Skip to main content
Log in

Generalized Swift-Hohenberg models for dense active suspensions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In describing the physics of living organisms, a mathematical theory that captures the generic ordering principles of intracellular and multicellular dynamics is essential for distinguishing between universal and system-specific features. Here, we compare two recently proposed nonlinear high-order continuum models for active polar and nematic suspensions, which aim to describe collective migration in dense cell assemblies and the ordering processes in ATP-driven microtubule-kinesin networks, respectively. We discuss the phase diagrams of the two models and relate their predictions to recent experiments. The satisfactory agreement with existing experimental data lends support to the hypothesis that non-equilibrium pattern formation phenomena in a wide range of active systems can be described within the same class of higher-order partial differential equations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Turing, Philos. Trans. R. Soc. B 237, 37 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Cross, H. Greenside. Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009)

  3. S. Taheri-Araghi, S.D. Brown, J.T. Sauls, D.B. McIntosh, S. Jun, Annu. Rev. Biophys. 44, 123 (2015)

    Article  Google Scholar 

  4. S.F. Gilbert, Developmental Biology, 8th edition (Sinauer Associates Inc., Sunderland, Massachusetts, USA, 2006)

  5. J. Swift, P.C. Hohenberg, Phys. Rev. A 15, 319 (1977)

    Article  ADS  Google Scholar 

  6. N. Stoop, R. Lagrange, D. Terwagne, P.M. Reis, J. Dunkel, Nat. Mater. 14, 337 (2015)

    Article  ADS  Google Scholar 

  7. I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  8. H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)

    Article  ADS  Google Scholar 

  9. J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bär, R.E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)

    Article  ADS  Google Scholar 

  10. A.U. Oza, J. Dunkel, New. J. Phys. 18, 093006 (2016)

    Article  ADS  Google Scholar 

  11. Stephen J. DeCamp, Gabriel S. Redner, Aparna Baskaran, Michael F. Hagan, Zvonimir Dogic, Nat. Mater. 14, 1110 (2015)

    Article  ADS  Google Scholar 

  12. T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)

    Article  ADS  Google Scholar 

  13. A. Czirók, T. Vicsek, Physica A 281, 17 (2000)

    Article  ADS  Google Scholar 

  14. H.H. Wensink, V. Kantsler, R.E. Goldstein, J. Dunkel, Phys. Rev. E 89, 010302(R) (2014)

    Article  ADS  Google Scholar 

  15. F. Peruani, A. Deutsch, M. Bär, Phys. Rev. E 74, 030904 (2006)

    Article  ADS  Google Scholar 

  16. F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)

    Article  ADS  Google Scholar 

  17. F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick, M.C. Marchetti, Z. Dogic, A.R. Bausch, Science 345, 1135 (2014)

    Article  ADS  Google Scholar 

  18. C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004)

    Article  ADS  Google Scholar 

  19. H.P. Zhang, A. Be’er, R.S. Smith, E.-L. Florin, H.L. Swinney, EPL 87, 48011 (2009)

    Article  ADS  Google Scholar 

  20. V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010)

    Article  ADS  Google Scholar 

  21. L.H. Cisneros, J.O. Kessler, S. Ganguly, R.E. Goldstein, Phys. Rev. E 83, 061907 (2011)

    Article  ADS  Google Scholar 

  22. D.L. Koch, G. Subramanian, Annu. Rev. Fluid Mech. 43, 637 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012)

    Article  ADS  Google Scholar 

  24. Kuo-An Liu, I. Lin, Phys. Rev. E 86, 011924 (2012)

    Article  ADS  Google Scholar 

  25. A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 109, 248109 (2012)

    Article  ADS  Google Scholar 

  26. A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)

    Article  ADS  Google Scholar 

  27. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  28. M. Hennes, K. Wolff, H. Stark, Phys. Rev. Lett. 112, 238104 (2014)

    Article  ADS  Google Scholar 

  29. C.W. Wolgemuth, Biophys. J. 95, 1564 (2008)

    Article  ADS  Google Scholar 

  30. L. Giomi, M.C. Marchetti, T.B. Liverpool, Phys. Rev. Lett. 101, 198101 (2008)

    Article  ADS  Google Scholar 

  31. A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009)

    Article  ADS  Google Scholar 

  32. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  33. R. Großmann, P. Romanczuk, M. Bär, L. Schimansky-Geier, Phys. Rev. Lett. 113, 258104 (2014)

    Article  ADS  Google Scholar 

  34. A. Peshkov, I.S. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012)

    Article  ADS  Google Scholar 

  35. D. Saintillan, M. Shelley, Phys. Fluids 20, 123304 (2008)

    Article  ADS  Google Scholar 

  36. D. Saintillan, M. Shelley, J. R. Soc. Interface 9, 571 (2011)

    Article  Google Scholar 

  37. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  38. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)

