
Overlapping Domain

Decomposition Preconditioners

for Multi-Phase Elastic

Composites

Dipl. Math. Marco Buck

Vom Fachbereich Mathematik der

Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation

Datum der Disputation:

14. Juni 2013

1. Gutachter: Prof. Dr. Oleg Iliev,

2. Gutachter: Priv. Doz. Dr. Johannes K. Kraus

D 386

mailto:marco.buck@itwm.fraunhofer.de


ii



Abstract

The application behind the subject of this thesis are multiscale simulations

on highly heterogeneous particle-reinforced composites with large jumps in

their material coefficients. Such simulations are used, e.g., for the prediction

of elastic properties. As the underlying microstructures have very complex

geometries, a discretization by means of finite elements typically involves

very fine resolved meshes. The latter results in discretized linear systems of

more than 108 unknowns which need to be solved efficiently. However, the

variation of the material coefficients even on very small scales reveals the

failure of most available methods when solving the arising linear systems.

While for scalar elliptic problems of multiscale character, robust domain

decomposition methods are developed, their extension and application to

3D elasticity problems needs to be further established.

The focus of the thesis lies in the development and analysis of robust over-

lapping domain decomposition methods for multiscale problems in linear

elasticity. The method combines corrections on local subdomains with a

global correction on a coarser grid. As the robustness of the overall method

is mainly determined by how well small scale features of the solution can be

captured on the coarser grid levels, robust multiscale coarsening strategies

need to be developed which properly transfer information between fine and

coarse grids.

We carry out a detailed and novel analysis of two-level overlapping domain

decomposition methods for the elasticity problems. The study also provides

a concept for the construction of multiscale coarsening strategies to robustly

solve the discretized linear systems, i.e. with iteration numbers independent

of variations in the Young’s modulus and the Poisson ratio of the under-

lying composite. The theory also captures anisotropic elasticity problems

and allows applications to multi-phase elastic materials with non-isotropic

constituents in two and three spatial dimensions. Moreover, we develop and

construct new multiscale coarsening strategies and show why they should

be preferred over standard ones on several model problems. In a parallel

implementation (MPI) of the developed methods, we present applications

to real composites and robustly solve discretized systems of more than 200

million unknowns.
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1

Introduction

1.1 Subject of the Thesis

Constantly growing demands on the range of application of todays industrial prod-

ucts require more and more frequently the development of innovative, highly-effective

composite materials, specifically adapted to their field of application. To substantially

reduce costs and time for the construction of prototypes and performing measurements

on their properties, virtual material design provides essential support in the develop-

ment process of new materials. Of special interest is the multiscale-analysis of particle

reinforced composites as they combine positive features of their constituents such as

e.g. light weight and high stiffness (e.g. nano-reinforced composites [38, 60]).

The composites typically enclose multiscale properties with highly oscillating material

coefficients on multiple scales. Resolving the heterogeneities in the multi-phase com-

posites on the finest scale when performing material simulations on the microstructures

requires meshes with very fine resolutions and hence, it is of high computational cost.

The structures are either obtained from microscale computed tomography (CT) images

of real composites or they are virtually designed using GeoDict [43] as a tool to computer

generate 3D-microstructure models based on macroscopic material parameters. Since

the computational domain covers an excerpt of the microstructure which may originate

from computed tomographies, Ω typically takes the form of a cuboidal domain (see e.g.

Figure 1.1).

The system of partial differential equations (PDEs) in linear elasticity which governs

the displacement field u of a body deformed under volume forces f reads for an isotropic

1



1. INTRODUCTION

Figure 1.1: Composite material; matrix material (grey) and small inclusions (red); elastic
strains computed at a portion of the overall composite

and homogeneous material in Ω,

µ∆u+ (λ+ µ)∇(∇ · u) = f ,

where λ and µ are the Lamé parameters of the isotropic material. To find an ap-

proximate solution uh of the PDE system, a finite element (FE) discretization on a

regular mesh with mesh parameter h in three spatial dimensions is introduced. Using

a discretization on Ω with vector-valued piecewise linear elements on a triangular mesh

results in a sparse symmetric positive definite linear system Au = f (cf. equation (2.1)

and section 2.2.3 for more details). The linear system is in general very large and its

solution cannot be computed using a direct solver, an iterative method needs to be

applied. When solving the linear system iteratively, the number of iterations required

to compute the solution uh up to a predefined accuracy strictly depends on the condi-

tion number of the matrix A. An upper bound for the condition number of the arising

linear system can be estimated to

κ(A) ≤ C sup
x,y∈Ω

µ(x) + λ(x)
µ(y)

h−2, (1.1)

2



1.1 Subject of the Thesis

where λ and µ are the material parameters of the constituents of the composite. The

constant C is independent of h, λ and µ and the coefficients typically contain large

jumps within Ω (see e.g. Figure 1.1). As we are interested in analysing compressible

materials, we may assume that λ�∞. Performing simulations on these heterogeneous

materials faces two important challenges, namely

(i) Local effects of the microstructures have an enormous effect to the materials

overall behaviour (e.g. the stress concentration on material interfaces which may

cause fracture) and need to be captured accurately. The latter requires to resolve

the heterogeneities in the composite on the finest scale, which introduces very

fine meshes with small mesh parameter h.

(ii) The multiscale character of the elastic composites introduces large jumps in the

material parameters on multiple scales. In most applications, λ and µ vary over

up to 9 orders of magnitude (e.g. nano-composites in [38, 60, 96]).

According to (i), (ii) and the bound in (1.1), the resulting linear system is in general

very ill-conditioned. It requires preconditioners which, roughly speaking, remove the

ill-conditioning due to mesh parameters and variations in the material coefficients.

In the scope of this thesis, we analyse and develop two-level overlapping domain decom-

position preconditioners for the highly heterogeneous multiscale problems. The method

introduces a set of overlapping subdomains which form a covering of the computational

domain and a coarse mesh TH . It combines local corrections on the subdomains with

a global correction on a coarse space spanned by a set of well-selected basis functions.

The robustness of the overall method is mainly determined by the quality of the coarse

basis. It is the goal of the thesis to (a) develop and apply two-level overlapping do-

main decomposition preconditioners which are robust w.r.t. the jumps in the material

coefficients in the PDE as well as (b) their detailed analysis and the specification of

robustness-measures which can be used to predict the quality of the coarse space and

the overall method. Based on such measures, we develop coarsening strategies for

the construction of robust coarse spaces in the context of the overlapping domain de-

composition preconditioners. One of the main challenges is that coefficient variations

appear on a very small scale such that they cannot be resolved by or aligned with a

coarse grid. This circumstance requires the construction of coarse spaces of multiscale

character which capture the small scale features of the specific heterogeneous problem.

3



1. INTRODUCTION

1.2 State Of the Art

In this section, we give an overview of state of the art methods available in the context

of solving and preconditioning the discrete linear elasticity systems. Beyond current de-

velopments in domain decomposition methods for scalar elliptic PDEs, we also provide

a short overview of multigrid and multilevel methods and point out challenges when

applying them to elasticity problems. Furthermore, we address the origin of multiscale

methods and as well as their application in the development of robust preconditioners.

The common ground of efficient iterative solution methods for the linear systems which

arise from a finite element discretization of PDEs is that the majority of their computa-

tion is performed on (grid-) levels coarser than the fine discretization. These methods

can typically be assigned to the groups of (i) multigrid or multilevel methods (see

e.g. [49, 80, 102]) or (ii) domain decomposition methods (see e.g. [79, 97]). For scalar

elliptic PDEs but also for the elasticity system, such methods are developed and suc-

cessfully applied to problems with varying PDE coefficients. Specifically, provided that

the coefficient variations can be resolved by the coarse(st) grid, they allow a robust

computation with iteration numbers independent of the PDE coefficients.

Classical algebraic multigrid methods (AMG) have been introduced for scalar el-

liptic PDEs in [10, 11, 12]. The coarser levels are constructed by considering exclusively

the entries of the stiffness matrix itself. The interpolation operators - which transfer

information between fine and coarse grids - are constructed such that the kernel of the

differential operator is spanned by the basis functions on coarser levels. Since for scalar

elliptic problems the kernel consists of constant functions, they can easily be preserved

on coarser grids by constructing the coarse basis functions such that they sum up to

one at any fine grid node. The increased kernel of the elasticity operator, which con-

tains the set of rigid body modes, leads to one of the main difficulties when applying

multigrid methods to linear elasticity problems. The dimension of the kernel is here

larger than the spatial dimension of the underlying problem, additional information

is required to ensure that the coarse basis functions preserve the rigid body rotations.

Particularly, purely algebraic multigrid methods which require only the stiffness matrix

as input may loose robustness when applied to elasticity problems. For such methods,

however, the set of rigid body modes can often be provided as additional input. A de-

tailed overview of classical algebraic multigrid methods and potential remedies for the

4



1.2 State Of the Art

applications to elasticity problems are deeply discussed in [23], [6] and the references

therein, and partially also in [104].

Another class of algebraic multigrid methods are aggregation-based methods. Ag-

gregation methods were originally introduced in [99, 100] for scalar elliptic PDEs and

first applied to the linear elasticity system in [101]. The method requires initially the

stiffness matrix as well as the vectors which represent the rigid body modes in terms of

the basis functions on the fine mesh. Then, aggregates are formed, i.e. non-overlapping

unions of fine grid nodes. For any aggregate, the union of fine elements which touches

at least one of the aggregates’ nodes determines the support of a coarse basis function.

The coarse basis functions can then be constructed by simply restricting the set of rigid

body modes onto their local support.

Further robust methods for solving linear elasticity problems are available, including the

multilevel methods studied in [64, 74] and [63]. A purely algebraic multigrid method

for linear elasticity problems is constructed based on so called computational molecules.

The construction of the coarse space requires access to the element matrices, and thus

it falls into the framework of AMGe (cf. [13, 61]). Such an approach has been studied

earlier for the scalar elliptic problems in [76]. The approach allows that the kernel

of the operator can be extracted from local Neumann problems which are assembled

over subsets of fine elements. Particularly, the rigid body modes can can be identified

automatically and do not need to be provided beforehand.

Applications of a multigrid approach based on a finite difference discretization of the

elasticity system can be found in [111]. The latter is developed for the efficient sim-

ulation of elasticity problems on complex geometries, though heterogeneous material

coefficients are not the particular concern.

Another extensive class of methods for solving the discrete linear systems which arise

from the discretization of PDEs are domain decomposition methods. The method

decomposes the computational domain into local subdomains on which corrections

are performed. Based on the particular structure of the subdomains, one typically

distinguishes between overlapping and non-overlapping domain decomposition meth-

ods. Prominent examples for the latter are FETI-methods or the BDDC methods

[65, 66, 67, 79, 86, 97]. For highly heterogeneous problems, these methods may face

difficulties, e.g. when material jumps occur at interfaces between the non-overlapping

5



1. INTRODUCTION

subdomains. Domain decomposition methods which apply the local corrections on

overlapping subdomains are also referred to as (overlapping) Schwarz methods.

For the elasticity system, two-level overlapping domain decomposition precondition-

ers have a large literature [59, 90, 94] (see also [26, 27]). As mentioned before in the

introduction, the two-level method combines local corrections on the overlapping sub-

domains with a global correction on a coarse space spanned by a set of well-selected

basis functions. For the generation of coarse spaces, aggregation based methods are

observed in [59] and also in [90] in combination with partition of unity coarse spaces.

The early work in [94] also contains vector-valued linear coarse spaces. The common

feature of all these works is that the coarse space contains the rigid body modes.

Using a vector-valued linear coarse basis on a coarse triangulation TH , a condition

number bound for the additive Schwarz preconditioned linear system (cf. chapter 2.3.1)

can be obtained by

κ(M−1
ASA) ≤ C max

i
sup
x,y∈Ωi

(
λ(x) + µ(x)

µ(y)

)(
1 +

H̃

δ

)
. (1.2)

Here, H̃ stands for the diameter of the largest subdomain, which is often assumed to

be of similar size as the characteristic mesh size of the coarse triangulation TH . The

parameter δ stands for the smallest overlap width of the overlapping local subdomains.

