Skip to main content

Advertisement

Log in

Excitation Waves Returning to the Hippocampus via the Entorhinal Cortex Can Reactivate Populations of “Trained” Field CA1 Neurons during Deep Sleep

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

It is suggested that information on new stimuli from the neocortex is transmitted to the hippocampus, where temporal traces persist in the form of mosaics of modified synapses. During sleep, populations of neurons storing these traces are reactivated and return the information required for consolidation of a permanent memory trace to the neocortex. A possible mechanism for the reactivation of “trained” hippocampal neurons during memory consolidation consists of the reverberation of excitation in the neuron circuits linking the hippocampus and entorhinal cortex. Our studies in rats included recording of responses in hippocampal field CA1 to stimulation of Schaffer collaterals with potentiated synapses during waking and sleep. During deep sleep, discharges of field CA1 neurons were followed by waves of excitation which passed through the entorhinal cortex and reached the hippocampus and dentate gyrus via fibers of the perforant path, evoking neuron discharges in the latter. Repeated neuron discharges in field CA1 occurred on interaction of the early excitation wave returning directly via perforant path fibers and the late wave returning via Schaffer collaterals, not via the trisynaptic path via the dentate gyrus and hippocampal field CA3 but probably via field CA2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Zosimovskii and V. A. Korshunov, “Return to the hippocampal formation of excitation waves leaving field CA1 is facilitated after tetanization of Schaffer collaterals and during sleep,” Zh. Vyssh. Nerv. Deyat., 59, No. 1, 87–97 (2009).

    CAS  Google Scholar 

  2. C. A. Zosimovskii, V. A. Korshunov, and V. A. Markevich, “Conditions for the appearance of a double response to application of single stimuli to Schaffer collaterals in hippocampal field CA1 in freely moving rats,” Zh. Vyssh. Nerv. Deyat., 57, No. 2, 210–220 (2007).

    CAS  Google Scholar 

  3. C. W. Ang, G. C. Carlson, and D. A. Coulter, “Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies,” J. Neurosci., 25, No. 42, 9567–9580 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. R. Bartesaghi and T. Gessi, “Activation of perforant path neurons to field CA1 by hippocampal projections,” Hippocampus, 13, No. 2,235–249 (2003).

    Article  PubMed  Google Scholar 

  5. R. Bartesaghi and T. Gessi, “Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys,” Hippocampus, 14, No. 8, 948–963 (2004).

    Article  PubMed  Google Scholar 

  6. R. Bartesaghi, M. Migliore, and T. Gessi, “Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals,” Neurosci., 142, No. 1, 247–265 (2006).

    Article  CAS  Google Scholar 

  7. V. H. Brun, M. K. Otnass, S. Molden, H. A. Steffenach, M. P. Witter, M. B. Moser, and E. I. Moser, “Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry,” Science, 296, No. 5576, 2243–2246 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. G. Buzsaki, “Two-stage model of memory trace formation: a role for ‘noisy’ brain states,” Neurosci., 31, No. 3, 551–570 (1989).

    Article  CAS  Google Scholar 

  9. G. Buzsaki and E. Eidelberg, “Convergence of associational and commissural pathways on CA1 pyramidal cells of the rat hippocampus,” Brain Res., 237, No. 2, 283–295 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. K. J. Canning, K. Wu, P. Peloquin, F. Kloosterman, and L. S. Leung, “Physiology of the entorhinal and perirhinal projections to the hippocampus studied by current source density analysis,” Ann. N.Y. Acad. Sci., 911, 55–72 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. J. J. Chrobak and G. Buzsaki, “Selective activation of deep layer (V–VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat,” J. Neurosci., 14, No. 10, 6160–6170 (1994).

    PubMed  CAS  Google Scholar 

  12. C. M. Colbert and W. B. Levy, “Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors,” J. Neurophysiol., 68, 1–8 (1992).

    PubMed  CAS  Google Scholar 

  13. R. M. Empson and U. Heinemann, “The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice,” J. Physiol., 484, 707–720 (1995).

    PubMed  CAS  Google Scholar 

  14. V. Gnatkovski and M. de Curtis, “Hippocampus-mediated activation of superficial and deep layer neurons in the medial entorhinal cortex of the isolated guinea pig brain,” J. Neurosci., 26, No. 3, 873–881 (2006).

