittent hypoxia – revisited – the bad ugly and good: implications to the heart and brain. Sleep Med Rev 20:27–45

    Article  PubMed  Google Scholar 

  4. Lurie A (2011) Inflammation, oxidative stress, and procoagulant and thrombotic activity in adults with obstructive sleep apnea. In: Borer JS (Hrsg) Obstructive sleep apnea in adults. Advances in cardiology, Bd. 46. Karger, Basel

    Chapter  Google Scholar 

  5. Dewan NA, Nieto FJ, Somers VK (2015) Intermittent hypoxemia and OSA – implications for comorbidities. Chest 147:266–274

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dumitrascu R, Heitmann J, Seeger W et al (2013) Obstructive sleep apnea, oxidative stress and cardiovascular disease: lessons from animal studies. Oxid Med Cell Longev 2013:234631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hoyos CM, Melehan KL, Liu PY et al (2015) Does obstructive sleep apnea cause endothelial dysfunction? A critical review of the literature. Sleep Med Rev 20:15–26

    Article  PubMed  Google Scholar 

  8. Monneret D, Tamisier R, Ducros V et al (2016) Glucose tolerance and cardiovascular risk biomarkers in non-diabetic non-obese obstructive sleep apnea patients: effects of long-term continuous positive airway pressure. Respir Med 112:119–125

    Article  PubMed  CAS  Google Scholar 

  9. Okur HK, Pelin Z, Yuksel M et al (2013) Lipid peroxidation and paraoxonase activity in nocturnal cyclic and sustained hypoxia. Sleep Breath 17:365–371

    Article  PubMed  Google Scholar 

  10. Ozeke O, Ozer C, Gungor M et al (2011) Chronic intermittent hypoxia caused by obstructive sleep apnea may play an important role in explaining the morbidity-mortality paradox of obesity. Med Hypotheses 76:61–63

    Article  PubMed  Google Scholar 

  11. Ramirez TA, Jourdan-Le Saux C, Joy A et al (2012) Chronic and intermittent hypoxia differentially regulate left ventricular inflammatory and extracellular matrix responses. Hypertens Res 35:811–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Reinke C, Bevans-Fonti S, Drager LF et al (2011) Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J Appl Physiol 111:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xie J, Kuniyoshi FH, Covassin N et al (2016) Nocturnal hypoxemia due to obstructive sleep apnea is an independent predictor of poor prognosis after myocardial infarction. J Am Heart Assoc 5:e003162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Uyar M, Davutoglu V (2016) An update on cardiovascular effects of obstructive sleep apnoea syndrome. Postgrad Med J 92:540–544

    Article  PubMed  Google Scholar 

  15. Zychowski KE, Sanchez B, Pedrosa RP et al (2016) Serum from obstructive sleep apnea patients induces inflammatory responses in coronary artery endothelia cells. Atherosclerosis 254:59–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Burke DL, Frid MG, Kunrath CL et al (2009) Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol 297:238–250

    Article  CAS  Google Scholar 

  17. Stone IS, Barnes NC, Petersen SE (2012) Chronic obstructive pulmonary disease: a modifiable risk factor for cardiovascular disease? Heart 98:1055–1062

    Article  PubMed  Google Scholar 

  18. Austin V, Crack PJ, Bozinovski S et al (2016) COPD and stroke: are systemic inflammation and oxidative stress the missing links? Clin Sci 130:1039–1050

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Koehler.

Ethics declarations

Interessenkonflikt

U. Koehler, O. Hildebrandt, J. Krönig, W. Grimm, J. Otto, W. Hildebrandt und R. Kinscherf geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koehler, U., Hildebrandt, O., Krönig, J. et al. Chronische Hypoxie und kardiovaskuläres Risiko. Herz 43, 291–297 (2018). https://doi.org/10.1007/s00059-017-4570-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4570-5

Schlüsselwörter

Keywords

Navigation