As we can see from the estimate in (1.2), the two-level preconditioner removes the

ill-conditioning due to the mesh parameters h−2 of the estimate in (1.1) by showing a

dependence on the ratio 1 + H̃
δ . Furthermore, if the material coefficients are resolved

by the coarse mesh or if they vary only mildly within each subdomain, the estimates

guarantees a sufficiently low condition number. Indeed, this circumstance applies also

in a more general context. Provided that the coefficient variations can be resolved by

the coarse mesh, each of the methods in [26, 27, 59, 90, 94] as well as the multigrid and

multilevel methods in [63, 64, 74, 101] work robustly. However, when large variations

appear on a very small scale, i.e. in the interior of coarse elements or within local

subdomains, the estimate in (1.2) presumes only poor robustness and faces even a

general weakness of many solvers.

The lack of robustness of most solvers when applied to multiscale problems where vari-

ations in the PDE coefficients cannot be resolved by a coarse mesh has been overcome

6



1.2 State Of the Art

first in the development of robust coarse spaces for scalar second order elliptic PDEs

− div
(
α∇u

)
= f, (1.3)

with e.g. α being a highly oscillating coefficient on multiple scales. Using a piecewise

linear finite element triangulation on the fine mesh, the condition number estimate

κ(M−1
ASA

s) ≤ C max
i

sup
x,y∈Ωi

(
α(x)
α(y)

)(
1 +

H̃

δ

)

shows the dependence of the preconditioned system to the mesh parameters (see e.g. [97])

and the magnitude of the jumps. Again, H̃ stands for the diameter of the largest sub-

domain and δ stands for the smallest overlap width of the local subdomains. The

estimate is sharp if a piecewise linear coarse space is used, but may be too pessimistic

when coarse spaces are applied which are adapted to the multiscale features of the

underlying problem.

In [45], sharper condition number bounds for the two-level additive Schwarz method

are presented for scalar elliptic PDEs. Specifically, coefficient independent convergence

rates are provided for a large class of heterogeneous problems, without the requirement

that coefficient jumps are resolved by a coarse mesh. A condition number bound for

the additive Schwarz preconditioned linear system on a piecewise linear discretization

of the PDE in (1.3) is obtained to be of the form

κ(M−1
ASA

s) ≤ C
(
π(α) γ(1)

(
1 +

H

δ

)
+ γ(α)

)
, (1.4)

where two robustness indicators π(α) and γ(α) were introduced as a measure for the

coefficient robustness of the subdomain partitioning and the coarse space, respectively.

While the partitioning robustness indicator π(α) can be bounded in general by choosing

subdomains with a sufficiently large overlap, the coarse space robustness indicator γ(α)

is of main importance and provides guidance in the construction of robust coarse spaces

for the two-level method. It is proportional to the α-weighted H1-seminorm, the energy

of the basis functions.

Based on the estimate in (1.4), specific multiscale coarse spaces are constructed in [45]

which don’t need the requirement that the coarse mesh resolves the coefficient jumps.

7



1. INTRODUCTION

For the construction of robust coarse spaces, the multiscale finite element method is

applied.

Originally, the multiscale finite element method was introduced in the upscaling

framework. Since resolving the material jumps on the finest scale when performing

simulations is of high computational cost, the idea of the multiscale finite element

method is to capture small scale features of the multiscale problem on coarser grid-levels

without accurately resolving all the small scale components. It has been successfully

applied to scalar elliptic PDEs with highly oscillating coefficients on multiple scales.

Different variations of the method can be found in [4, 5, 34, 53, 54, 55], including

their analysis in the homogenization framework. A more recent approach for elliptic

interface problems is given in [21] (see also [81]), as well as the generalized multiscale

finite element method in [35]. Other variants of multiscale methods include e.g. the

variational multiscale methods in [56, 58] and the heterogeneous multiscale methods

in [106, 107]. For linear elasticity problems, applications of multiscale finite element

methods are yet to be studied outside the scope of this thesis. An adaptive local-global

multiscale finite element method for a 2D linear elasticity problem is applied in [81] by

proposing an extension of the multiscale finite volume element method presented in [31]

for two-phase flow problems. The method iteratively adapts the current multiscale basis

functions by combining an oversampling approach locally and a coarse scale simulation

globally. In [81], applications to a structural optimization problem in 2D linear elasticity

are presented.

Coming back to the estimate in (1.4), multiscale finite element coarse spaces are con-

structed in [45] and their robustness properties are studied. Specifically, using a scalar

oscillatory multiscale finite element coarse space, robustness is proven for any coefficient

variation which occurs in the interior of coarse elements, but also for coefficient varia-

tions along coarse element boundaries if the high contrast regions can be characterized

as a union of disjoint islands. Reasonable assumptions on the overlapping subdomains

may be required. For the linear elasticity system, a condition number bound as in (1.4)

is not available yet, but is developed and investigated in the scope of this thesis.

The pioneering results in [45] have also been applied by some of their authors to con-

struct basis functions of minimal energy in [98], subject to pointwise constraints which

ensure that the kernel of the PDE operator, i.e. the constant functions, are preserved.

8
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It was shown before in [110] that coarse spaces constructed by an explicit energy min-

imization (cf. [78, 105]) share similarities with multiscale-FE basis functions in the

sense that the basis functions are locally harmonic in the interior of coarse elements,

which makes them applicable also in an upscaling framework. Their construction re-

quires solving additional global problems whose solutions implicitly state the boundary

conditions of the basis functions (cf. section 5.5).

Energy minimizing methods have been proposed first in [105] and [78] and were

further studied in [98, 110]. In [83], the approach is generalized and applied to non-

hermitian matrices. The method was motivated in [105] from experimental results

of one-dimensional problems, where the method is equivalent to the multiscale finite

element method. It is based on improving the approximation properties of the coarse

space by reducing its dependence on the PDE coefficients. In [78], energy minimizing

coarse spaces are presented also for isotropic linear elasticity in the context of smoothed

aggregation, which allows small overlaps in the supports of neighboring basis functions.

While the classical energy minimizing methods with pointwise constraints are often

referred to as trace-minimization, another interesting method is proposed in [91] which

constructs basis functions by minimizing their energy subject to a set of functional

constraints. This approach is applied to scalar elliptic PDEs and the objective is

to prove the approximation property in a weighted Poincaré inequality. By a proper

choice of the functional constraints, mesh and coefficient independent condition number

bounds can be obtained. Further variants of coarse spaces with a minimal energy

property, including local variants, can be found in [26, 61, 69, 103].

The approach in [42] also applies the scalar multiscale finite element method for the con-

struction of robust coarse spaces. In [41] and [42], local generalized eigenvalue problems

are solved and an initially constructed coarse space is extended by the remaining eigen-

functions corresponding to positive eigenvalues which lie under a predefined threshold.

The dimension of the coarse space is in general larger than that of the coarse spaces

presented e.g. in [45]. Its exact dimension depends strictly on the particular problem

as it is related to the coefficient distribution in the underlying material. It can be

influenced by the partition of unity functions which are used to set up the generalized

eigenvalue problems. If the initial partition of unity is chosen to be the scalar multiscale

finite element basis, the enrichment of the coarse space is, in most applications, rather

moderate. The approach in [41] and [42] is generalized from scalar elliptic PDEs to

9



1. INTRODUCTION

abstract PDE operators in [32], including applications to Stokes and Brinkman equa-

tion. More recently, this approach is extended in [108] from a two-level to a multilevel

(AMLI, see e.g. [102], [75]) method for general s.p.d. operators. A theoretical verifica-

tion of the robustness of the method when applied to linear elasticity is also presented.

The dimension of the coarse space when applied to multiscale elasticity problems is,

however, yet to be fully addressed.

The spectral methods in [32, 41, 42, 108] are successfully applied to various highly

heterogeneous problems in 2D even for the class of problems where multiscale finite

element and energy minimizing coarse spaces fail to be fully robust. The high com-

putational cost of solving local eigenvalue problems may face additional challenges for

applications in three spatial dimensions.

In a more recent approach in [95], a spectral approach as in [41] is applied in the

aggregation framework. Generalized eigenvalue problems are solved in the overlapping

regions of the local subdomains. Applications to isotropic linear elasticity problems

are given and robustness is also guaranteed for arbitrary coefficient variations. The

dimension of the coarse space strongly depends on the coefficient distribution in the

overlapping regions. A nice review on recent spectral methods and their relation can

be found in [109]. Applications of the spectral methods in [32, 42, 108] in the algebraic

multilevel context are provided in [33].

To investigate the robustness of the presented methods on a specific problem, a main

criterion which we stated is if coefficient variations can be resolved by a coarse mesh or

not. Here, we also mention the small class of quasi-monotone coefficient distributions

(cf. [29]). Under the condition that quasi-monotonicity arguments can be applied,

optimal condition number bounds are proven for scalar elliptic problems for particular

coefficient distributions which are not resolved by a coarse grid. We refer to [86, 87]

for an analysis in the two-level context and [92] for the context of multilevel methods.

1.3 Main Achievements of the Thesis

The main achievements of the thesis can be summarized as follows:

• Extension of the multiscale finite element method of Hou and Wu in [53] (“A

multiscale finite element method for elliptic problems in composite materials and

10
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porous media”) from scalar elliptic PDEs to the PDE system of linear elasticity:

(i) Construction of multiscale finite element basis functions with vector-valued

linear and oscillatory boundary conditions;

(ii) Application and analysis in the context of two-level overlapping domain de-

composition preconditioners.

• Construction of energy minimizing coarse spaces for multiscale problems in linear

elasticity:

(i) Providing a robust construction of the basis functions;

(ii) Application and analysis in the context of two-level overlapping domain de-

composition preconditioners.

• Comprehensive convergence analysis for the two-level additive Schwarz precondi-

tioned linear system with coefficient-explicit condition number bounds:

(i) Developed bounds are sharp also for multiscale problems where coefficients

cannot be resolved by a coarse mesh;

(ii) Bounds provide guidance in the construction of robust coarse spaces for the

two-level method.

• Parallel and memory saving MPI-implementation of the PCG-accelerated two-

level additive Schwarz preconditioner with application to real multi-phase elastic

composites.

1.4 Structure of the Thesis

The thesis is organized as follows. In chapter 2 we state the equations of linear elasticity

and their discretization with vector-valued piecewise linear finite elements on a fine

triangulation. We also summarize the ingredients of the two-level additive Schwarz

preconditioner in an abstract form. Furthermore, we introduce the fine and coarse

meshes in 3D which are used in the numerical tests presented in the subsequent chapters.

We state main requirements and properties of a robust multiscale coarse space and

summarize classical Poincaré and Korn-type inequalities.

11
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In chapter 3 we extend the multiscale finite element method (MsFEM) with linear

boundary conditions as formulated by Hou and Wu in [53] to the PDE system of linear

elasticity. Resolving the heterogeneities on the finest scale, we utilize the (vector-

valued) linear multiscale-FE basis for the construction of robust coarse spaces in the

context of two-level overlapping domain decomposition preconditioners. We motivate

and explain the construction and show that the constructed multiscale coarse space

contains all the rigid body modes. Furthermore, we numerically observe the properties

of the derived coarse space in an upscaling framework. Therefore, we present exper-

imental results showing the approximation errors of the multiscale-FE coarse space

w.r.t. the fine-scale solution. Under the assumption that the material jumps are iso-

lated, i.e. they occur only in the interior of the coarse grid elements, the numerical tests

show uniform convergence rates independent of the contrast in the Young’s modulus

within the heterogeneous material.

In chapter 4 we extend the scalar multiscale finite element method with oscillatory

boundary conditions in [53] to the system of anisotropic linear elasticity. We derive

the reduced system which governs the oscillatory boundary data in a general setting

which allows their construction on triangular, tetrahedral, quadrilateral and hexahedral

coarse meshes and explain the derivation of the oscillatory multiscale finite element

basis on a tetrahedral mesh in detail. We apply the approach for the construction

of robust coarse spaces in the context of two-level overlapping domain decomposition

preconditioners for the multi-phase elastic composites. Numerical results are presented

for isotropic materials showing that robustness w.r.t. coefficient variations in the PDE

can be achieved even for the class of problems where inclusions of high stiffness cross

or touch coarse element boundaries.

