Skip to main content
Log in

The response of three Fagus sylvatica L. provenances to water availability at different soil depths

  • Original Article
  • Published:
Ecological Research

Abstract

Current climate change scenarios predict changes in precipitation patterns resulting in a longer and more intensive droughts. These changes pose a challenge for Fagus sylvatica as the most common European deciduous tree species. We asked how different genotypes respond to drought conditions and paid particular attention to how soil moisture availability can be manipulated. We established a tube technique that allowed to add water horizontally at different rooting depths, which allowed to measure water contents and to observe root growth along the full length of 1-m deep tubes. Three F. sylvatica provenances were compared in their response to different depth of water supply with respect to growth, leaf stomatal conductance as well as root and leaf traits. There were short-lasting differences between the watering regimes in soil water content and depth of soil moisture maxima. Adding water to depths of 30–60 cm resulted in reduced leaf stomatal conductance and lower survival but increased root tip growth rates compared to watering the tubes at 10–20 cm. There were differences between the three provenances for specific leaf area and stem dry mass, which however, were independent of the watering regime and did not support the idea of local adaptation to drought of populations from dry or moist origins. The findings indicate that differences between provenances might have been caused by environmental factors other than drought. Technically, we demonstrated the high potential of using the tube technique for a fine-tuned manipulation of soil moisture in the rooting space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anyia AO, Herzog H (2004) Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur J Agron 20:327–339. doi:10.1016/S1161-0301(03)00038-8

    Article  Google Scholar 

  • Arend M, Kuster T, Günthardt-Goerg MS, Dobbertin M (2011) Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiol 31:287–297. doi:10.1093/treephys/tpr004

    Article  PubMed  Google Scholar 

  • Bakker MR, Augusto L, Achat DL (2006) Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286:37–51. doi:10.1007/s11104-006-9024-4

    Article  CAS  Google Scholar 

  • Baudis M, Ellerbrock RH, Felsmann K, Gessler A, Gimbel K, Kayler Z, Puhlmann H, Ulrich A, Weiler M, Welk E, Bruelheide H (2014) Intraspecific differences in responses to rainshelter-induced drought and competition of Fagus sylvatica L. across Germany. For Ecol Manag 330:283–293. doi:10.1016/j.foreco.2014.07.012

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Buwalda JG, Lenz F (1992) Effects of cropping, nutrition and water supply on accumulation and distribution of biomass and nutrients for apple trees on“M9”root systems. Physiol Plant 84:21–28. doi:10.1111/j.1399-3054.1992.tb08759.x

    Article  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916. doi:10.1093/aob/mcf105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cochard H (2006) Cavitation in trees. Comptes Rendus Phys 7:1018–1026. doi:10.1016/j.crhy.2006.10.012

    Article  CAS  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Di Vaio C, Marallo N, Marino G, Caruso T (2013) Effect of water stress on dry matter accumulation and partitioning in pot-grown olive trees (cv Leccino and Racioppella). Sci Hortic 164:155–159. doi:10.1016/j.scienta.2013.09.008

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42. doi:10.1046/j.1469-8137.2000.00686.x

    Article  CAS  Google Scholar 

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352. doi:10.1111/j.1399-3054.2006.00621.x

    Article  CAS  Google Scholar 

  • Gallé A, Feller U (2007) Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plant 131:412–421. doi:10.1111/j.1399-3054.2007.00972.x

    Article  PubMed  Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695. doi:10.1046/j.0269-8463.2001.00563.x

    Article  Google Scholar 

  • Geber MA, Dawson TE (1997) Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum. Oecologia 109:535–546. doi:10.1007/s004420050114

    Article  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11. doi:10.1007/s00468-006-0107-x

    Article  Google Scholar 

  • Gimbel KF, Felsmann K, Baudis M, Puhlmann H, Gessler A, Bruelheide H, Kayler Z, Ellerbrock RH, Ulrich A, Welk E, Weiler M (2015) Drought in forest understory ecosystems—a novel rainfall reduction experiment. Biogeosciences 12:961–975. doi:10.5194/bg-12-961-2015

    Article  Google Scholar 

  • Goisser M, Zang U, Matzner E, Borken W, Häberle KH, Matyssek R (2013) Growth of juvenile beech (Fagus sylvatica L.) upon transplant into a wind-opened spruce stand of heterogeneous light and water conditions. For Ecol Manag 310:110–119. doi:10.1016/j.foreco.2013.08.006

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A (2014) Multcomp: simultaneous inference in general parametric models

