Skip to main content
Log in

The chemical dissolution and physical migration of minerals induced during CO2 laboratory experiments: their relevance for reservoir quality

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The characterization of the quality and storage capacity of geological underground reservoirs is one of the most important and challenging tasks for the realization of carbon capture and storage (CCS) projects. One approach for such an evaluation is the upscaling of data sets achieved by laboratory CO2 batch experiments to field scale. (Sub)-microscopic, petrophysical, tomographic, and chemical analytical methods were applied to reservoir sandstone samples from the Altmark gas field before and after static autoclave batch experiments at reservoir-specific conditions to study the relevance of injected CO2 on reservoir quality. These investigations confirmed that the chemical dissolution of pore-filling mineral phases (carbonate, anhydrite), associated with an increased exposure of clay mineral surfaces and the physical detachment and mobilization of such clay fines (illite, chlorite) are most appropriate to modify the quality of storage sites. Thereby the complex interplay of both processes will affect the porosity and permeability in opposite ways—mineral dissolution will enhance the rock porosity (and permeability), but fine migration can deteriorate the permeability. These reactions are realized down to ~µm scale and will affect the fluid–rock reactivity of the reservoirs, their injectivity and recovery rates during CO2 storage operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arvidson RS, Ertan IE, Amonette JE, Lüttge A (2003) Variation in calcite dissolution rates: a fundamental problem. Geochim Cosmochim Acta 67(9):1623–1634

    Article  Google Scholar 

  • Bedrikovetsky P, Siqueira FD, Furtado C, de Souza ALS (2010) Quantitative theory for fines migration and formation damage. In: Paper (SPE 128384) presented at the International Symposium and Exhibition on Formation Damage Control of the Society of Petroleum Engineers. Layayette, USA, p 22

  • Blum AE, Stillings LL (1995) Chemical weathering of feldspars. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Min Soc Am Rev Min vol 31. Washing ton, pp 291–351

  • Bourquin S, Bercovici A, López-Gómez J, Diez JB, Broutin J, Ronchi A, Durand M, Arché A, Linol B, Amour F (2011) The Permian-Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: palaeogeographic maps and geodynamic implications. Palaeogeogr Palaeoclimatol Palaeoecol 299:265–280

    Article  Google Scholar 

  • Bowker KA, Shuler PJ (1991) Carbon dioxide injection and resultant alteration of the weber sandstone, rangely field Colorado. AAPG Bull 75:1489–1499

    Google Scholar 

  • Brantley SL, Mellott NP (2000) Surface area and porosity of primary silicate minerals. Am Mineral 85:1767–1783

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Fischer S, Liebscher A, Wandrey M, The CO2SINK Group (2010) CO2–brine–rock interaction—first results of long-term exposure experiments at in situ P-T conditions of the Ketzin CO2 reservoir. Geochem Chemie der Erde 70:155–164

    Article  Google Scholar 

  • Gast RE, Dusar M, Breitkreuz C, Gaupp R, Schneider JW, Stemmerik L, Geluk MC, Geißler M, Kiersnowski H, Glennie KW, Kabel S, Jones, NS (2010) Rotliegend. In: Doornenbal JC, Stevenson AG (eds) Petroleum geological atlas of the southern permian basin area. EAGE Publications b.v. (Houten), pp 101–121

  • Ganzer L, Reitenbach V, Gaupp R, Pudlo D, De Lucia M, Albrecht D, Wienand J (2012) Auswirkung von CO2 Injektionen auf die mineralogisch-geochemischen und petrophysikalischen Eigenschaften von Rotliegend Sandstein. DGMK-Tagungsbericht, DGMK/ÖGEW-Frühjahrstagung, Celle/Germany, pp 233–242

  • Geluk MC (2007) Triassic. In: Wong, T E., Batjes, DAJ., De Jager, J. (eds) Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences, pp 85–106

  • Gouze P, Luquot L (2011) X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. J Contam Hydrol 120–121:45–55

    Article  Google Scholar 

  • Harstad AO, Stipp SLS (2007) Calcite dissolution: effects of trace cations naturally present in Iceland spar calcites. Geochim Cosmochim Acta 71:56–70

    Article  Google Scholar 

  • Heister K (2014) The measurement of the specific surface area of soils by gas and polar liquid adsorption methods—Limitations and potentials. Geoderma 216:75–87

    Article  Google Scholar 

  • Henkel S, Pudlo D, Werner L, Enzmann F, Reitenbach V, Albrecht D, Würdemann H, Heister K, Ganzer L, Gaupp R (2014) Mineral reactions in the geological underground induced by H2 and CO2 injections. Energy Proc. 63:8026–8035

    Article  Google Scholar 

  • Huq F, Blum P, Marks MAW, Nowak M, Haderlein SB, Grathwohl P (2012) Chemical changes in fluid composition due to CO2 injection in the Altmark gas field: preliminary results from batch experiments. Environ Earth Sci 67:385–394

    Article  Google Scholar 

  • Huq F, Haderlein SB, Schröder C, Marks MAW, Grathwohl P (2014) Effect of injected CO2 on geochemical alteration of the Altmark gas reservoir in Germany. Environ Earth Sci 72:3655–3662

    Article  Google Scholar 

  • Katz DL, Legatski MW, Tek MR (1966) How water displaces gas from porous media. Oil Gas J 64:55–60