Chapter 5 is concerned with constructing energy minimizing coarse spaces for the

finite element discretization of mixed boundary value problems for displacements in

compressible linear elasticity. Motivated from the multiscale analysis of the highly het-

erogeneous composite materials, we construct basis functions on a tetrahedral coarse

mesh which obey a minimal energy property subject to global pointwise constraints.

These constraints ensure that the rigid body translations are contained exactly, while

rigid body rotations are preserved approximately by the coarse basis. Following the

12
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numerical examples in chapter 3, the application is again twofold. Resolving the het-

erogeneities on the finest scale, we utilize the energy minimizing coarse space for the

construction of robust two-level overlapping domain decomposition preconditioners.

Thereby, we do not assume that coefficient jumps are resolved by the coarse grid, nor

do we impose assumptions on the alignment of material jumps and the coarse triangu-

lation. We only assume that the size of the inclusions is small compared to the coarse

mesh diameter. Numerical tests show uniform convergence rates independent of the

contrast in the Young’s modulus within the heterogeneous material. Furthermore, we

numerically observe the properties of the energy minimizing coarse space in an upscal-

ing framework by presenting results showing the approximation errors of the energy

minimizing coarse space w.r.t. the fine-scale solution.

Based on and motivated from the numerical results in the previous chapters, we present

a comprehensive convergence analysis in chapter 6, analysing two-level overlapping

Schwarz domain decomposition methods for the vector-valued piecewise linear finite

element discretizations of the elasticity system. The focus lies, indeed, in the application

to compressible, particle-reinforced composites of multiscale character, with large jumps

in their material coefficients. We present coefficient-explicit bounds for the condition

number of the two-level additive Schwarz preconditioned linear system. Thereby, we

do not require that the coefficients are resolved by the coarse mesh. The bounds show

a dependence of the condition number on the energy of the coarse basis functions,

the coarse mesh and the overlap parameters. Similar estimates have been developed

for scalar elliptic PDEs by Graham, Lechner and Scheichl [45]. The coarse spaces to

which they apply here are assumed to contain the rigid body modes and can be viewed

as generalizations of the space of piecewise linear vector-valued functions on a coarse

triangulation. The developed estimates provide a concept for the construction of coarse

spaces which can lead to preconditioners which are robust w.r.t. discontinuities in the

Young’s modulus and the Poisson ratio of the underlying composite. To confirm the

sharpness of the theoretical findings, we analyse the multiscale coarse spaces developed

in the chapters before in the context of the developed energy bounds. The theory

also captures the anisotropic case and allows applications to multiphase materials with

anisotropic constituents in two and three spatial dimensions.
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Chapter 7 describes a parallel implementation of the two-level additive Schwarz precon-

ditioner with oscillatory multiscale-FE coarse space. The parallelization of the method

is described in detail, numerical results are presented testing the scalability of the al-

gorithm and the robustness of the preconditioner. Furthermore, the method is applied

to real elastic composites which are discretized with more than 108 degrees of freedom.

In chapter 8, we summarize the presented work and draw final conclusions.

The analysis carried out within the framework of this thesis is partially contained in

[15, 16, 17, 19] and in the technical report [18].
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2

Problem Formulation

The main goal of the thesis is to develop and analyse preconditioners for multiscale

problems which arise from the finite element discretization with vector-valued, piecewise

linear elements in compressible linear elasticity.

In this chapter, we introduce the problem setting in detail and summarize further

tools which are required to solve the equations governing the linear elastic material

behaviour. We introduce the function spaces and their corresponding norms which

are necessary for the formulation of the finite element method (FEM) in section 2.1.

Then we proceed with the continuous formulation of the governing PDE system and

the discretization on the fine grid in section 2.2. Furthermore, we shortly summarize

the two-level overlapping Schwarz method in the additive version in section 2.3. Addi-

tionally, for the numerical tests presented in the following chapters, we introduce the

precise structure of the underlying fine and coarse meshes in three spatial dimensions.

Moreover, in section 2.4, we give a short outlook on the properties of the multiscale

coarse spaces which we construct within the scope of this thesis in the chapters 3, 4

and 5. Important Poincaré and Korn inequalities are introduced and summarized in

section 2.5, they are required for the analysis carried out in chapter 6. In section 2.6,

we summarize some of the introduced notations to which we refer in the subsequent

chapters for clarity purposes.
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2. PROBLEM FORMULATION

2.1 Function Spaces

We consider an open and bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3. For simplicity,

we may always assume that Ω admits a decomposition into shape-regular meshes (see

Definition 2.3.2). For the considerations in the next chapters we require certain function

spaces for vector-valued functions in Rd. We introduce them based on their scalar

counterparts. The space of square integrable functions on Ω is defined by [36]

L2(Ω) :=
{
v : Ω→ R :

∫
Ω
v2 dx <∞

}
,

and introduces a norm ‖u‖L2(Ω) :=
√

(u, u)L2(Ω) when equipped with the inner product

(u, v)L2(Ω) :=
∫

Ω
uv dx.

We say that u = v in L2(Ω) if u(x) = v(x) for all x ∈ Ω outside a set of Lebesgue

measure zero (cf. [1, 36]). The norm and scalar-product on the space of integrable

functions in L2(Ω) can be transferred in a straightforward manner to vector-valued

functions u ∈ [L2(Ω)]d,

[L2(Ω)]d =
{
v = (v1, . . . , vd)> : vi ∈ L2(Ω), i = 1, . . . , d

}
,

by

‖u‖[L2(Ω)]d :=
√

(u,u)
[L2(Ω)]d

, (u,v)[L2(Ω)]d :=
∫

Ω
u · v dx =

d∑
i=1

∫
Ω
uivi dx.

Finite element discretizations introduce a variational formulation which extend the

concept of classical derivatives. Therefore, the framework of weak or distributional

derivatives (see e.g. [1]) is applied.

Definition 2.1.1. (Weak derivative)[1] Let u ∈ D′(Ω) be a distribution and let α =
(α1, . . . , αd)> be a multi-index. The weak derivative Dαu is defined such that∫

Ω
Dαuζ dx = (−1)|α|

∫
Ω
uDαζ dx ∀ζ ∈ C∞0 (Ω),
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where |α| =
∑d

i=1 αi and

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαnn

.

Based on Definition 2.1.1, the Sobolev space H1(Ω) is defined by (cf. [1])

H1(Ω) :=
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀ |α| ≤ 1

}
.

The partial derivatives have to be understood in the sense of distributions according

to Definition 2.1.1. Equipped with the scalar-product

(u, v)H1(Ω) := (u, v)L2(Ω) + (∇u,∇v)[L2(Ω)]d =
∑
|α|≤1

∫
Ω
∂αu ∂αv dx,

the space H1(Ω) defines a Hilbert-space [36], its norm is given by

‖u‖H1(Ω) :=

∑
|α|≤1

∫
Ω
|∂αu|2 dx

1/2

.

For vector-fields in Rd, the derived function space reads

[H1(Ω)]d =
{
v = (v1, . . . , vd)> : vi ∈ H1(Ω), i = 1, . . . , d

}
.

Then, [H1(Ω)]d is a Sobolev space, its scalar-product is inherited from H1(Ω) and given

by

(u,v)[H1(Ω)]d :=
d∑
i=1

(ui, vi)H1(Ω) = (u,v)[L2(Ω)]d + (∇u,∇v)[L2(Ω)]d×d .

The latter term also defines a semi-norm on [H1(Ω)]d, with

|v|[H1(Ω)]d :=
∫

Ω
∇(v) : ∇(v) dx =

∫
Ω

d∑
i,j=1

|∂ivj |2 dx.

Having introduced the norms and function spaces required for the variational formula-

tion of the finite element discretization, we proceed with stating the equations governing

the linear elastic material behaviour.
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2. PROBLEM FORMULATION

2.2 Governing Equations and their Discretization

2.2.1 The Equations of Linear Elasticity

We shall assume that Γ = ∂Ω admits the decomposition into two disjoint subsets ΓDi
and ΓNi , Γ = ΓDi ∪ ΓNi and meas(ΓDi) > 0 for i ∈ {1, . . . , d}. We consider a solid

body in Ω, deformed under the influence of volume forces f and traction t. Assuming

a linear elastic material behaviour, the displacement field u of the body is governed by

the mixed boundary value problem (BVP) [9]

−divσ(u) = f in Ω, (2.1)

σ(u) = C : ε(u) in Ω, (2.2)

ui = gi on ΓDi , i = 1, . . . , d,

σijnj = ti on ΓNi , i = 1, . . . , d,

where σ is the stress tensor, the strain tensor ε is given by the symmetric part of the

gradient of displacements

ε(u) =
1
2

(
∇u+∇u>

)
,

n is the unit outer normal vector on Γ and σijnj = (σ ·n)i. The fourth order elasticity

tensor C = C(x), x ∈ Ω describes the elastic stiffness of the material under mechanical

load. The coefficients cijkl, 1 ≤ i, j, k, l ≤ d may contain large jumps within the domain

Ω. They depend on the parameters of the particular materials which are enclosed in

the composite. The boundary conditions are imposed separately for each component

ui, i = 1, . . . , d of the vector-field u = (u1, . . . , ud)> : Ω̄→ Rd.

Isotropic linear elasticity: Equation (2.1) is the general form of the PDE system

for anisotropic linear elasticity, which simplifies when the solid body consists of one or

more isotropic materials. In this case, equation (2.2) can be expressed in terms of the

Lamé constants λ and µ, which are characteristic constants of the specific material.

The stiffness tensor of an isotropic material is given by cijkl = λδijδkl+µ(δikδjl+δilδjk)

and the stress is σ(u) = λtr(ε(u))I + 2µε(u).

Let us assume for the following consideration that Ω is divided into two disjoint subdo-

mains Ω1,Ω2 such that Ω̄ = Ω̄1∪ Ω̄2. Let each domain Ωβ contain an isotropic material
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2.2 Governing Equations and their Discretization

with Lamé coefficients (λβ, µβ), β = 1, 2, i.e.

λ(x) =

{
λ1, x ∈ Ω1

λ2, x ∈ Ω2
µ(x) =

{
µ1, x ∈ Ω1

µ2, x ∈ Ω2.

Let Γface := (Ω̄1 ∩ Ω̄2) \ ∂Ω denote the interface between the two materials. Under the

condition of ideal adhesion, equation (2.1) is of the form

µ∆u+ (λ+ µ)∇(∇ · u) = f in Ω\Γface, (2.3)

[u] = 0, [t] = 0 on Γface. (2.4)

Here, tj(u) = σijnj is the normal component of the stress where n is the unit normal to

Γface pointing to Ω2. The square brackets denote the jump along Γface. More precisely,

[u(x0)] = u2(x0)−u1(x0) where uβ(x0) := limΩβ3x→x0
u(x), β = 1, 2, is the one sided

limit of the vector field u in x0 ∈ Γface.

The Lamé coefficients can also be expressed in terms of the Young’s modulus E > 0

and the Poisson ratio ν ∈ (−1, 1/2) by (cf. [8])

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.5)

Each pair (E, ν) or (λ, µ) characterizes the properties of an isotropic material. For

completeness, we also give the relation

E =
µ(3λ+ 2µ)
λ+ µ

, ν =
λ

2(λ+ µ)
.

