Skip to main content
Log in

A Monte Carlo Dosimetric Parameters of the 60Co High Dose Rate Brachytherapy and Investigation of TG43 Dose Accuracy in Different Media Using GATE v8.2 Code

  • BIOPHYSICS AND MEDICAL PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The determination of the dose distribution is the key step for accurate dose delivery in brachytherapy as well as radiotherapy application. This research study contributes on the characterization of the 60Co high dose rate brachytherapy source model Co0.A86. We followed the recommendations of the American Association of Physicists in Medicine (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) on dose calculation. In addition, this study aims also to investigate the accuracy of TG-43 algorithms dose calculations in different mediums relevant to high dose rate brachytherapy. For algorithm implementation, we have used the GEANT4 Application for Emission Tomography Monte Carlo code to reach our goal. Furthermore, we compared the obtained results with the previous published results. The obtained dosimetric data sets are in good agreement with the quoted values in the previous studies, where the authors used different Monte Carlo codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Richter, K. Baier, and M. Flentje, “Comparison of 60Co and 192Ir sources in high dose rate after loading brachytherapy,” Strahlenther. Onkol. 184, 187–192 (2008).

    Article  Google Scholar 

  2. R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F Williamson, and A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM radiation therapy committee task group no. 43,” Med. Phys. 22, 209–234 (1995).

    Article  Google Scholar 

  3. M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. Saiful Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM task group no. 43 report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31 (3), 633–674 (2004).

    Article  Google Scholar 

  4. J. Perez-Calatayud, F. Ballester, R. K. Das, L. A. DeWerd, G. S. Ibbott, A. S. Meigooni, Z. Ouhib, M. J. Rivard, R. S. Sloboda, and J. F. Williamson, “Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 kev: Report of the AAPM and ESTRO,” Med. Phys. 39 (5), 2904–2929 (2012).

    Article  Google Scholar 

  5. D.Granero, J. Perez-Calatayud, and F. Ballester, “Dosimetric study of a new Co-60 source used in brachytherapy,” Med. Phys. 34 (9), 3485–3488 (2007).

    Article  Google Scholar 

  6. T. Palani Selvam and S. Bhola, “Egsnrc-based dosimetric study of the bebig HDR brachytherapy sources,” Med. Phys. 37 (3), 1365–1370 (2010).

    Article  Google Scholar 

  7. R. Guerrero, J. F. Almansa, J. Torres, and A. M. Lallena, “Dosimetric characterization of the 60Co BEBIG Co0.A86 high dose rate brachytherapy source using penelope,” Phys. Med. 30 (8), 960–967 (2014).

    Article  Google Scholar 

  8. S. Elboukhari, Kh. Yamni, H. Ouabi, T. Bouassa, and L. Ait Mlouk, “Dosimetric study for the new BEBIG 60Co HDR source used in brachytherapy in water and different media using Monte Carlo n-particle extended code,” Appl. Radiat. Isotopes, 159, 109087 (2020).

    Article  Google Scholar 

  9. Ch. Kirisits, M. J. Rivard, D. Baltas, F. Ballester, M. de Brabandere, R. van der Laarse, Yu. Niatsetski, P. Papagiannis, T. Paulsen Hellebust, J. Perez-Calatayud, et al., “Review of clinical brachytherapy uncertainties: analysis guidelines of gec-estro and the AAPM,” Radiother. Oncol. 110 (1), 199–212 (2014).

    Article  Google Scholar 

  10. L. A. DeWerd, G. S. Ibbott, A. S. Meigooni, M. G. Mitch, M. J. Rivard, K. E. Stump, B. R. Thomadsen, and J. L. M. Venselaar, “A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of aapm task group no. 138 and gec-estro,” Med. Phys. 38 (2), 782–801 (2011).

    Article  Google Scholar 

  11. D. Sarrut, M. Bardies, N. Boussion, N. Freud, S. Jan, J.-M. Letang, G. Loudos, L. Maigne, S. Marcatili, Th. Mauxion, et al., “A review of the use and potential of the gate monte carlo simulation code for radiation therapy and dosimetry applications,” Med. Phys. 41, 064301 (2014).

    Article  Google Scholar 

  12. D. Strulab, G. Santin, D. Lazaro, V. Breton, and Ch. Morel, “GATE (GEANT4 application for tomographic emission): A pet/spect general-purpose simulation platform,” Nucl. Phys. B Proc. Suppl. 125, 75–79 (2003).

    Article  ADS  Google Scholar 

  13. NuDat 2.8 National Nuclear Data Center, Nuclear Data. https://www.nndc.bnl.gov/nudat2/. Accessed June 20, 2021.

  14. M. J. Rivard, D. Granero, J. Perez-Calatayud, and F. Ballester, “Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air,” Med. Phys. 37 (2), 869–876 (2010).

    Article  Google Scholar 

  15. F. Ballester, D. Granero, J. Perez-Calatayud, E. Casal, S. Agramunt, and R. Cases, “Monte-Carlo dosimetric study of the BEBIG Co-60 HDR source,” Phys. Med. Biol. 50, N309 (2005).

  16. J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. XAAMDI. Natl. Inst. Standards Technol. https://www.nist.gov/. Accessed 1997.

  17. D. R. White, R. V. Griffith, and I. J. Wilson, J. Report 46, Journal of the ICRU (1), NPI, INP, 1992.

  18. P. D. Higgins, F. H. Attix, J. H. Hubbell, S. M. Seltzer, and M. J. Berger, “Mass energy-transfer and mass energy-absorption coefficients, including in-flight positron annihilation for photon energies 1 keV to 100 MeV,” NISTIR 4680 (NIST, 1992).

    Google Scholar 

  19. G. P. Fonseca, R. A. Rubo, R. A. Minamisawa, G. R. Dos Santos, P. C. G. Antunes, and H. Yoriyaz, “Determination of transit dose profile for a 192Ir HDR source,” Med. Phys. 40, 051717 (2013).

    Article  Google Scholar 

  20. I. Mohammad Anwarul, M. Md Akramuzzaman, and G. Abu Zakaria, “Egsnrc Monte Carlo-aided dosimetric studies of the new BEBIG 60Co HDR brachytherapy source,” J. Contemp. Brachyther. 5, 148 (2013).

    Article  Google Scholar 

  21. S. Sahoo, T. Palani Selvam, R. S. Vishwakarma, and G. Chourasiya, “Monte Carlo modeling of 60Co HDR brachytherapy source in water and in different solid water phantom materials,” J. Med. Phys. (India) 35, 15 (2010).

    Article  Google Scholar 

  22. R. Wang and R. S. Sloboda, “Brachytherapy scatter dose calculation in heterogeneous media: II. Empirical formulation for the multiple-scatter contribution,” Phys. Med. Biol. 52, 5637 (2007).

    Article  Google Scholar 

  23. R. E. P. Taylor, G. Yegin, and D. W. O. Rogers, “Benchmarking brachydose: Voxel based egsnrc Monte Carlo calculations of TG-43 dosimetry parameters,” Med. Phys. 34, 445 457 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahcen Ait-Mlouk.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-Mlouk, L., Khalis, M., Ouabi, H. et al. A Monte Carlo Dosimetric Parameters of the 60Co High Dose Rate Brachytherapy and Investigation of TG43 Dose Accuracy in Different Media Using GATE v8.2 Code. Moscow Univ. Phys. 76 (Suppl 1), S68–S79 (2021). https://doi.org/10.3103/S002713492201012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713492201012X

Keywords:

Navigation