  • Hunt R, Cornelissen JHC (1997) Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol 135:395–417. doi:10.1046/j.1469-8137.1997.00671.x

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (ed) (2014) Climate Change 2013—the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174. doi:10.1111/j.1365-2486.2006.01250.x

    Article  Google Scholar 

  • Kage H, Kochler M, Stützel H (2004) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20:379–394. doi:10.1016/S1161-0301(03)00061-3

    Article  Google Scholar 

  • Konôpka B, Noguchi K, Sakata T, Takahashi M, Konôpkovâ Z (2007) Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain, eastern Japan. J For Res 12:143–151. doi:10.1007/s10310-006-0257-0

    Article  Google Scholar 

  • Laboski CAM, Dowdy RH, Allmaras RR, Lamb JA (1998) Soil strength and water content influences on corn root distribution in a sandy soil. Plant Soil 203:239–247. doi:10.1023/A:1004391104778

    Article  CAS  Google Scholar 

  • Landhäusser SM, Lieffers VJ (2012) Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees 26:653–661. doi:10.1007/s00468-011-0633-z

    Article  Google Scholar 

  • Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56. doi:10.1023/B:PLSO.0000016508.20173.80

    Article  CAS  Google Scholar 

  • Löf M, Bolte A, Welander NT (2005) Interacting effects of irradiance and water stress on dry weight and biomass partitioning in Fagus sylvatica seedlings. Scand J For Res 20:322–328. doi:10.1080/02827580500201593

    Article  Google Scholar 

  • Lopez-Iglesias B, Villar R, Poorter L (2014) Functional traits predict drought performance and distribution of Mediterranean woody species. Acta Oecol 56:10–18. doi:10.1016/j.actao.2014.01.003

    Article  Google Scholar 

  • Mahoney JM, Rood SB (1992) Response of a hybrid poplar to water table decline in different substrates. For Ecol Manag 54:141–156. doi:10.1016/0378-1127(92)90009-X

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi:10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  • Meier IC, Leuschner C (2008) Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiol 28:297–309. doi:10.1093/treephys/28.2.297

    Article  PubMed  Google Scholar 

  • Packham JR, Thomas PA, Atkinson MD, Degen T (2012) Biological flora of the British Isles: Fagus sylvatica. J Ecol 100:1557–1608. doi:10.1111/j.1365-2745.2012.02017.x

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual review of ecology evolution and systematics. Ann Rev, Palo Alto, pp 637–669

    Google Scholar 

  • Pena R, Simon J, Rennenberg H, Polle A (2013) Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought. Environ Exp Bot 87:207–217. doi:10.1016/j.envexpbot.2012.11.005

    Article  Google Scholar 

  • Peuke AD, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees 18:639–648. doi:10.1007/s00468-004-0335-x

    Article  CAS  Google Scholar 

  • Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387. doi:10.1046/j.1469-8137.2002.00400.x

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM, Ricardo CP (2001) Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. J Exp Bot 52:1063–1070. doi:10.1093/jexbot/52.358.1063

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R core Team (2015) nlme: Linear and nonlinear mixed effects models. R package version 3.1-120

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50. doi:10.1111/j.1469-8137.2011.03952.x

    Article  CAS  PubMed  Google Scholar 

  • Rambal S, Ourcival J-M, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A (2003) Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Glob Change Biol 9:1813–1824. doi:10.1111/j.1365-2486.2003.00687.x

    Article  Google Scholar 

  • Restrepo NC, Arain MA (2005) Energy and water exchanges from a temperate pine plantation forest. Hydrol Process 19:27–49. doi:10.1002/hyp.5758

    Article  CAS  Google Scholar 

  • Rodrigues ML, Pacheco CMA, Chaves MM (1995) Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J Exp Bot 46:947–956. doi:10.1093/jxb/46.8.947

    Article  CAS  Google Scholar 

  • Rodrigues P, Pedroso V, Gouveia JP, Martins S, Lopes C, Alves I (2012) Influence of soil water content and atmospheric conditions on leaf water potential in cv. “Touriga Nacional” deep-rooted vineyards. Irrig Sci 30:407–417. doi:10.1007/s00271-012-0350-4

    Article  Google Scholar 

  • Roe D, Oosthuizen J, Menzel C (1995) Rate of soil drying and previous water deficits influence the relationship between CO2 assimilation and tree water status in potted lychee (litchi-Chinensis Sonn). J Hortic Sci 70:15–24

    Google Scholar 

  • Rose L, Leuschner C, Köckemann B, Buschmann H (2009) Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? Eur J For Res 128:335–343. doi:10.1007/s10342-009-0268-4

