Skip to main content

Advertisement

Log in

Biogeochemical patterns in a river network along a land use gradient

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23 % of total land cover) to agricultural (70 %) and urbanised areas (7 %). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44 %) and season (15 %), demonstrating the strong effect of land use on biogeochemical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baborowski, M., & Bozau, E. (2006). Impact of former mining activities on the uranium distribution in the River Saale (Germany). Applied Geochemistry, 21, 1073–1082.

    Article  CAS  Google Scholar 

  • Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., et al. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1, 95–100.

    Article  CAS  Google Scholar 

  • Bergström, A.-K. (2010). The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquatic Sciences, 72, 277–281.

    Article  Google Scholar 

  • Chambers, P. A., Vis, C., Brua, R. B., Guy, M., Culp, J. M., & Benoy, G. A. (2008). Eutrophication of agricultural streams: defining nutrient concentrations to protect ecological condition. Water Science and Technology, 58, 2203.

    Article  CAS  Google Scholar 

  • Clescerl, L. S., Greenberg, A. E., & Eaton, A. D. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: The Library of Congress, APHA.

    Google Scholar 

  • Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171–184.

    Article  CAS  Google Scholar 

  • DIN EN 1484 (1997) Water analysis - Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC); German version. Beuth, Berlin.

  • DIN 38401-15 (2010) German standard methods for the examination of water, waste water and sludge—general information (group A)—part 15: sampling from running waters (A 15). Beuth, Berlin.

  • DIN 38414-11 (1987) German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); sampling of sediments (S 11). Beuth, Berlin.

  • DIN 38414-12 (1986) German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of phosphorus in sludges and sediments (S 12). Beuth, Berlin.

  • DIN 38414-7 (2001) German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); digestion using aqua regia for subsequent determination of the acid-soluble portion of metals (S7). Beuth, Berlin

  • DIN EN ISO 10304-1 (2009) Water quality—determination of dissolved anions by liquid chromatography of ions—part 1: determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulphate, Beuth, Berlin

  • DIN EN ISO 11885 (2007) Water quality—determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Beuth, Berlin.

  • DIN EN ISO 13395 (1996) Water quality—determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection. Beuth, Berlin.

  • DIN EN ISO 14911 (1999) Water quality—determination of dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using ion chromatography—method for water and waste water. Beuth, Berlin.

  • DIN EN ISO 17294-2 (2003) Water quality—application of inductively coupled plasma mass spectrometry (ICP-MS)—part 2: determination of 62 elements. Beuth, Berlin.

  • DIN EN ISO 6878 (2004) Water quality—determination of phosphorus—ammonium molybdate spectrometric method. Beuth, Berlin

  • Dyson, K. E., Billet, M. F., Dinsmore, K. J., Harvey, F., Thomson, A. M., Piirainen, S., et al. (2011). Release of aquatic carbon from two peatland catchments in E. Finland during the spring snowmelt period. Biogeochemistry, 103, 125–142.

    Article  Google Scholar 

  • EEA (2012) CORINE Land Cover. European Environment Agency. Available from http://www.eea.europa.eu/publications/COR0-landcover/page001.html. Accessed April 2012.

  • Ellis, E. E., Richey, J. E., Aufdenkampe, A. K., Krusche, A. V., Quay, P. D., Salimon, C., et al. (2012). Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin. Limnology and Oceanography, 57, 527–540.

    Article  CAS  Google Scholar 

  • Elser, J., Andersen, T., Baron, J., Bergström, A., Jansson, M., Kyle, M., et al. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835–837.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O., Knolle, F., Kratz, S., & Schnug, E. (2009). Aspects of ecotoxicology of heavy metals in the Harz region – a guided excursion (in German). Journal für Kulturpflanzen, 61, 225–246.

    CAS  Google Scholar 

  • Gudasz, C., Bastviken, D., Premke, K., Steger, K., & Tranvik, L. J. (2012). Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnology and Oceanography, 57, 163–175.

    Article  CAS  Google Scholar 

  • Hagen, E. M., McTammany, M. E., Webster, J. R., & Benfield, E. F. (2010). Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient. Hydrobiologia, 655, 61–77.

    Article  CAS  Google Scholar 

  • Herlihy, A. T., Stoddard, J. L., & Johnson, C. B. (1998). The relationship between stream chemistry and watershed land cover data in the mid-Atlantic region, U.S. Water, Air, and Soil Pollution, 105, 377–386.

    Article  CAS  Google Scholar 

  • Hope, D., Palmer, S. M., Billett, M. F., & Dawson, J. J. C. (2001). Carbon dioxide and methane evasion from a temperate peatland stream. Limnology and Oceanography, 46, 847–857.

    Article  CAS  Google Scholar 

  • Hope, D., Palmer, S. M., Billett, M. F., & Dawson, J. J. C. (2004). Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil–stream linkages. Hydrological Processes, 18, 3255–3275.

    Article  Google Scholar 

  • Hunt, R. J., Jardine, T. D., Hamilton, S. K., & Bunn, S. E. (2012). Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biology, 57, 435–450.

    Article  CAS  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Jones, J. B., Stanley, E. H., & Mulholland, P. J. (2003). Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophysical Research Letters, 30, 1495–1498.

    Article  Google Scholar 

  • Kamjunke, N., Tittel, J., Krumbeck, H., Beulker, C., & Poerschmann, J. (2005). High heterotrophic bacterial production in acidic, iron-rich mining lakes. Microbial Ecology, 49, 425–433.

