Regulation der 5-Lipoxygenase durch humane Cytomegalovirus-Infektion

  • Die 5-Lipoxygenase ist das Schlüsselenzym der Bildung proentzündlicher Leukotriene. Diese Mediatoren sind assoziiert mit Erkrankungen des entzündlichen Formenkreises wie beispielsweise Arteriosklerose [6]. Durch die Veröffentlichungen von Qiu et. al. [248] und Gredmark-Russ et. al. [650] konnte gezeigt werden, dass die Infektion mit humanen Cytomegalovirus in vitro und in vivo zur Induktion der 5-LO in HPASMCs und SMCs (smooth muscle cells) führt. HCMV ist ein ß-Herpesvirus, welches nach einer zumeist asymptomatischen Primärinfektion, dauerhaft im Wirt persisiert und bei Schwächung des Immunsystems oder entzündliche Prozessen reaktiviert werden kann [256]. Geht das Virus in die lytische Replikationsphase über, werden Entzündungsprozesse gefördert, die zur Ausprägung von Krankheitsbildern wie Retinitis, rheumatoider Arthritis oder auch Psoriasis führen. Es besteht demnach ein Zusammenhang zwischen der aktiven HCMV-Infektion und Erkrankungen des entzündlichen Formenkreises, welche unter anderem durch die Induktion der 5-LO vermittelt wurden. Ziel der Arbeit war es, den molekularen Mechanismus der viral induzierten 5-LO-Promotoraktivierung aufzuklären. Dazu wurde zunächst überprüft, ob die Infektion mit HCMV in HFF, einer Zelllinie die äußerst permissiv für die Infektion ist und daher zumeist als Testsystem für HCMV herangezogen wird, eine verstärkte 5-LO-Expression hervorruft, oder ob es sich um einen zelltypspezifischen Effekt der smooth muscle cells handelt. Es konnte gezeigt werden, dass es nach Infektion zu einer verstärkten Promotoraktivierung, mRNS- sowie Proteinexpression der 5-LO kam (Abb. 19, 23, 24). Weitere Untersuchungen charakterisierten, welches virale Protein die Effektvermittlung bedingte. Aufgrund der sequentiellen Genexpression des Virus unterscheidet man nach Zeitpunkt der Expression in Immediate Early, Early und Late Proteine, wobei letztere erst nach Replikation des viralen Genoms exprimiert werden. Der Zusatz von Foscavir als Replikationsinhibitor verdeutlichte, dass ein Immediate Early oder Early Protein die Induktion hervorruft (Abb. 16). Reportergenassay-Experimente unter Überexpression einzelner viraler Proteine zeigten, dass Immediate Early 1 essentiell an der Erhöhung der 5-LO-Promotoraktivität beteiligt ist (Abb. 18). Weitergehende Versuche unter Verwendung des IE1-Deletionsvirus CR208 bestätigten, dass die Induktion der 5-LO-Promotoraktivität sowie der mRNS-Expression durch dieses virale Protein vermittelt wird (Abb. 18, 20-22). Auf Proteinebene konnte ebenfalls nach IE1-Überexpression beziehungsweise nach Infektion mit HCMV eine erhöhte 5-LO-Expression detektiert werden (Abb. 23 und 24). Aktivitätsuntersuchungen, bei denen die Konzentration der 5-LO-Produkte LTB4 und 5-HETE gemessen wurden, bestätigten, dass das Enzym funktionsfähig ist (Abb. 25). Nach Infektion mit HCMV kommt es demnach zur IE1-vermittelten Induktion der 5-LO auf mRNS- und Proteinebene sowie nachgeordnet zur verstärkten Produktion von inflammatorischen Leukotrienen, die an der Ausbildung der entzündlichen Symptomatik einer lytischen Infektion beteiligt sind. Immediate Early 1 ist ein potenter Transaktivator, der sowohl virale als auch zelluläre Promotorstrukturen aktivieren kann [387]. Funktionell wird dies reguliert über die Förderung der Transkriptionsfaktor-Expression, aber auch durch Beeinflussung histonmodifizierender Enzyme wie Histondeacetylasen [464]. Für den 