    Article  Google Scholar 

  15. O. Herreras, J. M. Solis, M. D. Munoz, R. Martin del Rio, and J. Lerma, “Sensory modulation of hippocampal transmission. I. Opposite effects on CA1 and dentate gyrus synapses,” Brain Res., 461, No. 2, 290–302 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. R. Kajiwara, F. G. Wouterlood, A. Sah, A. J. Boekel, L. T. Baks-te Bulte, and M. P. Witter, “Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1 – an anatomical study in the rat,” Hippocampus, 18, No. 3, 266–280 (2008).

    Article  PubMed  Google Scholar 

  17. J. Kiss, G. Buzsaki, J. S. Morrow, S. B. Glantz, and C. Leranth, “Entorhinal cortical innervation of parvalbumin-containing neurons (Basket and Chandelier cells) in the rat Ammon’s horn,” Hippocampus, 6, No. 3, 239–246 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. F. Kloosterman, T. Van Haeften, and F. H. Lopes da Silva, “Two reentrant pathways in the hippocampal-entorhinal system,” Hippocampus, 14, No. 8, 1026–1039 (2004).

    Article  PubMed  Google Scholar 

  19. P. Lavanex and D. G. Amaral, “Hippocampal-neocortical interaction: a hierarchy of associativity,” Hippocampus, 10, 420–430 (2000).

    Article  Google Scholar 

  20. B. L. McNaughton, C. A. Barnes, J. Meltzer, and R. J. Sutherland, “Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge,” Exp. Brain Res., 76, No. 3, 485–496 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. R. G. Morris, “Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas,” Eur. J. Neurosci., 23, No. 11, 2829–2846 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. D. Pare, M. de Curtis, and R. Llinas, “Role of the hippocampalentorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro,” J. Neurosci., 12, No. 5, 1867–1881 (1992).

    PubMed  CAS  Google Scholar 

  23. M. Remondes and E. M. Schuman, “Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory,” Nature431, No. 7009, 699–703 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. S. Riberiro and M. A. L. Nicolelis, “Reverberation, storage, and postsynaptic propagation of memories during sleep,” Learn. Mem., 11, No. 6, 686–696 (2004).

    Article  Google Scholar 

  25. N. Tomamaki, K. Abe, and Y. Nojyo, “Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique,” Brain Res., 452, No. 1–2, 255–272 (1988).

    Article  Google Scholar 

  26. I. Vida, K. Halasy, C. Szinyei, P. Somogyi, and E. H. Buhl, “Unitary IPSP evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro,” J. Physiol., 506, No. 3, 755–773 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. N. A. Vorobyov and M. W. Brown, “The topography of activity transmission between lateral entorhinal cortex and subfield CA1 of the hippocampus,” Eur. J. Neurosci., 27, No. 12, 3257–3272 (2008).

    Article  PubMed  Google Scholar 

  28. H. Wang, Y. Hu, and J. Z. Tsien, “Molecular and systems mechanisms of memory consolidation and storage,” Progr. Neurobiol., 79, No. 3, 123–135 (2006).

    Article  CAS  Google Scholar 

  29. M. P. Witter, F. G. Wouterlood, P. A. Naber, and T. Van Haeften, “Anatomical organization of the parahippocampal-hippocampal network,” Ann. N.Y. Acad. Sci., 911, 1–24 (2000).

    Google Scholar 

  30. T. Wolansky, E. A. Clement, S. R. Peters, M. A. Palczak, and C. T. Dickson, “Hippocampal slow oscillations: a novel EEG state and its coordination with ongoing neocortical activity,” J. Neurosci., 26, No. 23, 6213–6229 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zosimovskii.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 60, No. 5, pp. 568–581, September–October, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zosimovskii, V.A., Korshunov, V.A. Excitation Waves Returning to the Hippocampus via the Entorhinal Cortex Can Reactivate Populations of “Trained” Field CA1 Neurons during Deep Sleep. Neurosci Behav Physi 42, 133–143 (2012). https://doi.org/10.1007/s11055-011-9546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9546-y

Keywords

Navigation