Remark 2.2.1. We should point out here that we only consider compressible linear
elastic materials (ν < 1/2), which allows a discretization with piecewise linear (H1-
conforming) finite elements. To circumvent the effect of locking or volume locking,
reasonable discretizations are available when dealing with nearly incompressible mate-
rials. Such methods include non-conforming finite elements (cf. [37, 68]) or a mixed
variational formulation by introducing an additional penalty term (cf. [9, 14, 36]). In
our observations, we always assume that the Poisson ratio ν is bounded away from 1/2.
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2.2.2 Variational Formulation

Consider the Sobolev space V := [H1(Ω)]d of vector-valued functions whose components

are square-integrable with weak first-order partial derivatives in the Lebesgue space

L2(Ω). We define the subspace V0 ⊂ V,

V0 :=
{
v ∈ [H1(Ω)]d : vi = 0 on ΓDi , i = 1, . . . , d

}
. (2.6)

Additionally, we define the manifold

Vg :=
{
v ∈ [H1(Ω)]d : vi = gi on ΓDi , i = 1, . . . , d

}
. (2.7)

We assume f ∈ V′0 to be in the dual space of V0, t ∈ [H−
1
2 (ΓN )]d is in the trace space

and cijkl ∈ L∞(Ω) to be uniformly bounded. Additionally, we require the stiffness

tensor C to be positive definite, i.e. it holds (C : ε(v)) : ε(v) ≥ C0 ε(v) : ε(v) for a

constant C0 > 0. Note that for an isotropic material with the parameters λ and µ, this

condition holds when C0/2 < µ < ∞ and C0 ≤ 2µ + dλ < ∞. We define the bilinear

form a : V× V→ R,

a(u,v) :=
∫

Ω
(C : ε(u)) : ε(v) dx. (2.8)

This form is symmetric, continuous, and coercive on the subspace V0. The coercivity,

i.e.

∃ c0 > 0 : a(v,v) ≥ c0 ‖v‖[H1(Ω)]d ∀v ∈ V0,

can be shown by using Korn’s inequality (see section 2.5). Furthermore, we define the

continuous linear form F : V→ R,

F (v) :=
∫

Ω
f · v dx+

∫
ΓN

t · v ds.

The weak solution of (2.1) is then given in terms of a(·, ·) and F (·) by u ∈ Vg, such

that

a(u,v) = F (v) ∀v ∈ V0. (2.9)

Under the assumptions above, a unique solution of the weak formulation in equation

(2.9) is guaranteed by the Lax Milgram lemma [9].
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Lemma 2.2.1. (Lax Milgram) Let V be a Hilbert space, let the bilinear form aV :
V × V → R be continuous and coercive. Then problem (2.9) is well-posed and has a
unique solution u ∈ Vg.

2.2.3 Finite Element Discretization

We want to approximate the solution of (2.9) in a finite dimensional subspace Vh ⊂ V.

Therefore, let Th be a quasi-uniform triangulation of Ω ⊂ Rd into triangular (d = 2)

or tetrahedral (d = 3) finite elements with mesh parameter h and let Σ̄h be the set of

vertices of Th contained in Ω̄. Furthermore, let N̄h denote the corresponding index set

of nodes in Σ̄h. We denote the number of grid points in Σ̄h by np. Let

Vh := span
{
ϕj,hk : Ω̄→ Rd : j ∈ N̄h, k = 1, . . . , d

}
(2.10)

be the space of continuous, vector-valued piecewise linear functions on Th. Each such

basis function is of the form

ϕj,hk = (ϕj,hk1 , . . . , ϕ
j,h
kd )>, ϕj,hkl (xi) = δijδkl, i ∈ N̄h, l ∈ {1, . . . , d},

where δij denotes the Kronecker delta. For the sake of simplifying the notation, we

assume a fixed numbering of the basis functions to be given. To be more specific, we

assume that there exists a suitable surjective mapping {ϕj,hk } → {1, . . . , nd}, ϕ
j,h
k 7→

(j, k). Here, nd = dnp denotes the total number of degrees of freedom (DOFs) of Vh.

Note that this mapping automatically introduces a renumbering from {1, . . . , np} ×
{1, . . . , d} → {1, . . . , nd}. We introduce the discrete analogies to the space in equation

(2.6) and the manifold in equation (2.7) by

Vh0 : =
{
vh ∈ Vh : vhi = 0 on ΓDi , i = 1, . . . , d

}
, (2.11)

Vhg : =
{
vh ∈ Vh : vhi = gi on ΓDi , i = 1, . . . , d

}
. (2.12)

We want to find uh ∈ Vhg , where uh = wh + gh, with wh ∈ Vh0 and gh ∈ Vhg . More

precisely, we seek uh = (uh1 , . . . , u
h
d)> with

uhk =
np∑
j=1

u(j,k)ϕ
j,h
k , k = 1, . . . , d,
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such that

a(wh,vh) = F (vh)− a(gh,vh) ∀vh ∈ Vh0 .

We define the index set of degrees of freedom of Vh by Dh = {(j, k) ∈ N : j ∈ N̄h, k =

1, . . . , d} = {1, . . . , nd} and introduce the subset

Dh,0 : =
{

(i, k) ∈ N : i ∈ N̄h, x
i 6∈ ΓDk

}
.

Furthermore, we may introduce Dh,ΓD := Dh\Dh,0 6= ∅. Using the symmetry of the

stiffness tensor C, the bilinear form in (2.8) applied to the basis functions of Vh reads

a(ϕi,hk , ϕj,hl ) =
∫

Ω
ε(ϕi,hk ) : C : ε(ϕj,hl ) dx. (2.13)

We define A ∈ Rnd×nd , f ∈ Rnd by

A(i,k)(j,l) =


a(ϕi,hk , ϕj,hl ) if (i, k) ∈ Dh,0, (j, l) ∈ Dh,0,

a(ϕi,hk , ϕi,hk ) if (i, k) = (j, l) ∈ Dh,ΓD ,

0 otherwise

and

f(j,l) =

F (ϕj,hl )−
∑

(i,k)∈Dh,ΓD

a(ϕi,hk , ϕj,hl )gk(xi) if (j, l) ∈ Dh,0,

a(ϕj,hl , ϕj,hl )gl(xj) if (j, l) ∈ Dh,ΓD .

Observe that common supports of basis functions ϕi,hk and ϕj,hl with (i, k) ∈ Dh,0,

(j, l) ∈ Dh,ΓD do not have a contribution to the entries in A. They only contribute to

the loadvector f . This leads to the sparse linear system

Au = f , (2.14)

with the symmetric positive definite (s.p.d.) stiffness matrix A. The symmetry of

A is inherited from the symmetry of a(·, ·) while the positive definiteness is a direct

consequence of the coercivity of the bilinear form in (2.8). Note that in the construction

above, the essential degrees of freedom in Dh,ΓD are not eliminated from the linear

system. The degrees of freedom related to Dirichlet boundary values are contained in

the linear system by strictly imposing uhi = ghi on ΓDi , i ∈ {1, . . . , d}, i.e. any row in A
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2.2 Governing Equations and their Discretization

related to a Dirichlet degree of freedom contains only a non-zero entry on the diagonal.

The remaining Dirichlet degrees of freedom in the columns of A vanish as they are

transferred to the right-hand side in (2.14).

2.2.4 The Assembling Process

In the following, we shortly summarize the assembling process for the linear system in

(2.14). Using the symmetry of the strain- and the stress tensor

ε = (εij)di,j=1, σ = (σij)di,j=1,

andC, the entries of σ in (2.2) can be computed from (σ11, σ22, σ12)> = C̃ (ε11, ε22, 2ε13)>

(d = 2) or (σ11, σ22, σ33, σ23, σ13, σ12)> = C̃ (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)> (d = 3). For

instance, given an isotropic material, the stiffness tensor C̃ in Voigt notation takes the

form

C̃ =

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 or C̃ =



2µ+ λ λ λ
λ 2µ+ λ λ 0
λ λ 2µ+ λ

µ 0 0
0 0 µ 0

0 0 µ


in Rd, d = 2 or d = 3, respectively. For implementation purposes, we introduce the

matrix Bi related to a node xi ∈ Σ̄h in two or three spatial dimensions by

Bi =

∂1ϕ
i,h 0

0 ∂2ϕ
i,h

∂2ϕ
i,h ∂1ϕ

i,h

 or Bi =



∂1ϕ
i,h 0 0

0 ∂2ϕ
i,h 0

0 0 ∂3ϕ
i,h

0 ∂3ϕ
i,h ∂2ϕ

i,h

∂3ϕ
i,h 0 ∂1ϕ

i,h

∂2ϕ
i,h ∂1ϕ

i,h 0

 ,

respectively, where ϕi,h is the scalar nodal basis function on Th with ϕi,h(xj) = δij ,

xj ∈ Σ̄h and ∂j = ∂/∂xj , j = 1, . . . , d. It holds ε̃(ϕj,hl ) = Bj1l where ϕj,hl = ϕj,h1l and

1l = (1l1, . . . , 1
l
d)
>, 1lk = δlk. One can write, at least for (i, k), (j, l) ∈ Dh,0,

A(i,k)(j,l) = 1k
>
∫

Ω
B>i C̃Bj dx 1l. (2.15)
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2. PROBLEM FORMULATION

As usual for finite element methods, the stiffness matrix A and the loadvector f in

equation (2.14) may be assembled by sums of elemental contributions, rather than

entry by entry as in equation (2.15). For each τ ∈ Th, we define the element submatrix

Ãτ =
∫
τ
B>τ C̃Bτ dx, (2.16)

where the matrix Bτ contains the nodal matrices Bτi , i = 1, . . . , nτ corresponding to

the nτ vertices of τ (nτ = 3 for d = 2 and nτ = 4 for d = 3),

Bτ = [Bτ1 , . . . , Bτnτ ].

An adaption of Ãτ is required if τ touches the global boundary where Dirichlet condi-

tions are applied. In this case, the adaption in (2.16) reads

Aτ(i,k)(j,l) =


Ãτ(i,k)(j,l) if (i, k) ∈ Dh,0, (j, l) ∈ Dh,0,

Ãτ(i,k)(i,k) if (i, k) = (j, l) ∈ Dh,ΓD ,

0 otherwise.

(2.17)

In a similar way, we define the elemental contribution of the load vector by

f τ(j,l) :=

F
τ (ϕj,hl )−

∑
(i,k)∈Dh,ΓD

Aτ(i,k)(j,l)gk(x
i) if (j, l) ∈ Dh,0,

Aτ(i,k)(j,l)gl(x
j) if (j, l) ∈ Dh,ΓD .

(2.18)

To assemble the global stiffness matrix A as well as the right-hand side f in (2.14)

element-wise, for each τ ∈ Th, the following applies:

1. Assemble Aτ as in (2.16) and (2.17) and compute f τ following (2.18). The essen-

tial boundary conditions are taken into account.

2. Update the global stiffness matrix respectively force-vector by the computed ele-

mentary contributions.

The latter step here requires additional information. The element-matrices Aτ as well

as the corresponding element right-hand side are computed based on a local ordering.

Their values have to be added to the appropriate locations in the global counterparts.

In practice, all the computations are performed on one reference element τref . We

provide more details below restricting to elements in 3D.
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2.2 Governing Equations and their Discretization

The Reference Element: The computations of the elemental contributions to the

stiffness matrix as well as right-hand side on a tetrahedral element τ is computed for a

specific reference element τref (see Figure 2.1). The coordinates in the tetrahedral refer-

ence element are ξ1, ξ2, ξ3. The reference element is defined by the set 0 ≤ ξ1, ξ2, ξ3 ≤ 1,

ξ1 + ξ2 + ξ3 ≤ 1. The shape functions of the linear tetrahedron are given such that they

are zero at one surface of the element and one at the opposite vertex, that is

N1(ξ1, ξ2, ξ3) = ξ1,

N2(ξ1, ξ2, ξ3) = ξ2,

N3(ξ1, ξ2, ξ3) = ξ3,

N4(ξ1, ξ2, ξ3) = 1− ξ1 − ξ2 − ξ3.

For each τ ∈ Th, there exists a bijective continuously differentiable mapping F ,

F : τref → τ,

(ξ1, ξ2, ξ3) 7→ (x1, x2, x3) := (F1(ξ1, ξ2, ξ3), F2(ξ1, ξ2, ξ3), F3(ξ1, ξ2, ξ3)),

where

Fi(ξ1, ξ2, ξ3) =
4∑
j=1

x
Nj
i Nj(ξ1, ξ2, ξ3).