5-LO-Promotor ist bekannt, dass dessen Aktivität über Bindung von Sp1, sowie durch HDAC-Inhibition beeinflusst werden kann [9, 171]. Diese beiden Regulationsmechanismen stellen demnach mögliche Verknüpfungspunkte in der viral induzierten Induktion des 5-LO-Promotors dar. Zunächst wurde die Expression von Transkriptionsfaktoren, welche charakterisierte Bindungsstellen im 5-LO-Promotor besitzen, nach IE1-Überexpression untersucht. Es zeigte sich, dass der zelluläre Sp1-mRNS-Spiegel durch IE1 80fach induziert werden kann (Abb. 27). Im Reportergenassay mit 5-LO-Promotordeletionskonstrukten, bei denen gezielt einzelne Sp1-Bindungsstellen, sogenannte GC-Boxen, mutiert wurden, konnte bestätigt werden, dass die IE1-vermittelte Induktion essentiell von Sp1-abhängt, da die Mutation der GC4-Box die Aktivierung nahezu komplett inhibiert (Abb. 30, 31). Auch der Zusatz von Mithramycin, einem DNS-Interkalator, welcher die Bindung von Sp1 an die DNS unterdrückt, ist in der Lage die Induktion abzuschwächen (Abb. 33) [651]. Um die direkte Sp1-Bindung an den 5-LO-Promotor nachzuweisen wurden sowohl EMSA- als auch ChIP-Experimente durchgeführt. Es zeigte sich, dass in vitro und in vivo die Sp1-Bindung an den proximalen 5-LO-Promotor nach IE1-Überexpression beziehungsweise nach Infektion zunimmt (Abb. 49, 50). Interessanterweise wird dieser Effekt nicht durch Immediate Early 2, einer Spleißvariante von IE1, welche eine große strukturelle Ähnlichkeit aufweist, hervorgerufen. Da Veröffentlichungen gezeigt haben, dass beide Immediate Early Proteine in der Lage sind, Sp1 auf mRNS-Level zu induzieren, muss ein weiterer regulatorischer Mechanismus in die Sp1-Promotorbindung involviert sein [410]. In Co-Immunopräzipitations Versuchen zeigten beide IEPs eine Interaktion mit Sp1 (Abb. 38), wonach der Unterschied in der transaktivierenden Fähigkeit des 5-LO-Promotors nicht durch Protein-Protein-Bindung mit Sp1 bedingt wird. Strukturell unterscheiden sich die beiden Proteine in ihrer carboxyterminalen Sequenz. Für IE1 ist hier eine intrinsische Kinaseaktivität beschrieben, die zur Autophosphorylierung, aber auch zur Phosphorylierung von Bindungsproteinen führen kann. Western Blot Analysen auf den zellulären phospho-Sp1-Gehalt nach viraler Überexpression konnten zeigen, dass IE1, nicht aber IE2 die posttranslationale Modifikation des Transkriptionsfaktors fördert (Abb. 39). Auch die Testung viraler Deletionsmutanten, denen einzelne Exons beziehungsweise die ATP-Bindungsstelle der Kinasedomäne fehlen, bestätigten die Schlüsselfunktion dieses Strukturelements (Abb. 37). Ob es sich um eine direkte oder indirekte Phosphorylierung von Sp1 durch IE1 handelt wurde durch in vitro Kinase-Assays und die Testung unterschiedlicher Proteinkinase-Inhibitoren bestimmt (Abb. 40, 42, 45). Obwohl die beiden Proteine miteinander interagieren können, kam es nicht zu einer direkten Phosphorylierung, sondern zelluläre Kinasen wie Tyrosinkinasen und nachgeordnet die Mitglieder des MAPK-Signalweges sind in die Phosphorylierung von Sp1 involviert. Die finale Bestätigung der essentiellen Funktion von Sp1 in der IE1-vermittelten Aktivierung des 5-LO-Promotors lieferte ein Reportergenassay-Experiment mit Sp1-Knock-down Zellen, welche nach viraler Überexpression keine 5-LO-Promotoraktivität und mRNS-Expression mehr zeigten (Abb. 47, 48). Für die Vermittlung der IE1-induzierten 5-LO-Promotoraktivierung sind dessen transaktivatorische Fähigkeiten demnach essentiell, durch Erhöhung der Sp1-mRNS-Expression