Skip to main content
Log in

The mean energetic level. theory

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Summary

One of the important atmospheric levels, the mean energetic level (MEL), which in a sense reflects the energetics of the whole atmosphere, is defined. Its fundamental properties are shown. In order to describe the MEL correctly a new vertical coordinate is introduced and discussed. The new coordinate, ζ, is defined as the ratio of height and temperature. The MEL is shown to be a level with constant value of ζ. Some incorrect conclusions concerning the MEL, derived in the past, have been corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat of air at constant pressure

c v :

specific heat of air at constant volume

e :

base of natural logarithms

E :

total potential energy

f :

Coriolis parameter

g :

acceleration of gravity

i :

specific internal energy

I :

internal energy

J :

enthalpy

k :

unit vector pointing upwards

p :

pressure

Q :

diabatic heating rate

R :

gas constant of the air

t :

time

T :

temperature

v :

horizontal velocity

v (3) :

three-dimensional velocity

w :

vertical velocity in thez-system

z :

height

γ :

temperature growth rate (∂T/∂z)

ζ:

Pechala's vertical coordinate (z/T)

ζ:

generalized vertical velocity in the ζ-system (dζ/dt)

π:

specific potential energy

Π:

potential energy

ϱ:

density of the air

ψ:

Ruppert function

Ψ:

ϱT(1−γζ)−1

( )S :

quantity at the sea level

( )*:

quantity at the MEL

References

  1. Е. П. Борисенков: Вопросы энергетики атмосферных процессов, Гидрометеоиздат, Ленинград 1960.

  2. S. Brandejs: Základní rovnice a jejich použití při početní předpovědi počasí. Met. zprávy 25 (1972), 88.

    Google Scholar 

  3. T. D. A. Fairlie, A. O'Neill: The stratospheric major warming of winter 1984/85: observations and dynamical inferences. Quart. J. Roy. Met. Soc. 114 (1988), 557.

    Article  Google Scholar 

  4. M. H. Hitchman, J. C. Gille, C. D. Rodgers, G. Brasseur: The separated polar winter stratopause: a gravity wave driven climatological feature. J. Atmos. Sci. 46 (1989), 410.

    Article  Google Scholar 

  5. A. Kasahara: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev. 102 (1974), 509.

    Article  Google Scholar 

  6. E. N. Lorenz: Available potential energy and the maintenance of the general circulation. Tellus 7 (1955), 157.

    Article  Google Scholar 

  7. F. Pechala: Vliv periodických složek sluneční aktivity na kompenzaci nerovnovážných stavů (v tlakové hladině 500 hPa). Závěrečná zpráva Korelační vztahy meteorologických a heliogeofyzikálních polí, ÚFA ČSAV, 1988.

  8. F. Pechala: Fundamental energy relations in the theory of compensation of non-equilibrium states in the Earth's atmosphere. Studia geoph. geod. 33 (1989), 391.

    Article  Google Scholar 

  9. V. Vítek: On the pseudogeostrophic flow as a factor in large-scale atmospheric dynamics. Rozpravy ČSAV 97 (1987), Academia, Praha.

  10. V. Vítek: K otázce odezvy střední energetické hladiny na vlivy mimozemského původu. Závěrečná zpráva Korelační vztahy meteorologických a heliogeofyzikálních polí. ÚFA ČSAV, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huth, R. The mean energetic level. theory. Stud Geophys Geod 36, 280–292 (1992). https://doi.org/10.1007/BF01634792

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01634792

Keywords

Navigation