Here, xNji denotes the i-th component of the vertex xNj of τ , positioned at the node

where the corresponding shape function Nj has value 1 in τref . We compute Ãτ in

equation (2.16) by

Ãτref
τ :=

∫
τref

BT
τref
C̃Bτref

J−1 dξ, (2.19)

where, Bτref
= [BN1 , BN2 , BN3 , BN4 ] with

BNi =



∂1Ni 0 0
0 ∂2Ni 0
0 0 ∂3Ni

0 ∂3Ni ∂2Ni

∂3Ni 0 ∂1Ni

∂2Ni ∂1Ni 0

 .
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2. PROBLEM FORMULATION

Figure 2.1: Reference tetrahedral element

Here, ∂j = ∂/∂ξj , j = 1, . . . , 3 and J stands for the Jacobian determinant of the

transformation, given by

J = det

∂1x1 ∂2x1 ∂3x1

∂1x2 ∂2x2 ∂3x2

∂1x3 ∂2x3 ∂3x3

 . (2.20)

More details on the assembling process in two and three spatial dimensions can be

found in [57].

2.3 The Two-Level Method

We are interested in solving the linear system in equation (2.14) and hence, the construc-

tion of preconditioners for A which remove the ill-conditioning due to mesh-parameters

and variations in the PDE coefficients. Specifically, we construct two-level Schwarz do-

main decomposition preconditioners in the additive version. As introduced before, the

method involves corrections on local subdomains, combined with a global correction on

a coarse grid. In this section, we summarize the additive Schwarz method in abstract

form. Furthermore, we precisely introduce fine and coarse triangulations on a regular

grid in 3D which we use in the subsequent chapters for the construction of different

coarse spaces. The regular structure of both meshes allows the coarse elements to be

formed by an agglomeration of fine elements.
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2.3 The Two-Level Method

2.3.1 Two-level Additive Schwarz

Let {Ωi, i = 1, . . . , N} be an overlapping covering of Ω̄, such that Ωi \ ∂Ω is open for

i ∈ {1, . . . , N}. Ωi \ ∂Ω is assumed to consist of the interior of a union of fine elements

τ ∈ Th. We introduce the notation

Vh(Ωi) :=
{
vh ∈ Vh : supp(vh) ⊂ Ω̄i

}
, (2.21)

for the space of vector-valued piecewise linear functions which are supported in Ω̄i.

The notation can be applied to any subset D ⊂ Ω̄ in an obvious manner. Moreover, we

denote the local index-set of degrees of freedom in Vh restricted to D ⊂ Ω̄ by

Dh(D) :=
{

(i, k) : φi,hk ∈ Vh(D)
}
, (2.22)

where we assume a suitable local numbering of the global degrees of freedom to be

given. For i = 1, . . . , N , let Ri be the restriction matrix of a function in Vh = Vh(Ω̄) to

Vh(Ωi). It is given by (Ri)(j,l)(j′,l′) = δ(j,l)(j′,l′), (j, l) ∈ Dh(Ωi), (j′, l′) ∈ Dh(Ω̄) (more

details can be found in [97]). We define the local submatrices of A corresponding to Ωi

by Ai = RiAR
>
i .

Additionally to the local subdomains, we need a coarse triangulation TH of Ω̄ into coarse

elements. Here, we assume again that each coarse element T consists of a union of fine

elements τ ∈ Th. We construct coarse basis functions whose values are determined on

the coarse grid points in Ω̄ (excluding coarse DOFs on the Dirichlet boundaries), given

by the vertices of the coarse elements in TH . The coarse space VH0 ⊂ Vh0 is constructed

such that it is a subspace of the vector-field of piecewise linear basis functions on the fine

grid. That is, each function φH ∈ VH0 omits a representation w.r.t. the fine scale basis.

The restriction matrix RH describes a mapping from the coarse to the fine space and

contains the corresponding coefficient vectors of the coarse basis functions by row. The

coarse grid stiffness matrix is then defined as the Galerkin product AH := RHAR
>
H .

With these tools in hand, the action of the two-level additive Schwarz preconditioner

M−1
AS is defined implicitly by

M−1
AS = R>HA

−1
H RH +

N∑
i=1

R>i A
−1
i Ri. (2.23)
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2. PROBLEM FORMULATION

To accelerate convergence, the preconditioner in (2.23) can be applied to the linear

system in (2.14) within a Krylov subspace method. The Preconditioned Conjugate

Gradient (PCG) algorithm [44, 89] is well suited to symmetric problems.

Lemma 2.3.1. (PCG convergence) Suppose we apply a s.p.d. preconditioner M to
linear system Au = f in (2.14). Then the iterates uk computed in the k-th step of the
PCG algorithm (Algorithm 7.1) satisfy the following bound

‖u− uk‖A ≤ 2
(√

κ(M−1A)− 1√
κ(M−1A) + 1

)k
‖u− u0‖A, k ≥ 0,

where κ = λmax/λmin is the ratio of the largest and smallest eigenvalue of M−1A and
‖u‖2A = uTAu.

That is, the number of iterations needed to solve the linear system iteratively with the

PCG algorithm up to a given accuracy is proportional to
√
κ(M−1A).

2.3.2 Fine and Coarse Triangulation

We introduce the concepts of shape-regularity and quasi-uniform meshes following [36]:

Definition 2.3.1. (Mesh) Let Ω be a domain in Rd. A mesh is a union of a finite
number nel of compact, connected, Lipschitz sets τk with non-empty interior such that
{τk}nel

k=1 forms a partition of Ω, i.e.

Ω̄ =
nel⋃
k=1

τk and τ̊k ∩ τ̊l = ∅ for k 6= l.

The subsets τk are called elements and the set of elements Th := {τk}nel
k=1 is referred to

as mesh.

For τ ∈ Th, we denote by hτ := diam(τ) and ρτ := diam(Bτ ) the diameter of τ and

Bτ , where Bτ is the largest circle (d=2) or ball (d=3) contained in τ .

Definition 2.3.2. (Shape regularity) Let ρτ be defined as above. A family {Th} of
meshes is said to be shape-regular if there exists σ0 such that

∀h, ∀τ ∈ Th, στ :=
hτ
ρτ
≤ σ0.
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2.3 The Two-Level Method

Definition 2.3.3. (Quasi-uniform) A family {Th} of meshes is said to be quasi-uniform
if and only if it is shape-regular and there exists a constant c such that

∀h, ∀τ ∈ Th, hτ ≥ ch.

In the following, we introduce a quasi-uniform mesh which we consider for the numerical

tests shown in the following chapters. However, none of the theoretical results developed

in this thesis are restricted to the mesh introduced below. If not mentioned otherwise,

they apply to any shape-regular triangulation.

Example of Fine Grid: Let the domain Ω be a 3D cube, i.e. Ω̄ = [0, Lx]× [0, Ly]×

[0, Lz] ⊂ R3 for given Lx, Ly, Lz > 0. The fine grid is constructed from an initial

voxel structure which is further decomposed into tetrahedral finite elements [93]. More

precisely, the set of grid points in Ω̄ is given by

Σh(Ω̄) :=
{

(xi, yj , zk)> ∈ R3 : xi = ihx, yj = jhy, zk = khz, (2.24)

i = 0, . . . , nx, j = 0, . . . , ny, k = 0, . . . , nz
}
,

where nx = Lx/hx,, ny = Ly/hy, nz = Lz/hz. For simplicity, we may assume that

L := Lx = Ly = Lz and h := hx = hy = hz, and thus nh := nx = ny = nz. That is, the

fine grid can be decomposed into nh × nh × nh grid-blocks, also referred to as voxels,

of size h × h × h. We denote such a fine voxel by �ijk
h , 1 ≤ i, j, k ≤ nh. The triple

(i, j, k) uniquely determines the position of the corresponding grid-block in Ω̄. Each

voxel is further decomposed into five tetrahedral elements. The decomposition depends

on the position of the specific voxel in Ω̄. To identify them, we introduce the notation

sijk := s(�ijk
h ) = i + j + k. We distinguish between two different decompositions,

depending on the value of sijk mod 2. We follow the numbering of the 8 vertices of a

block as given in Figure 2.2. If sijk is odd (see Figure 2.2 (a)), block �ijk
h is decomposed

into five tetrahedra which are defined by the set of their four vertices within each block,

{
{1, 2, 4, 6}, {1, 3, 4, 7}, {1, 5, 6, 7}, {4, 6, 7, 8}, {1, 4, 6, 7}

}
.
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2. PROBLEM FORMULATION

If sijk is even (see Figure 2.2 (b)), the decomposition of block �ijk
h into the tetrahedra

is done such that their vertices are given by{
{1, 2, 3, 5}, {2, 3, 4, 8}, {2, 5, 6, 8}, {3, 5, 7, 8}, {2, 3, 5, 8}

}
.

With the given decomposition, a conformal triangulation of Ω into tetrahedral elements

(a) (b)

Figure 2.2: Decomposition of grid block into 5 tetrahedral elements

is uniquely defined, we denote this partition by Th. Th is referred to as the fine grid

triangulation, whereas the coarse grid triangulation, introduced in the following, is

denoted by TH .

Forming Coarse Elements by Agglomeration: The coarse elements T ∈ TH are

constructed by an agglomeration of the fine elements. We construct a set of agglomer-

ated elements such that each T ∈ TH is a simply connected union of fine grid elements

T =
⋃nT
i=1 τi, τi ∈ Th. Thus, for any two τi, τj ∈ Th ∩ T , there exists a connecting

path of elements {τk}k ⊂ T beginning in τi and ending in τj . Each fine grid element τ

should belong to exactly one agglomerated element T . Due to the regular structure of

the underlying fine grid, the agglomeration is done such that the coarse elements have

the same tetrahedral form as the fine elements, and automatically form a coarser grid

of equal structure. The table AE element (cf. [102]) is used to store the fine elements

which belong to an agglomerated (coarse) element. Given the fine triangulation Th of

Ω, the agglomeration process proceeds as follows:
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2.3 The Two-Level Method

1. Given a fixed coarsening-factor cf , compute the position of the coarse nodes to

decompose the domain Ω into imaginary coarse voxels �ijk
H of size H ×H ×H,

where 1 ≤ i, j, k ≤ nH ∈ N, nH = nh/cf , and H = cfh;

2. Build the CB element table:

For each τ ∈ Th, obtain the position of τ in Ω and assign it to the belonging

coarse block �ijk
H ;

3. Build the AE element table:

For each coarse block �ijk
H ⊂ Ω̄ and each τ ⊂ �ijk

H (CB element), obtain the

position of τ in �ijk
H and assign it to the belonging coarse tetrahedron;

In step 3 of the agglomeration process, we use again the mapping sijk := s(�ijk
H ) =

i+ j+k to identify the coarse tetrahedra into which a given block is decomposed. This

partition automatically defines a set of coarse grid points, given by the vertices of the

coarse elements. Specifically, they are given by

ΣH(Ω̄) :=
{

(xi, yj , zk)> ∈ R3 : xi = iH, yj = jH, zk = kH,

i, j, k = 0, . . . , nH
}
,

where nH = cfh and cf = H/h ∈ N denotes the coarsening ratio. We may write

Σ̄H := ΣH(Ω̄) for short. For any D ⊂ Ω̄, we denote by ΣH(D) := Σ̄H ∩D the set of

nodes of TH in D. The corresponding index-set of coarse nodes is defined by NH(D).

That is, p ∈ NH(D) if and only if xp ∈ ΣH(D). If D = Ω̄, we write N̄H = NH(Ω̄) for

short.

Note that the fine and coarse grid introduced above are quasi-uniform. It remains to

show that a straightforward decomposition of a coarse block into coarse tetrahedral

elements leads to the same result as forming the coarse tetrahedra by agglomerating

fine elements. The proof of this concept is discussed below in more detail.

Alignment of Fine and Coarse Mesh

First, we demonstrate illustratively for one coarse tetrahedral element T ∈ TH that

it can be represented by a union of fine elements τ ∈ Th. We restrict to the coarse

element which is obtained from decomposing a coarse voxel �H of size H × H × H
into five tetrahedra as described above, where H = cfh with cf being the coarsening
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factor. Particularly, referring to a decomposition as in Figure 2.2(a), we choose the

element T with coarse vertices {1, 2, 4, 6}. We denote by Fint the interior face of T in

�H := [0, H]3 which connects the three coarse nodes {1, 4, 6} opposite to node 2 with

coordinates (H, 0, 0)>. Then, T and Fint can be represented by

T =
{

(x1, x2, x3)> ∈ [0, H]3 : 0 ≤ (H − x1) + x2 + x3 ≤ H
}
,

Fint =
{

(x1, x2, x3)> ∈ [0, H]3 : (H − x1) + x2 + x3 = H
}
.

Given the fine mesh Th(�H) := {(ih, jh, kh)> ∈ [0, H]3 : 0 ≤ i, j, k ≤ cf}, we obtain

the corresponding nodes in T and Fint by

Th(T ) =
{
xijk := (ih, jh, kh)> ∈ Th(�H) : 0 ≤ (cf − i) + j + k ≤ cf

}
,

Th(Fint) =
{
xijk := (ih, jh, kh)> ∈ Th(�H) : (cf − i) + j + k = cf

}
.

For τ ∈ Th, we denote by Σh(τ) := Σ̄h ∩ τ the set of vertices of τ . Let τ ∈ Th be such

that there is a vertex xi
′j′k′ ∈ Σh(τ) such that xi

′j′k′ ∈ T \ ∂T lies in the interior of the

coarse element T . We want to show that any vertex xijk ∈ Σh(τ) lies in T and hence,

τ ⊂ T . W.l.o.g. we may assume that xi
′j′k′ ∈ Σh(τ) is such that (cf − i′) + j′ + k′ is

minimal, that is we choose a vertex of τ which has shortest distance to the coarse node

with coordinates (H, 0, 0)> ∈ �H . Note that, by assumption, it holds j′+k′−i′ < 0. To

verify that τ lies fully in T we distinguish in our consideration between three different

cases:

case 1: j′ + k′ − i′ ≤ −3: since xi
′j′k′ ∈ Σh(τ) can only be connected to fine nodes of

the form xijk = xi
′±1 j′±1 k′±1 and due to (j′+ 1) + (k′+ 1)(−i+ 1)′ ≤ 0, any node

xijk ∈ Σh(�H) which is connected to xi
′j′k′ over an edge is contained in T .

case 2: j′+ k′− i′ = −2: then, we are in the situation of Figure 2.3 (b) and xi
′j′k′ can

be connected to at least one of the coarse nodes xijk with (i, j, k) ∈
{
{i′ − 1, j′ +

1, k′}, {i′ − 1, j′, k′ + 1}, {i′, j′ + 1, k′ + 1}
}

while the node xijk with (i, j, k) =

{i′− 1, j′+ 1, k′+ 1} does not share an edge with xi
′j′k′ . Note that this situation

occurs if and only if i′+ j′+k′mod 2 = 0 (for an illustration compare also Figure

2.4).
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2.3 The Two-Level Method

case 3: j′ + k′ − i′ = −1: then, we are in the situation of Figure 2.3 (a) and the other

vertices of τ are given by {i′ − 1, j′, k′}, {i′, j′ + 1, k′} and {i′, j′, k′ + 1}. Note

that this situation occurs if and only if i′ + j′ + k′mod 2 = 1 (for an illustration

compare also Figure 2.4).

For the latter two cases we used that (cf − i′) + j′ + k′ is assumed to be minimal.

The above considerations show illustratively that all vertices of τ are contained in the

(a) (b)

Figure 2.3: Illustration of fine tetrahedral elements which touch Fint with one of their
faces (shaded color); grid-points xi

′j′k′
in the interior of T (black and blue), grid-points

xi
′j′k′

with j′ + k′ − i′ being minimal (blue) and grid-points on the boundary Fint (red)

element T ∈ TH and thus, T does not cut fine elements. This shows that the coarse

element can be formed by a union of fine elements and hence, fine and coarse elements

are aligned. The same arguments can be easily applied to any other T ∈ TH(�H) which

touches ∂�H with a whole face. The remaining element T ′ ∈ TH(�H) which touches the

boundaries of �H only with their vertices can be formed from the complementary union

of fine elements τ ∈ Th(�H) which are not contained in any other T ∈ TH(�H) \ T ′.
While the above considerations provide a good illustration, we give a complete and

more elegant proof of the concept of mesh alignment in the following.

Lemma 2.3.2. (Mesh alignment) Let the fine and coarse meshes Th and TH be con-
structed as introduced above. Then, Th and TH are aligned.

Proof. Let �ijk
h ⊂ Ω̄ be a fine grid-block. We introduce the four vectors n1 = (−1, 1, 1)>,

n2 = (1,−1, 1)>, n3 = (1, 1,−1)> and n4 = (−1,−1,−1)>. If sijkh is odd (see Fig-
ure 2.2 (a)), they form the inner normal vectors on the four faces of the tetrahedron
which is centered in the interior of �ijk

h , if sijkh is even (see Figure 2.2 (b)), they
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Figure 2.4: Illustration of coarse tetrahedral element with H = 3h as an agglomeration
of fine elements; Face Fint in shaded color; fine grid-points in the interior of T (black),
grid-points on the boundary Fint (red)

form the outer normal vectors on the faces of the tetrahedron in the center of �ijk
h .

The given normal vectors n`, ` = 1, . . . , 4, characterize the four families of planes
Ξh
` :=

{
n` · x = 2zh, x ∈ Ω̄, z ∈ Z

}
. We want to show that these families induce

the splitting of any fine voxel �ijk
h ⊂ Ω̄ into the five tetrahedra by their intersection

with �ijk
h . To see this, let us first assume that sijkh is odd, that is the fine voxel

is decomposed according to the splitting in Figure 2.2 (a). We denote by F`(�
ijk
h )

the face of the tetrahedra in �ijk
h which is normal to n`, ` ∈ {1, . . . , 4}. Moreover,

let xi
′j′k′ = (i′h, j′h, k′h)> be the vertex of �ijk

h which is closest to the origin (node
1 in Figure 2.2 (a)), that is (i′, j′, k′) = (i − 1, j − 1, k − 1). Then it holds indeed
that (n` · x)/hmod 2 = (i′ + j′ + k′) mod 2 for all x ∈ F`(�

ijk
h ), ` = 1, . . . , 4. Since

i + j + k is odd by assumption, we have that (i′ + j′ + k′) mod 2 = 0. Hence, it
holds F`(�

ijk
h ) = Ξh

` ∩ �ijk
h and the decomposition of �ijk

h into tetrahedra is in-
duced by the families Ξ`, ` = 1, . . . , 4. Assuming now that sijkh is even, the fine
voxel is decomposed according to the splitting in Figure 2.2 (b). For ` = 1, . . . , 4,
let F`(�

ijk
h ) denote the angular face of the tetrahedra in �ijk

h to which n` is nor-
mal. We denote by xijk = (ih, jh, kh)> the vertex of �ijk

h which is most distant form
the origin (node 8 in Figure 2.2 (b)). It holds for all x ∈ F`(�

ijk
h ), ` ∈ {1, . . . , 4},

that (n` · x)/hmod 2 = (i + j + k) mod 2. Since i + j + k is even by assumption,
we conclude again that Ξh

` ∩ �ijk
h defines the decomposition of �ijk

h into tetrahe-
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2.4 Robust Multiscale Coarsening

dra. The same arguments can be applied to show that for ` ∈ {1, . . . , 4}, the sets
ΞH
` :=

{
n` · x = 2zH, x ∈ Ω̄, z ∈ Z

}
form the family of planes which induce the

decomposition of the coarse blocks into tetrahedra. Since the families Ξh
` and ΞH

` ,
` = 1, . . . , 4, intersect in the origin and due to H = cfh for some cf ∈ N, the coarse
grid family of planes is a subset of the fine ones which shows that fine and coarse meshes
are aligned.

Having defined the coarse partition TH of Ω into tetrahedral elements, we need grid-

transfer operators RH , respectively R>H which connect fine and coarse grid. In the

following section we state requirements on the interpolation operators and the con-

struction of coarse basis functions of multiscale character.

2.4 Robust Multiscale Coarsening

For scalar elliptic PDEs of multiscale character, a rigorous analysis of two-level over-

lapping domain decomposition preconditioners has successfully been developed in [45],

including the construction of robust coarse spaces. Within the next chapters, we con-

struct robust coarse spaces for multiscale problems in linear elasticity. In this section,

we summarize the main properties of a robust coarse space and state the requirements

when applying the multiscale framework to linear elasticity. The motivation is based on

the increased kernel of the elasticity operator, which consists of the rigid body modes.

In section 2.3.2, we introduced the regular fine and coarse mesh which will be used in our

numerical tests. However, we allow a more general framework for the construction of the

basis functions, the assumptions on TH can be slightly weakened. In general, we require

that TH is a conforming tetrahedral coarse mesh, such that each T ∈ TH consists of a

union of fine elements τ ∈ Th with TH being shape-regular w.r.t. H := maxT∈TH HT ,

HT = diam(T ). Let ΣH and Σ̄H be the set of coarse nodes of TH in Ω, respectively in

Ω̄. For each coarse grid point xp ∈ Σ̄H , we introduce the set

ωp := interior
( ⋃
{T∈TH :xp∈T}

T

)
, (2.25)

given by the interior of the union of coarse elements which are attached to node xp.

We will construct coarse vector-valued basis functions whose values are determined on

the coarse grid points in Ω̄, given by the vertices of the coarse elements in TH . The
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coarse basis functions are constructed such that they can be represented in terms of

the vector-field of piecewise linear basis functions Vh on the fine grid. Here, we give an

abstract formulation of the coarse spaces which we construct within the next chapters.

It can be viewed as a generalization of the space of piecewise linear vector-fields on TH .

The coarse basis functions are constructed to be of the following form:

Assumption 2.4.1. (Abstract coarse space)

(C1) φp,Hm = (φp,Hm1 , . . . , φ
p,H
md )>, φp,Hmk (xq) = δpq δmk, p ∈ N̄H , k ∈ {1, . . . , d},

(C2) supp φp,Hm ⊂ ω̄p,

(C3) ‖φp,Hmk‖L∞(Ω) ≤ C, k ∈ {1, . . . , d},

(C4)
∑

p∈N̄H
φp,Hmk (x) = δmk, x ∈ Ω̄, k ∈ {1, . . . , d},

(C5) RBM(Ω̄) ⊂ span
{
φp,Hm : p ∈ N̄H , k ∈ {1, . . . , d}

}
.

The space RBM(Ω̄) of rigid body modes on Ω̄ is defined by

RBM(Ω̄) =


{
v ∈ [L2(Ω̄)]2 : v = a+ b

(
−x2

x1

)
, a ∈ R2, b ∈ R, x ∈ Ω̄

}
, d = 2,{

v ∈ [L2(Ω̄)]3 : v = a+ b× x, a, b ∈ R3, x ∈ Ω̄
}
, d = 3.

(2.26)

As the dependence on the domain Ω̄ is obvious, we may simply write RBM = RBM(Ω̄)

instead. Moreover, we write RBM(D) when restricting the set of rigid body modes

from Ω̄ to D ⊂ Ω̄.

Assumption (C4) implies that the rigid body translations are globally contained in the

coarse space. Assumption (C5) states an additional requirement that the coarse space

also contains the rigid body rotations.

Note that it is exactly the properties in Assumption 2.4.1 which we require to provide

the analysis carried out in chapter 6. Given the coarse basis functions, we introduce

the abstract coarse space by

VH := span
{
φp,Hm : p ∈ N̄H , m = 1, . . . , d

}
.

It is easy to verify that for all u ∈ [H1(Ω)]d, it holds ε(u) = 0 ⇔ u ∈ RBM. At least

away from the boundary ΓD where Dirichlet values are prescribed, the interpolation

operator should be constructed such that it preserves the rigid body modes. The

requirements can be summarized as follows:
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1. The coarse basis should capture fine-scale information in the sense that the coarse

space approximates the eigenfunctions corresponding to the smallest eigenvalues

of the underlying PDE.

2. The coarse basis functions should be locally supported to ensure a certain sparsity

pattern of the interpolation operator.