und nachfolgender Phosphorylierung wird die DNS-Bindung des Transkriptionsfaktors an die GC4-Box des 5-LO-Promotors erhöht und dieser damit transkriptionell aktiviert. Neben der Regulation über verstärkte phospho-Sp1-Bindung an die GC4-Box Region muss die Induktion von 5-LO durch IE1 noch über weitere Interaktionen vermittelt werden, da die reine Sp1-Überexpression ohne IE1 keine Promotoraktivierung hervorrufen konnte (Abb. 34). Überprüft wurde daher die HDAC-inhibitorische Fähigkeit von IE1, da der 5-LO-Promotor über diese epigenetischen Mechanismen reguliert werden kann. Pull-down-Experimente zeigten zunächst eine Protein-Protein-Interaktion zwischen IE1 und HDAC1/2/3 (Abb. 51). Nachfolgend konnte in einem HDAC-Aktivitätsassay gezeigt werden, dass diese Interaktion die Enzymaktivität der HDACs drastisch reduziert (Abb. 52). Durch HDAC-Inhibition liegen Promotorstrukturen zunehmend acetyliert vor und sind damit transkriptionell aktiv. Für den funktionellen Nachweis auf den 5-LO-Promotor diente ein Reportergenassay-Experiment in dem IE1 und in steigenden Mengen HDAC überexprimiert wurde (Abb. 53). Die Überexpression von HDAC1 und HDAC3 konnten den aktivierenden Einfluss von IE1 auf den 5-LO-Promotor teilweise konzentrationsabhängig revertieren und scheinen damit an der Effektvermittlung beteiligt zu sein. Die Charakterisierung der HDAC-vermittelten 5-LO-Promotorregulation von Pufahl et. al. bestätigte durch Knock-down Experimente, dass HDAC3 entscheidenden Einfluss auf den 5-LO-Promotor hat [172]. HDAC1 dagegen reguliert über die verstärkte Deacetylierung von Sp1 dessen DNS-Bindungsaffinität. Eine Hemmung dieser beiden Histondeacetylasen durch das virale Protein erhöht damit die Aktivität des 5-LO-Promotors. Zusammenfassend lässt sich sagen, dass das Ziel der Arbeit erreicht wurde und ein detaillierter Mechanismus der 5-LO-Promotoraktivierung durch HCMV aufgeklärt wurde. Immediate Early 1 induziert dabei zunächst die Expression und Phosphorylierung von Sp1. Ebenso interagiert das virale Protein mit HDAC1/2/3 und hemmt deren Aktivität, wodurch es zur Öffnung der 5-LO-Promotorstruktur kommt. Entscheiden ist hierbei vor allem die Hemmung von HDAC3. HDAC1 Inhibition sorgt im getesteten Zellsystem zusätzlich für verstärkte Acetylierung des Transkripti-onsfaktors Sp1, welcher aufgrund der dadurch erhöhten DNS-Bindungsaffinität an die GC4-Box-Region binden und so die Transkription fördern kann. Interessanterweise ist die Bindung an andere beschriebene GC-Boxen des 5-LO-Promotors nicht induktiv, was die Annahme nahelegt, dass nicht Sp1 alleine, sondern ein transaktivatorischer Komplex an diese Region bindet. Die Aktivierung des Promotors führt nachfolgend zur mRNS- und Proteinexpression, welche eine verstärkte Leukotrienbildung zur Folge hat. Diese Mediatoren sind in die Entstehung der entzündlichen Charakteristik einer aktiven HCMV involviert. Das Virus macht sich demnach generelle Prinzipien der Transaktivierung zu Nutze und fördert so zum einen seine Reaktivierung aus der Latenz, zum anderen die produktive Verbreitung der Infektion.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Laura Pufahl
URN:urn:nbn:de:hebis:30:3-230047
Referee:Dieter SteinhilberORCiDGND, Jindrich CinatlORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2012/01/27
Year of first Publication:2011
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/12/09
Release Date:2012/01/27
HeBIS-PPN:288670914
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht