bszlogo
Deutsch Englisch Französisch Spanisch
SWB
sortiert nach
nur Zeitschriften/Serien/Datenbanken nur Online-Ressourcen OpenAccess
  Unscharfe Suche
Suchgeschichte Kurzliste Vollanzeige Besitznachweis(e)

Recherche beenden

  

Ergebnisanalyse

  

Speichern/
Druckansicht

  

Druckvorschau

  
1 von 1
      
1 von 1
      
* Ihre Aktion:   suchen [und] (PICA Prod.-Nr. [PPN]) 1582268924
 Felder   ISBD   MARC21 (FL_924)   Citavi, Referencemanager (RIS)   Endnote Tagged Format   BibTex-Format   RDF-Format 
Online-Artikel
 
K10plusPPN: 
1582268924     Zitierlink
SWB-ID: 
512268924                        
Aufsatz: 
Adaptive-illumination STED nanoscopy / Jörn Heine, Matthias Reuss, Benjamin Harke, Elisa D’Este, Steffen J. Sahl, and Stefan W. Hell
Autorin/Autor: 
Heine, Jörn [Verfasserin/Verfasser] info info
Beteiligt: 
Hell, Stefan, 1962- [Verfasserin/Verfasser] info info
Enthalten in: 
Sprache(n): 
Englisch
Anmerkung: 
Gesehen am 24.10.2018


Link zum Volltext: 
Digital Object Identifier (DOI): 10.1073/pnas.1708304114


Sonstige Schlagwörter: 
Inhaltliche
Zusammenfassung: 
The concepts called STED/RESOLFT superresolve features by a light-driven transfer of closely packed molecules between two different states, typically a nonfluorescent “off” state and a fluorescent “on” state at well-defined coordinates on subdiffraction scales. For this, the applied light intensity must be sufficient to guarantee the state difference for molecules spaced at the resolution sought. Relatively high intensities have therefore been applied throughout the imaging to obtain the highest resolutions. At regions where features are far enough apart that molecules could be separated with lower intensity, the excess intensity just adds to photobleaching. Here, we introduce DyMIN (standing for Dynamic Intensity Minimum) scanning, generalizing and expanding on earlier concepts of RESCue and MINFIELD to reduce sample exposure. The principle of DyMIN is that it only uses as much on/off-switching light as needed to image at the desired resolution. Fluorescence can be recorded at those positions where fluorophores are found within a subresolution neighborhood. By tuning the intensity (and thus resolution) during the acquisition of each pixel/voxel, we match the size of this neighborhood to the structures being imaged. DyMIN is shown to lower the dose of STED light on the scanned region up to ∼20-fold under common biological imaging conditions, and >100-fold for sparser 2D and 3D samples. The bleaching reduction can be converted into accordingly brighter images at <30-nm resolution.
 Zum Volltext 

1 von 1
      
weitere Aufsätze des Bandes, der Zeitschrift oder Serie
1 von 1