Contents

N	NomenclatureV						
1	Introduction1						
2	State of	State of the art					
	2.1 Precipitation process						
		-					
	2.1.1 2.1.1.1	Theory of silica particle synthesis					
	2.1.1.1						
2.1.1.							
2.1.1							
	2.1.2	Relevance of precipitated silica aggregates					
		persion process					
	2.2.1	Wetting behavior					
	2.2.2	Stabilization					
	2.2.3	Stress mechanism					
	2.2.3.1 2.2.3.1						
	2.2.3.	Dispersion kinetics					
		•					
		cromechanical aggregate properties					
	2.3.1	Deformation behavior					
	2.3.2	Conditions for aggregate breakage					
	2.3.3	Simulation of aggregate deformation and breakage behavior					
	2.3.4	Aggregate strength models					
	2.3.5	Nanoindentation					
	2.3.5.						
	2.3.5.						
3	Experi	mental procedures	45				
	3.1 An	alytical aggregate characterization techniques	45				
	3.1.1	Dynamic light scattering	45				
	3.1.2	Laser diffraction	46				
	3.1.3	X-ray-diffraction	47				
	3.1.4	BET method (specific surface measurement)	47				
	3.1.5	Mercury porosimetry					
	3.1.6	SEM and SEM-FIB imaging					
	3.2 Ext	perimental set-up – procedure					
	3.2.1	Precipitation process					
	5.2.1	1 Tectpration process	50				

	3.2	2.2	Dispersion process	
		3.2.2.1	Dissolver	53
		3.2.2.2		
		3.2.2.3	Stirred media mill - silica model aggregate system	56
4	M	ateria	1 – synthesis and characterization	59
	4.1	Prec	ipitated nanostructured silica aggregates	59
	4.2	Mod	lel aggregate system	61
5	M	icron	echanical aggregate properties	65
	5.1	Esta	blishment of the measurement method	65
	5.3	l.1	Nanoindentation measurement system	65
	5.3	1.2	Sample preparation	66
	5.3	1.3	Measurement procedure	68
	5.	1.4	Analysis of the nanoindentation results	
	5.2	Cha	racterization of aggregate deformation	71
	5.	2.1	Interpretation of measurement data	7 1
	5.	2.2	Local and global sample stressing	
	5.	2.3	Stressing model silica aggregates	
		5.2.3.		
		5.2.3.2		
		5.2.3.3	B Determination of solid bridges	81
		5.2.3.4		
	5.	2.4	Stressing precipitated silica aggregates	
		5.2.4.3		
		5.2.4.2		
		5.2.4.3	B Effect of precipitation additives	95
	5.3	Cha	racterization of aggregate breakage	101
	5.	3.1	Interpretation of measurement data	101
	5.	3.2	Determination of the breakage behavior	
	5.4	Effe	ect of measurement condition during nanoindentation	
	5.	4.1	Effect of loading rate and multiple aggregate stressing	
	5	4.2	Effect of aggregate diameter	
		4.3	Influence of the drying temperature	
6	N	[odel	ing the micromechanical properties	
	6.1		M-contact model	
	6.	1.1	Particle-Particle contact model	
	6.	1.2	Particle-geometry contact model	
	-	1.3	Dimensioning	

	6.1.4	Aggregate build-up	
6.	2 Mo	deling the nanoindentation process	111
	6.2.1	Sensitivity analysis of contact model parameters	111
	6.2.2	Crack and deformation pattern	114
	6.2.3	Aggregate deformation and breakage characteristics	116
	6.2.4	Effect of aggregate structure and location of primary aggregate	
		cracks on tangential stress tensors	118
	6.2.5	Effect of the aggregate structure on indentation forces and	
		correlation to aggregate strength models	121
7	Correl	ation with dispersion processes	123
7.	1 Kir	netic model for the dispersion process	123
7.	2 Co	rrelation of process and formulation parameters during synthesis	
	wit	th dispersion results	126
7.	.3 Co:	rrelation of aggregate structure and micromechanical properties	
		th dispersion results	128
	7.3.1	Determination of the stress energy	
	7.3.2	Representation of the fracture behavior	
	7.3.3	Correlation of the stress energy- and breakage energy distribution	
	7.3. 4	Comparison of the effective dispersion fraction with	
		dispersion results	132
8	Conclu	usion and future prospects	135
9	Biblio	graphy	139
10	Appen	ndix	157