Skip to main content
Log in

X-ray investigation of the interface structure of free standing InAs nanowires grown on GaAs \([\bar{1}\bar {1}\bar{1}]_{\mathrm{B}}\)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The heteroepitaxial growth process of InAs nanowires (NW) on GaAs \([\bar{1}\bar{1}\bar{1}]_{\mathrm{B}}\) substrate was investigated by X-ray grazing-incidence diffraction using synchrotron radiation. For crystal growth we applied the vapor–liquid–solid (VLS) growth mechanism via gold seeds. The general sample structure was extracted from various electron microscopic and X-ray diffraction experiments. We found a closed Ga x In1−x As graduated alloy layer at the substrate to NW interface which was formed in the initial stage of VLS growth with a Au–Ga–In liquid alloy. With ongoing growth time a transition from this VLS layer growth to the conventional VLS NW growth was observed. The structural properties of both VLS grown crystal types were examined. Furthermore, we discuss the VLS layer growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. Feiner, A. Forchel, M. Scheffler, W. Riess, B. Ohlsson, U. Gösele, L. Samuelson, Mater. Today 9, 28–35 (2006)

    Article  Google Scholar 

  2. H.M. Kim, Y.H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, Nano Lett. 4, 1059 (2004)

    Article  ADS  Google Scholar 

  3. E. Givargizov, J. Cryst. Growth 31, 20–30 (1975)

    Article  ADS  Google Scholar 

  4. M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, Appl. Phys. Lett. 80, 1058–1160 (2001)

    Article  ADS  Google Scholar 

  5. E. Ertekin, P. Greaney, D. Chrzan, T. Sands, J. Appl. Phys. 97, 114325 (2005)

    Article  ADS  Google Scholar 

  6. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)

    Article  ADS  Google Scholar 

  7. T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nano Lett. 4, 699–702 (2004)

    Article  ADS  Google Scholar 

  8. B.J. Ohlsson, M.T. Björk, A.I. Persson, C. Thelander, L.R. Wallenberg, M.H. Magnusson, K. Deppert, L. Samuelson, Physica E 13, 1126–1130 (2002)

    Article  ADS  Google Scholar 

  9. J. Bauer, V. Gottschalch, G. Wagner, J. Appl. Phys. 104, 114315 (2008)

    Article  ADS  Google Scholar 

  10. M. Tchernycheva, L. Travers, G. Patriarche, F. Glas, J.C. Harmand, G. Cirlin, V. Dubrovskii, J. Appl. Phys. 102, 094313 (2007)

    Article  ADS  Google Scholar 

  11. K. Dick, K. Deppert, T. Mårtensson, B. Mandl, L. Samuelson, W. Seifert, Nano Lett. 5, 761–764 (2005)

    Article  ADS  Google Scholar 

  12. S. Dayeh, E. Yu, D. Wang, Nano Lett. 7, 2486–2490 (2007)

    Article  ADS  Google Scholar 

  13. J. Bauer, V. Gottschalch, H. Paetzelt, G. Wagner, B. Fuhrmann, H. Leipner, J. Cryst. Growth 298, 625–630 (2007)

    Article  ADS  Google Scholar 

  14. J. Taraci, M. Hÿtch, T. Clement, P. Peralta, M. McCartney, J. Drucker, S. Picraux, Nanotechnology 16, 2365–2371 (2005)

    Article  ADS  Google Scholar 

  15. G. Kästle, H.G. Boyen, F. Weigl, G. Lengl, T. Herzog, P. Ziemann, S. Riethmüller, O. Mayer, C. Hartmann, J. Spatz, M. Möller, M. Ozawa, F. Banhart, M. Garnier, P. Oelhafen, Adv. Funct. Mater. 13, 853–861 (2003)

    Article  Google Scholar 

  16. B. Mandl, J. Stangl, T. Mårtensson, A. Mikkelsen, J. Eriksson, L. Karlsson, G. Bauer, L. Samuelson, W. Seifert, Nano Lett. 6, 1817–1821 (2006)

    Article  ADS  Google Scholar 

  17. S. Mariager, C. Sorensen, M. Aagesen, J. Nygard, R. Feidenhansl, P. Willmott, Appl. Phys. Lett. 91, 083106 (2007)

    Article  ADS  Google Scholar 

  18. J. Eymery, F. Rieutord, V. Favre-Nicolin, O. Robach, Y.M. Niquet, L. Fröberg, T. Mårtensson, L. Samuelson, Nano Lett. 7, 2596–2601 (2007)

    Article  ADS  Google Scholar 

  19. X. Zhang, J. Zou, M. Paladugu, Y. Guo, Y. Wang, Y. Kim, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Small 5, 366–369 (2009)

    Article  Google Scholar 

  20. U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-Ray Scattering. From Thin Films to Lateral Nanostructures. Advanced Texts in Physics (Springer, Berlin, 2005)

    Google Scholar 

  21. O. Madelung, Landolt–Börnstein—Group IV Physical Chemistry/Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys. New Series, vol. 5a (Springer, Berlin, 1991)

    Google Scholar 

  22. K. Takahashi, T. Moriizumi, Jpn. J. Appl. Phys. 5, 657–661 (1966)

    Article  ADS  Google Scholar 

  23. P. Caroff, K. Dick, J. Johansson, M. Messing, K. Deppert, L. Samuelson, Nat. Nanotechnol. 4, 50–55 (2009)

    Article  ADS  Google Scholar 

  24. B. Wacaser, K. Deppert, L. Karlsson, L. Samuelson, W. Seifert, J. Cryst. Growth 287, 504–508 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, J., Pietsch, U., Davydok, A. et al. X-ray investigation of the interface structure of free standing InAs nanowires grown on GaAs \([\bar{1}\bar {1}\bar{1}]_{\mathrm{B}}\) . Appl. Phys. A 96, 851–859 (2009). https://doi.org/10.1007/s00339-009-5318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5318-8

PACS

Navigation