In the next chapters, we develop multiscale coarse spaces which satisfy the stated

properties sufficiently.

2.5 Poincaré- and Korn-Type Inequalities

In linear elasticity, the semi-norm induced by the symmetrized gradient ε plays an

important role. For any subset ω ⊂ Ω, we denote it by

|v|2ε,ω:=
∫
ω
ε(v) : ε(v) dx =

∫
ω

d∑
i,j=1

[εij(v)]2dx.

Of special interest is how this semi-norm can be related to | · |[H1(ω)]d , the semi-norm

on [H1(ω)]d. The relation is expressed in terms of Korn’s inequalities, a fundamental

tool in the analysis of the equations of linear elasticity. Introduced in the pioneering

works of Korn [72, 73], they have been subject of further objective research [40, 52].

Several works are concerned with evaluating the Korn constants for bounded domains

of specific shape [25, 50]. The existence of these bounds is not restricted to Lipschitz

domains. They are also investigated for Jones domains (cf. [62]) in [30] or star shaped

domains in [70, 71]. A short review can be found in [51].

In the following, we shortly summarize classical Poincaré- and Korn-type inequalities

for vector-valued functions. The proofs of the next two lemmas can be found for scalar

functions in [97]. The extension to vector-valued functions follows by a component-

wise application. The explicit dependence on the size of the domain is obtained using

a scaling argument [97, Section 3.4].

Lemma 2.5.1. (Scaled Poincaré inequality) Let D ⊂ Rd be a Lipschitz domain of
diameter H. Then, there is a constant C > 0 independent of H, such that ∀u ∈
[H1(D)]d with

∫
D u dx = 0,

‖u‖[L2(D)]d ≤ CH|u|[H1(D)]d .
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The lemma is a consequence of the Poincaré-inequality ([97], Lemma A.13) with van-

ishing mean value in each component and a scaling argument. If homogeneous Dirichlet

conditions are applied on at least a part of the boundary, the following lemma applies.

Lemma 2.5.2. (Scaled Friedrichs inequality) Let D ⊂ Rd be a Lipschitz domain with
diameter H. Furthermore, let Γ ⊂ ∂D with a positive (d−1)-dimensional measure and
a diameter of order H. Then, there exists a constant CΓ which only depends on Γ, but
not on H, such that ∀u ∈ [H1(D)]d with u |Γ= 0,

‖u‖[L2(D)]d ≤ CΓH|u|[H1(D)]d .

It is a consequence of the component-wise application of the Friedrichs inequality for

scalar functions ([97], Lemma A.14) and a scaling argument. For the proofs of Korn’s

inequalities, we refer to [40], [22] and the references therein.

Lemma 2.5.3. (Korn’s first inequality) Let D ⊂ Rd be a Lipschitz domain. Further-
more, let Γ ⊂ ∂D have a positive (d − 1)-dimensional measure. Then, there exists a
constant CD,Γ which only depends on the shape of D and Γ, such that ∀u ∈ [H1(D)]d

with u |Γ= 0,
|u|[H1(D)]d ≤ CD,Γ |u|ε,D.

Lemma 2.5.4. (Korn’s second inequality) Let D ⊂ Rd be a domain in Rd. Then, there
exists a constant CD such that ∀u ∈ [H1(D)]d,

‖u‖[H1(D)]d ≤ CD
(
|u|ε,D+‖u‖[L2(D)]d

)
.

Several equivalent versions of Korn’s inequality are studied in the literature. We know

that the estimate in Lemma 2.5.3 does not hold in [H1(D)]d for any rigid body rotation,

while for rigid body translations, both sides in the estimate vanish. We denote by

RBM(D) the space of rigid body modes on D. While Korn’s first inequality only holds

on a subspace of RBM(D), Korn’s second inequality applies to any u ∈ [H1(D)]d. The

following formulation of Korn’s inequality accentuates this feature.

Lemma 2.5.5. Let D ⊂ Rd be a Lipschitz domain. Then, there exists a constant CD
which only depends on the shape of D, such that ∀u ∈ [H1(D)]d,

min
q∈RBM(D)

|u− q|[H1(D)]d≤ CD|u|ε,D.
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An important consequence of Lemma 2.5.1 and Lemma 2.5.5 is summarized in the

Poincaré-Korn inequality:

Lemma 2.5.6. (Scaled Poincaré-Korn inequality) Let D ⊂ Rd be a bounded Lipschitz
domain of diameter H. Then, there exists a constant CD which only depends on the
shape of D, such that ∀u ∈ [H1(Ω)]d, there is r ∈ RBM(D) such that

‖u− r‖[L2(D)]d ≤ CH|u|ε,D.

Proof. Let r be the L2-projection of u onto the space of rigid body modes RBM(D).
Then, by definition, we obtain

‖u− r‖[L2(D)]d = min
q∈RBM(D)

‖u− q‖[L2(D)]d , (2.27)

or equivalently,
∫
D(u− r) · q dx = 0 for all q ∈ RBM(D). Plugging in the rigid body

translations qm = (qm1, qm2, qm3)> ∈ RBM(D), qmk = δmk, m = 1, . . . , d, we obtain∫
D
u− r dx = 0.

Now, let r̂ ∈ RBM(D) be such that r̂ ∈ arg minq∈RBM(D)|u− q|[H1(D)]d . By adding a
constant vector to r̂, we may assume that

∫
D u− r̂ dx = 0. Using equation (2.27), we

obtain

‖u− r‖[L2(D)]d ≤ ‖u− r̂‖[L2(D)]d

≤ CH|u− r̂|[H1(D)]d

= CH min
q∈RBM(D)

|u− q|[H1(D)]d

≤ CH|u|ε,D ,

where we used Lemma 2.5.1, the definition of r̂ and Lemma 2.5.5.

A similar result can be proven for vector-fields which have vanishing values on a part

of the boundary. Therefore, we have to apply Friedrichs inequality and Korn’s first

inequality to obtain the following lemma.

Lemma 2.5.7. (Scaled Friedrichs-Korn inequality) Let D ⊂ Rd be a bounded Lipschitz
domain of diameter H. Furthermore, let Γ ⊂ ∂D have a positive (d − 1)-dimensional
measure and a diameter of order H. Then, there exists a constant CD,Γ independent
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of H, which only depends on the shape of D and Γ, such that ∀u ∈ [H1(D)]d with
u |Γ= 0,

‖u‖[L2(D)]d ≤ CD,ΓH|u|ε,D.

Proof. The assertion follows directly from Lemma 2.5.2 and Lemma 2.5.3.

2.6 Notations

Throughout the thesis, we assume Ω ⊂ Rd to be a bounded, polygonal (d = 2) or

polyhedral (d = 3) Lipschitz domain. Moreover, Ω shall admit a decomposition into

fine and coarse meshes Th and TH , respectively, consisting of triangles (d = 2) or

tetrahedra (d = 3). The coarse mesh TH is assumed to be formed by a union of fine

elements τ ∈ Th.

List of Selected Symbols

np, Np number of grid points of Th and TH , respectively
Vh space of vector-valued piecewise linear basis functions {ϕj,hk } on Th
VH space of coarse vector-valued basis functions on TH
Σh(D) set of fine nodes xj ∈ Th ∩D, D ⊂ Ω̄
ΣH(D) set of coarse nodes xp ∈ TH ∩D, D ⊂ Ω̄
Σ̄h set of fine nodes xj ∈ Σh(Ω̄)
Σ̄H set of coarse nodes xp ∈ ΣH(Ω̄)
Nh(D) index-set of nodes in Σh(D)
NH(D) index-set of nodes in ΣH(D)
N̄h index-set of nodes in Σ̄h

N̄H index-set of nodes in Σ̄H

nd, Nd number of degrees of freedom of Vh and VH , respectively
(nd = dnp, Nd = dNp)

Dh index-set of fine degrees of freedom in Vh
DH index-set of coarse degrees of freedom in VH
Th(D) restriction of Th to D ⊂ Ω̄
TH(D) restriction of TH to D ⊂ Ω̄
Dh(D) index-set (local numbering) of fine degrees of freedom in Vh(D)
DH(D) index-set (local numbering) of coarse degrees of freedom in VH(D)
ω̄p union of coarse elements T ∈ TH which share the node xp ∈ Σ̄H

To keep the indication of fine and coarse degrees of freedoms of Vh and VH simpler,

we use the following convention. To indicate degrees of freedom in Dh, we use the
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tuples (i, k) or (j, l), while the tuples (p,m) or (q, r) are used to indicate coarse degrees

of freedom in DH . The first entry refers to the vertex with index 1 ≤ i, j ≤ np,

1 ≤ p, q ≤ Np and the second index to the unknown k, l,m, r ∈ {1, . . . , d} of the vector-

fields in Rd. Thereby, we may always interpret such a tuple as an integer value, i.e. we

are given bijective mappings {1, . . . , np} × {1, . . . , d} → {1, . . . , nd} and {1, . . . , Np} ×
{1, . . . , d} → {1, . . . , Nd} which uniquely assign a integer value.
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3

Multiscale Finite Elements with

Linear Boundary Conditions

Multiscale finite element methods (MsFEMs) have been widely used when solving el-

liptic PDEs with highly oscillating coefficients on multiple scales. The idea of the

multiscale finite element method is to capture small scale features of the solution on

coarser grid-levels without accurately resolving all the small scale components. Beyond

their application in the upscaling framework [34, 53, 54, 55], they are often utilized

for the construction of two-level overlapping domain decomposition preconditioners, of

main interest are problems where coefficient variations appear on a very small scale

such that they cannot be resolved by a coarse grid.

In [45] and [46], coefficient independent convergence rates are proven for a large class

of heterogeneous problems for scalar elliptic PDEs, without the requirement that co-

efficient jumps are resolved by a coarse mesh. Using a scalar multiscale finite element

basis with linear boundary conditions, robustness is guaranteed if coefficient variations

occur in the interior of coarse elements.

In this chapter we extend the linear multiscale finite element method, introduced for

scalar elliptic PDEs by Hou and Wu [53], to the system of anisotropic linear elasticity.

Although the capability of the adaption of multiscale finite elements to heterogeneous

elasticity problems is often referred, to the authors knowledge, their application to the

3D system of linear elasticity has not yet taken place outside the scope of this thesis

(see [19] and [17]). However, an application of an adaptive local-global multiscale finite

element method to a 2D linear elasticity problem is given in [81]. There, an extension
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of the multiscale finite volume element method presented in [31] for two-phase flow

problems is proposed. This method iteratively adapts the current multiscale basis

functions by combining an oversampling approach locally and a coarse scale simulation

globally. In [81], applications to a structural optimization problem in 2D linear elasticity

are presented.

The application here, motivated from the multiscale analysis of highly heterogeneous

composite materials, is twofold. Resolving the heterogeneities on the finest scale, we

utilize the linear multiscale-FE basis for the construction of robust coarse spaces in the

context of two-level overlapping domain decomposition preconditioners. Furthermore,

we numerically observe the properties of the multiscale-FE basis in an upscaling frame-

work. Therefore, we present experimental results showing the approximation errors

of the vector-valued linear multiscale finite element coarse space w.r.t. the fine-scale

solution.

The outline of the chapter is as follows. Referring to the given setting and notations in

section 3.1, we introduce the multiscale finite element basis with vector-valued linear

boundary conditions in section 3.2. Details on the construction are provided in section

3.3. Moreover, we estimate the computational cost of the method in section 3.4 and

compare the complexity with that of the scalar method in [53]. Furthermore, we study

the properties of the linear multiscale finite element basis in section 3.5 and observe

that it preserves the rigid body modes. The interpolation operator which is formed by

the basis functions is defined in section 3.6. Section 3.7 is devoted to numerical results

in 3D, a short discussion finalizes the chapter in section 3.8.

3.1 Preliminaries

Being in the setting which is stated in chapter 2, we use the notations of fine and

coarse meshes, nodes and degrees of freedom as summarized in section 2.6. Details on

the discretization are provided in section 2.2, the abstract two-level additive Schwarz

method is introduced before in section 2.3.1.