    Article  CAS  Google Scholar 

  • Keck, F., & Lepori, F. (2012). Can we predict nutrient limitation in streams and rivers? Freshwater Biology, 57, 1410–1421.

    Article  CAS  Google Scholar 

  • Klemm, W., Greif, A., Broekaert, J. A. C., Siemens, V., Junge, F. W., van der Veen, A., et al. (2005). A study on arsenic and the heavy metals in the Mulde river system. Acta Hydrochimica et Hydrobiologica, 33, 475–491.

    Article  CAS  Google Scholar 

  • Kling, G. W., Kipphut, W., & Miller, M. C. (1991). Arctic lakes and streams as gas conduits to the atmosphere: implications for Tundra carbon budgets. Science, 251, 298–301.

    Article  CAS  Google Scholar 

  • Kronvang, B., Vagstad, N., Behrendt, H., Bøgestrand, J., & Larsen, S. E. (2007). Phosphorus losses at the catchment scale within Europe: an overview. Soil Use and Management, 23, 104–116.

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical Ecology. Elsevier, Amsterdam: Second English Edition.

    Google Scholar 

  • Maidment, D. R. (2002). Arc Hydro: GIS for water resources. Redlands, CA: ESRI Press.

    Google Scholar 

  • Masson, M., Blanc, G., & Schäfer, J. (2006). Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) fluxes into the Gironde Estuary via its major tributaries. Science of the Total Environment, 370, 133–146.

    Article  CAS  Google Scholar 

  • Mischke, U., Venohr, M., & Behrendt, H. (2011). Using phytoplankton to assess the trophic status of German rivers. Archiv für Hydrobiologie, 96, 578–598.

    CAS  Google Scholar 

  • Nagel, H. (2007). Zweite landesweite Color-Infrarot-Luftbild-gestützte Biotoptypen-und Nutzungstypenkartierung im Bundesland Sachsen-Anhalt. In J. Strobl, T. Blaschke, & G. Griesebner (Eds.), Angewandte Geoinformatik (pp. 488–494). Heidelberg: Wichmann (in German).

    Google Scholar 

  • Norf, H., Borchardt, D., Weitere, M. (2011) (in press). MOBICOS: Eine modulare Laboreinheit für limnologische Experimente mit Freilandbezug. Annual Meeting of the German Society of Limnology, Extended Abstracts.

  • Stedmon, C. A., Markager, S., Sondergaard, M., Vang, T., Laubel, A., Borch, N. H., et al. (2006). Dissolved organic matter (DOM) export to a temperate estuary: seasonal variations and implications of land use. Estuaries and Coasts, 29, 388–400.

    CAS  Google Scholar 

  • Truckenbrodt, D., & Einax, J. W. (1995). Sampling representativity and homogenity of river sediments. Fresenius' Journal of Analytical Chemistry, 5, 437–443.

    Article  Google Scholar 

  • Van Nieuwenhuyse, E. E., & Jones, J. R. (1996). Phosphorus chlorophyll relationship in temperate streams and its variation with stream catchment area. Canadian Journal of Fisheries and Aquatic Sciences, 53, 99–105.

    Article  Google Scholar 

  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology, 37, 4702–4708.

    Article  CAS  Google Scholar 

  • WetterOnline.de (2012). Available from http://www.wetteronline.de/cgi-bin/regframe?3&PRG=klimavar&ART=MAX&CONT=dldl&WMO=10454&LANG=de&BKM=Sachsen-Anhalt/Wernigerode. Accessed February 2012

  • Wetzel, R. G., Hatcher, P. G., & Bianchi, T. S. (1995). Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnology and Oceanography, 40, 1369–1380.

    Article  CAS  Google Scholar 

  • Williams, C. J., Yamashita, Y., Wilson, H.-F., Jaffe, R., & Xenopoulos, M. A. (2010). Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnology and Oceanography, 55, 1159–1171.

    Article  CAS  Google Scholar 

  • Yang, J. R., Basu, B. K., Hamilton, P. B., & Pick, F. R. (1997). The development of a true riverine phytoplankton assemblage along a lake-fed lowland river. Archiv für Hydrobiologie, 140, 243–260.

    Google Scholar 

  • Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T., et al. (2011). A network of terrestrial environmental observatories in Germany. Vadose Zone Journal, 10, 955–973.

    Article  Google Scholar 

  • Zerling, L., Hanisch, C., Junge, F. W., & Müller, A. (2003). Heavy metals in Saale sediments—changes in the contamination since 1991. Acta Hydrochimica et Hydrobiologica, 31(4–5), 368–377.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank many colleagues for help during field sampling: S. Bauth, M. Cebula, T. David, H. Goreczka, M. Herzog, A. Hoff, U. Kiewel, B. Kuehn, K. Lerche, M. Mages, M. Schäffer and C. Völkner. In addition, many technicians and students contributed to subsequent analyses in the laboratory: H. Goreczka, A. Hoff, C. Hoffmeister, B. Keller, K. Lerche, U. Link, I. Locker, Y. Rosenlöcher, E. Ruschak, I. Siebert, K. Städtke, M. Tibke and M. Wengler. The research was supported by TERENO. SH and RW were financially supported by the German Research Foundation (AN 777/2-1 and BR 4358/1-1, respectively). Furthermore, we would like to thank the reviewers for helpful comments improving the manuscript, as well as Frederic Bartlett for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kamjunke.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 530 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamjunke, N., Büttner, O., Jäger, C.G. et al. Biogeochemical patterns in a river network along a land use gradient. Environ Monit Assess 185, 9221–9236 (2013). https://doi.org/10.1007/s10661-013-3247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3247-7

Keywords

Navigation