    Article  Google Scholar 

  39. P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011)

    Article  ADS  Google Scholar 

  40. R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 14, 073033 (2012)

    Article  ADS  Google Scholar 

  41. J. Taktikos, V. Zaburdaev, H. Stark, Phys. Rev. E 85, 051901 (2012)

    Article  ADS  Google Scholar 

  42. H. Wioland, F.G. Woodhouse, J. Dunkel, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013)

    Article  ADS  Google Scholar 

  43. E. Lushi, H. Wioland, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014)

    Article  ADS  Google Scholar 

  44. A. Kaiser, A. Peshkov, A. Sokolov, B. ten Hagen, H. Löwen, I.S. Aranson, Phys. Rev. Lett. 112, 158101 (2014)

    Article  ADS  Google Scholar 

  45. A. Kaiser, A. Sokolov, I.S. Aranson, H. Löwen, Eur. Phys. J. ST 224, 1275 (2015)

    Article  Google Scholar 

  46. J. Dunkel, S. Heidenreich, M Bär, R.E. Goldstein, New J. Phys. 15, 045016 (2013)

    Article  ADS  Google Scholar 

  47. J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)

    Article  ADS  Google Scholar 

  48. J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  50. U. Frisch. Turbulence (Cambridge University Press, Cambridge, 2004)

  51. S. Heidenreich, J. Dunkel, S.H.L. Klapp, M. Bär, Phys. Rev. E 94, 020601(R) (2016)

    Article  ADS  Google Scholar 

  52. R.H. Kraichnan, D. Montogomery, Rep. Prog. Phys. 43, 547 (1980)

    Article  ADS  Google Scholar 

  53. H. Kellay, W.I. Goldburg, Rep. Prog. Phys. 65, 845 (2002)

    Article  ADS  Google Scholar 

  54. R. Voituriez, J.F. Joanny, J. Prost, Phys. Rev. Lett. 96, 028102 (2006)

    Article  ADS  Google Scholar 

  55. N.S. Rossen, J.M. Tarp, J. Mathiesen, M.H. Jensen, L.B. Oddershede, Nat. Commun. 5, 5720 (2014)

    Article  ADS  Google Scholar 

  56. V. Bratanov, F. Jenko, E. Frey, Proc. Natl. Acad. Sci. U.S.A. 112, 15048 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  57. V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)

    Article  ADS  Google Scholar 

  58. I.S. Aranson, A. Snezhko, J.S. Olafsen, J.S. Urbach, Science 320, 612 (2008)

    Article  ADS  Google Scholar 

  59. S. Mishra, R.A. Simha, S. Ramaswamy, J. Stat. Mech.: Theor. Exp., P02003 (2010)

  60. X.-Q. Shi, Y.-Q. Ma, Nat. Commun. 4, 3013 (2013)

    ADS  Google Scholar 

  61. N. Goldenfeld, C. Woese, Annu. Rev. Condens. Matter Phys. 2, 375 (2011)

    Article  ADS  Google Scholar 

  62. A. Baskaran, M.C. Marchetti, Phys. Rev. E 77, 011920 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  63. T.C. Adhyapak, S. Ramaswamy, J. Toner, Phys. Rev. Lett. 110, 118102 (2013)

    Article  ADS  Google Scholar 

  64. Sumesh P. Thampi, Ramin Golestanian, Julia M. Yeomans, Phys. Rev. Lett. 111, 118101 (2013)

    Article  ADS  Google Scholar 

  65. L. Giomi, M.J. Bowick, X. Ma, M.C. Marchetti, Phys. Rev. Lett. 110, 228101 (2013)

    Article  ADS  Google Scholar 

  66. E. Putzig, G.S. Redner, A. Baskaran, A. Baskaran, Soft Matter 12, 3854 (2016)

    Article  ADS  Google Scholar 

  67. A. Doostmohammadi, M.F. Adamer, S.P. Thampi, J.M. Yeomans, Nat. Commun. 7, 10557 (2016)

    Article  ADS  Google Scholar 

  68. T. Gao, R. Blackwell, M.A. Glaser, M.D. Betterton, M.J. Shelley, Phys. Rev. Lett. 114, 048101 (2015)

    Article  ADS  Google Scholar 

  69. F.G. Woodhouse, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 110, 14132 (2013)

    Article  ADS  Google Scholar 

  70. R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)

    Article  ADS  Google Scholar 

  71. P.G. de Gennes, J. Prost. The Physics of Liquid Crystals, Vol. 2 (Oxford University Press, Oxford, 1995)

  72. C.P. Brangwynne, F.C. MacKintosh, S. Kumar, N.A. Geisse, J. Talbot, L. Mahadevan, K.K. Parker, D.E. Ingber, D.A. Weitz, J. Cell. Biol. 173, 733 (2006)

    Article  Google Scholar 

  73. V. Kantsler, R.E. Goldstein, Phys. Rev. Lett. 108, 038103 (2012)

    Article  ADS  Google Scholar 

  74. A.-K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)

    Article  MathSciNet  Google Scholar 

  75. P. Guillamat, J. Ignés-Mullol, S. Shankar, M.C. Marchetti, F. Sagués, arXiv:1606.05764 (2016)

  76. L. Giomi, M.J. Bowick, P. Mishra, R. Sknepnek, M.C. Marchetti, Philos. Trans. R. Soc. A 372, 20130365 (2014)

    Article  ADS  Google Scholar 

  77. A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand U. Oza.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oza, A., Heidenreich, S. & Dunkel, J. Generalized Swift-Hohenberg models for dense active suspensions. Eur. Phys. J. E 39, 97 (2016). https://doi.org/10.1140/epje/i2016-16097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16097-2

Keywords

Navigation