    Google Scholar 

  • Kirste DM, Watson MN, Tingate PR (2004) Geochemical modelling of CO2–water–rock interaction in the Pretty Hill Formation, Otway basin. In: Boult PJ, Johns DR, Lang SC (eds) Eastern Australasian basins. Symposium II, Spec. publ., Adelaide Petrol Explor Association of Australia, Adelaide, pp 403–411

  • Kummerow J, Spangenberg E (2011) Experimental evaluation of the impact of the interactions of CO2–SO2, brine, and reservoir rock on petrophysical properties: a case study from the Ketzin test site Germany. Geochem Geophys Geosyst. doi:10.1029/2010GC003469

    Google Scholar 

  • Lee YJ, Morse JW (1999) Calcite precipitation in synthethic veins: implications for the time and fluid volume necessary for vein filling. Chem Geol 156:151–170

    Article  Google Scholar 

  • Lemon P, Zeinijahromi A, Bedrikovetsky P, Shahin I (2011) Effects of injected water chemistry on waterflood sweep efficiency via induced fines migration. In: Paper (SPE 140141) presented at the International Symposium on Oilfield Chemistry. Woodlands/USA, p 17

  • Macht F, Eusterhues K, Pronk GJ, Totsche KU (2011) Specific surface area of clay minerals: comparison betwenn atomic force microscopy measurements and bulk-gas (N2) and –liquid (EGME) adsorption methods. Appl Clay Sci 53:20–26

    Article  Google Scholar 

  • Maclnnis IN, Brantley SL (1992) The role of dislocations and surface morphology in calcite dissolution. Geochim Cosmochim Acta 56:1113–1126

    Article  Google Scholar 

  • Maclnnis IN, Brantley SL (1993) Development of etch pit size distributions on dissolving minerals. Chem Geol 105:31–49

    Article  Google Scholar 

  • Myrttinen A, Becker V, Nowak M, Zimmer M, Pilz P, Barth JAC (2012) Analyses of pre-injection reservoir data for stable carbon isotope trend predictions in CO2 monitoring: preparing for CO2 injection. Environ Earth Sci 67:473–479

    Article  Google Scholar 

  • Nowak ME, Van Geldern R, Myrttinen A, Zimmer M, Barth JAC (2014) High-resolution stable carbon isotope monitoring indicates variable flow dynamic patterns in a deep saline aquifer at the Ketzin pilot site (Germany). Appl Geochem 47:44–51

    Article  Google Scholar 

  • Ochi J, Vernoux JF (1998) Permeability decrease in sandstone reservoirs by fluid injection—Hydrodynamic and chemical effects. J Hydrol 208:237–248

    Article  Google Scholar 

  • Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany). Environ Earth Sci 67:1113–1126

    Article  Google Scholar 

  • Pusch G, Meyn R, Ionescu GF, Awemo KN, May F (2009) Work package 4—process modeling. In: Pusch G (ed) Feasibility study on the potential of CO2 storage for enhanced gas recovery in mature german gas reservoirs (CSEGR). Final report of BMBF research project 03G0627A, Germany, pp 135–176

  • Reinhold K, Müller C, Riesenberg C (2011) Informationssystem Speichergesteine für den Standort Deutschland -Synthese-. Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin/Hannover

    Google Scholar 

  • Rimmelé G, Barlet-Gouédard V, Renard F (2009) Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geolgical storage at 3 km depth. Oil Gas Sci Technol Rev IFP 65:565–580

  • Rimstidt JD, Barnes HL (1981) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  • Ross G (1982) The Dissolution effects of CO2–brine systems on permeability of UK and North Sea calcareous sandstones. In: Paper (SPE/DOE 10685) presented at the 3rd Joint Symposium on Enhanced Oil Recovery of the Society of Petroleum Engineers, Tulsa/USA, pp 154–162

  • Sayegh SG, Krause FF, Girard M, DeBree C (1990) Rock/fluid interactions of carbonated brines in a sandstone reservoir: Pembina Cardium, Alberta, Canada. SPE Form Eval 5:399–405

    Article  Google Scholar 

  • Sell K, Enzmann F, Kersten M, Spangenberg E (2013) Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone. Environ Sci Technol 47:198–204

    Article  Google Scholar 

  • Shiraki R, Dunn TL (2000) Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl Geochem 15:265–279

    Article  Google Scholar 

  • Straley C, Rossini D, Vinegar H, Tutunjian P, Morriss C (1994) Core analysis by low field NMR. In: Proceedings of the International Symposium of the Society of Core Analysts. Stavanger/Norway. Paper SCA-9404

  • Ziegler K (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Min 41:355–393

    Article  Google Scholar 

Download references

Acknowledgments

This contribution resembles results from studies performed in the framework of the collaborative projects CLEAN and H2STORE, sponsored within the special R&D programs “Geotechnologien” and “Energiespeicher” of the German Ministry of Education and Research (BMBF). We deeply appreciate the funding of the BMBF (grant nos. FSU Jena: 03G0704G, 03SF0434A and TU Clausthal: 03G0704R, 03SF0434C). We thank GDF SUEZ E&P DEUTSCHLAND GmbH, Lingen, Germany for support and sample supply. Special thanks for the comments of Prof. J. Barth (University Erlangen/Nürnberg, Germany) and two anonymous reviewers, which strongly improved this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Pudlo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pudlo, D., Henkel, S., Reitenbach, V. et al. The chemical dissolution and physical migration of minerals induced during CO2 laboratory experiments: their relevance for reservoir quality. Environ Earth Sci 73, 7029–7042 (2015). https://doi.org/10.1007/s12665-015-4411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4411-x

Keywords

Navigation