    Article  Google Scholar 

  • Sánchez-Gómez D, Robson TM, Gascó A, Gil-Pelegrín E, Aranda I (2013) Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation. Environ Exp Bot 87:110–119. doi:10.1016/j.envexpbot.2012.09.011

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  PubMed  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262:947–961. doi:10.1016/j.foreco.2011.05.026

    Article  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199. doi:10.1016/S0958-1669(03)00030-2

    Article  CAS  PubMed  Google Scholar 

  • Shipley B (2006) Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct Ecol 20:565–574. doi:10.1111/j.1365-2435.2006.01135.x

    Article  Google Scholar 

  • Stave J, Oba G, Eriksen AB, Nordal I, Stenseth NC (2005) Seedling growth of Acacia tortilis and Faidherbia albida in response to simulated groundwater tables. For Ecol Manag 212:367–375. doi:10.1016/j.foreco.2005.03.023

    Article  Google Scholar 

  • Taeger S, Zang C, Liesebach M, Schneck V, Menzel A (2013) Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manag 307:30–42. doi:10.1016/j.foreco.2013.06.053

    Article  Google Scholar 

  • Thiel D, Kreyling J, Backhaus S, Beierkuhnlein C, Buhk C, Egen K, Huber G, Konnert M, Nagy L, Jentsch A (2014) Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. Eur J For Res 133:247–260. doi:10.1007/s10342-013-0750-x

    Article  Google Scholar 

  • Thornley JHM (1972) A balanced quantitative model for root: shoot ratios in vegetative plants. Ann Bot 36:431–441

    Google Scholar 

  • Tognetti R, Johnson JD, Michelozzi M (1995) The response of European beech (Fagus sylvatica L.) seedlings from two Italian populations to drought and recovery. Trees 9:348–354. doi:10.1007/BF00202499

    Article  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462. doi:10.1007/s00122-013-2230-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vitale M, Mancini M, Matteucci G, Francesconi F, Valenti R, Attorre F (2012) Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. IForest Biogeosci For 5:235–246. doi:10.3832/ifor0634-005

    Article  Google Scholar 

  • Vonlanthen B, Zhang X, Bruelheide H (2010) On the run for water—root growth of two phreatophytes in the Taklamakan Desert. J Arid Environ 74:1604–1615. doi:10.1016/j.jaridenv.2010.07.004

    Article  Google Scholar 

  • Wellstein C, Cianfaglione K (2014) Impact of extreme drought and warming on survival and growth characteristics of different provenences of juvenile quercus pubescens willd. Folia Geobot 49:31–47. doi:10.1007/s12224-013-9186-9

    Article  Google Scholar 

  • Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1175–1182. doi:10.1093/treephys/tpr101

    Article  PubMed  Google Scholar 

  • Zang U, Goisser M, Häberle K-H, Matyssek R, Matzner E, Borken W (2014) Effects of drought stress on photosynthesis, rhizosphere respiration, and fine-root characteristics of beech saplings: a rhizotron field study. J Plant Nutr Soil Sci 177:168–177. doi:10.1002/jpln.201300196

    Article  CAS  Google Scholar 

  • Zhang X, Zang R, Li C (2004) Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Sci 166:791–797. doi:10.1016/j.plantsci.2003.11.016

    Article  CAS  Google Scholar 

  • Zomer RJ, Bossio DA, Trabucco A, Yuanjie L, Gupta DC, Singh VP (2007) Trees and water: smallholder agroforestry on irrigated lands in Northern India. IWMI

  • Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80. doi:10.1016/j.agee.2008.01.014

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Carolin Shaper for drawing the sketch of the experimental growing tube (Fig. 1) and Gunnar Seidler for calculating the aridity index. The work has been funded by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (DFG-Refno. WE4598/3-1, GE1090/11-1, and BR1698/16-1). We thank the managers of the three exploratories, Swen Renner, Sonja Gockel, Andreas Hemp and Martin Gorke and Simone Pfeiffer for their work in maintaining the plot and project infrastructure, and Markus Fischer, the late Elisabeth Kalko, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze and Wolfgang W. Weisser for their role in setting up the Biodiversity Exploratories project. The manuscript was much improved by the comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Baudis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 190 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudis, M., Premper, T., Welk, E. et al. The response of three Fagus sylvatica L. provenances to water availability at different soil depths. Ecol Res 30, 853–865 (2015). https://doi.org/10.1007/s11284-015-1287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-015-1287-x

Keywords

Navigation