44



3.2 Multiscale Coarsening: Linear Boundary Conditions

3.2 Multiscale Coarsening: Linear Boundary Conditions

We construct a multiscale-FE coarse space VH = VMsL as a subspace of the finite

element space Vh of the piecewise linear vector-valued basis functions (see equation

(2.10)) on the fine triangulation Th. That is, the coarse space basis functions are

represented by their values at the fine-grid DOFs. For p ∈ N̄H , recall the set

ωp = interior
( ⋃
{T∈TH :xp∈T}

T

)
,

introduced before in section 2.4, which consists of the interior of the union of the coarse

elements which are attached to xp ∈ Σ̄H . For any m ∈ {1, . . . , d}, we denote the vector-

valued linear coarse nodal basis function corresponding to p ∈ N̄H by φp,Lin
m : ωp → Rd.

More precisely, φp,Lin
m is linear in T ∈ TH and it holds φp,Lin

mk (xq) = δpqδmk, x
q ∈ Σ̄H ,

k ∈ {1, . . . , d}. For p ∈ N̄H and m ∈ {1, . . . , d} we construct a vector-valued multiscale-

FE basis function φp,MsL
m : ωp → Rd. The construction is done separately for each

T ∈ TH , such that it holds

div(C : ε(φp,MsL
m )) = 0 in T, T ⊂ ω̄p, (3.1)

φp,MsL
m = φp,Lin

m on ∂T, T ⊂ ω̄p. (3.2)

Equation (3.1) and (3.2) have to be understood in the sense that they hold for φp,MsL
m

w.r.t. the discretization given by the fine grid. The vector-field φp,MsL
m is PDE-harmonic

in T ⊂ ω̄p. On ∂T , linear boundary conditions are imposed in the m-th component of

the vector-field and zero boundary conditions in the components j ∈ {1, . . . , d} \ {m}.

The imposed boundary values on ∂T ensure that the linear multiscale-FE basis function

is continuous along the faces of the coarse elements. That is, it holds φp,MsL
m (x) |T ′=

φp,MsL
m (x) |T= φp,Lin

m (x) |T for all x ∈ ∂T ∩∂T ′, the corresponding multiscale-FE coarse

space

VMsL = span
{
φp,MsL
m : p ∈ N̄H , m ∈ {1, . . . , d}

}
(3.3)

is conforming. Note that the support ω̄p, p ∈ N̄H of the coarse basis function φp,MsL
m is

the same for each function φp,MsL
m ,m ∈ {1, . . . , d}.
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3.3 Construction of the Linear Multiscale-FE Basis

The element-wise construction: Let T ∈ TH , let xp ∈ ΣH(T ) be a vertex of T

and let m ∈ {1, . . . , d}. By construction, T = ∪{τi}nTi=1 consists of a union of elements

in Th. Let Vh(T ) := {ϕh ∈ Vh : supp(ϕh) ⊂ T} and Vh|T := {ϕh|T : ϕh ∈ Vh} denotes

the restriction onto T of functions in Vh. Furthermore, we denote the restriction of the

bilinear form in (2.8) to T ∈ TH by aT ( · , · ) : Vh|T × Vh|T → R. Following the BVP in

(3.1) and (3.2), we want to find φp,MsL
m |T∈ Vh|T , with φp,MsL

m = φp,Lin
m on ∂T , such that

aT (φp,MsL
m ,vh) :=

∫
T

(
C : ε(φp,MsL

m )
)

: ε(vh) dx = 0, ∀vh ∈ Vh(T ).

The finite element discretization leads to a local linear system ATΦp,T
m = fp,Tm . The

system can be formed following the construction provided in section 2.2.3, with Ω̄

being replaced by T , and ΓDi , i = 1, . . . , d, is replaced by ∂T . The coefficient vector

Φp,T
m defines the solution to the problem in equation (3.1) and (3.2), discretized on

Vh|T . It is given by φp,MsL
m |T =

∑
(j,k)∈Dh(Ω̄)|T

Φp,T
m,(j,k)ϕ

j,h
k |T . Here, Dh(Ω̄)|T denotes

the restriction onto T of the global degrees of freedom in Dh(Ω̄). Note that the table

AE element formed in the element agglomeration process described in section 2.3.2

provides the required information of the fine elements contained in T = ∪{τi}nTi=1.

Construction of the coarse basis: Summarized, the procedure for the construction

of the linear multiscale-FE basis is as follows:

1. For each T ∈ TH , the following applies

• for each p ∈ NH(T ) and m ∈ {1, . . . , d}, compute the solution φp,MsL
m |T of

the BVP given in (3.1) and (3.2). Therefore, follow the procedure described

above.

2. For each p ∈ N̄H and m ∈ {1, . . . , d}, the following applies

• assemble φp,MsL
m : ωp → Rd from the computed vector-fields φp,MsL

m |T : T →
Rd for which T ⊂ ω̄p shares the vertex xp (see (2.25)). Therefore, assemble

Φp
m ∈ Rnd by

Φp
m,(j,k) =

{
Φp,T
m,(j,k) if xj ∈ Σh(T ), T ⊂ ω̄p,

0 otherwise.
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The given vector defines the rows in the matrix R̄ as given in equation (3.6).

Note that since the basis function φp,MsL
m is continuous along the element

boundaries, the vector Φp
m is well-defined.

3.4 Complexity Estimate

In the following, we estimate the complexity of the construction of the linear multiscale

finite element basis for linear elasticity. Let e be the number of vertices of T . Computing

the basis function φp,MsL
m |T in equation (3.1) requires the solution of a sparse linear

system with O
(
d (Hh )d

)
unknowns for any T ∈ TH , q ∈ NH(T ) and m ∈ {1, . . . , d}.

Using a solver with optimal order complexity, i.e. the computational cost per unknown

is O(1), the construction of the multiscale-FE basis requires the solution of O(d eNp)

linear systems, each of which has computational cost of order O
(
d (Hh )d

)
. Thus, the

overall complexity can be estimated to O(d2 e np) which is proportional to the number

of nodes np on the fine grid Th.

Complexity of the Scalar Multiscale-FE Basis

Here, we shortly recapitulate the linear multiscale-FE method for scalar elliptic PDEs

and provide a complexity estimate which we compare with the complexity of the vector-

valued multiscale-FE basis for linear elasticity. A detailed and complete introduction

into multiscale-FE methods for scalar PDEs can be found in [34]. We consider the

scalar elliptic PDE −div(α∇u) = f in Ω, where α = α(x) > 0 is a highly varying field

in Ω. For any p ∈ N̄H , the scalar multiscale finite element basis function φp,msl : ωp → R
is defined elementwise, i.e. for each T ∈ TH , by

φp,msl |T=

{
φp,T if xp ∈ ΣH(T ),
0 otherwise,

where φp,T : T → R is the α-harmonic extension of boundary data φp,lin : ωp → R on

∂T, T ∈ TH with φp,lin being linear in T ∈ TH and φp,lin(xq) = δpq, q ∈ N̄H .

The complexity of the construction of the scalar multiscale finite element basis can be

estimated as follows. For any T ∈ TH and xp ∈ ΣH(T ), computing the basis function

φp,msl |T requires the solution of a linear system with O
(
(Hh )d

)
equations. Using a

solver for the linear system with computational cost scaling linearly with the number
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of unknowns, the overall complexity of computing the scalar multiscale-FE basis can

be estimated to O
(
eNp (Hh )d

)
= O(e np).

Comparing the complexity estimates for the scalar and elasticity problems, constructing

the multiscale finite element basis for linear elasticity is more expensive by a factor of

at least d2 than the scalar multiscale basis. This factor appears naturally due to the

larger number of degrees of freedom on the fine and the coarse mesh, respectively. Also,

using tetrahedral elements (e = 4) allows a more efficient construction than hexahedral

elements (e = 8).

In section 3.5 we see that, due to the PDE-harmonic extension of the vector-valued

linear boundary conditions, the space VMsL contains the rigid body modes. Using the

property that the translations are preserved (see equation (3.5)) a slight reduction of

the setup cost to O(d2(e− 1)np) can be achieved.

3.5 Properties

Indeed, assuming constant material coefficients in the PDE, the space VMsL recovers

exactly the linear vector valued basis functions on the coarse grid TH . For the gen-

eral case of varying coefficients, the following observation shows that the coarse space

preserves the rigid body translations, separately for each unknown.

Global Translations: Due to the prescribed linear boundary conditions in (3.2), for

each m ∈ {1, . . . , d} and T ∈ TH , it holds

∑
p∈NH(T )

φp,MsL
mk = δmk on ∂T, k ∈ {1, . . . , d}. (3.4)

The PDE-harmonic extension of the boundary data in (3.4) to the interior of T accord-

ing to (3.1), together with the uniqueness of the solution (by Lemma 2.2.1), gives

∑
p∈NH(T )

φp,MsL
mk = δmk in T, k ∈ {1, . . . , d}, (3.5)
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separately for each coarse element. Furthermore, this local argument can be extended

to the global domain and it holds

∑
p∈N̄H

φp,MsL
mk = δmk in Ω̄, k ∈ {1, . . . , d}.

Thus, the translations are contained in the coarse space VMsL, separately for each

spatial component m ∈ {1, . . . , d}.

Global Rotations: Next, we show representatively for d = 3 that the introduced

space VMsL contains also the three rigid body rotations.

Lemma 3.5.1. Let VMsL be the coarse space defined in (3.3) for d = 3. Then, VMsL

contains the six rigid body modes, i.e. it holds

RBM(Ω̄) ⊂ VMsL.

Proof. We have to show that the rotations around the m-th axis, 1m × x ∈ VMsL,
m ∈ {1, 2, 3}, where 1m ∈ R3, 1mk = δmk, k ∈ {1, 2, 3}. Here, we do not distinguish in
our notation between a point x ∈ R3 and the identity mapping x : Ω̄ → R3, x 7→ x,
assuming that this should not lead to any confusion. For each q ∈ N̄H , m ∈ {1, 2, 3},
we define the vector βqm ∈ R3,

βqmk :=
3∑

l,n=1

εknl δmn x
q
l ,

where εknl denotes the Levi-Civita-tensor [77], i.e. ε123 = ε312 = ε231 = 1, ε321 = ε213 =
ε132 = −1 and εkml = 0 otherwise. We have x =

∑
q∈N̄H

xqφq,lin(x) in Ω̄, where φq,lin(x)
is the scalar piecewise linear basis on TH with φq,lin(xp) = δqp. In what follows, we first
assume x ∈ ∂T, T ∈ TH . It holds

1m × x =
∑
q∈N̄H

(1m × xq)φq,lin(x) on ∂T

=
∑
q∈N̄H

3∑
k=1

βqmk φ
q,Lin
k (x) on ∂T

=
∑
q∈N̄H

3∑
k=1

βqmkφ
q,MsL
k (x) on ∂T.
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The last step follows due to (3.2). Thus, along the boundaries of the coarse elements
T ∈ TH , we can represent the rotation around the m-th axis as a linear combination of
basis functions of VMsL. Using the argument which we used to validate equation (3.5),
together with the uniqueness of the solution, we have

1m × x =
∑
q∈N̄H

3∑
s=1

βqmsφ
q,MsL
s (x) in T,

locally for each T ∈ TH and thus, also globally in Ω̄. The uniqueness argument holds
here since, by equation (2.26), the vector field 1m × x is in the kernel of the elasticity
operator and thus, it is a solution of div(C : ε) = 0.

Note that we concluded that from
∑

q φ
q,MsL
m ∈ VMsL, m ∈ {1, 2, 3}, it follows

∑
q φ

q,MsL
m ×

1m ∈ VMsL. Indeed, this only holds for the sum of the basis functions, but not separately

for each basis function. In general, we have φ ∈ VMsL 6⇒ φ× 1m ∈ VMsL.

3.6 Interpolation Operator

In the following, we form the interpolation operator which is implicitly defined by the

linear multiscale-FE coarse basis. We refer to the summary of notations in section 2.6

to recall notations of fine and coarse nodes and related degrees of freedom. We use the

fine scale representation of a coarse basis function φp,MsL
m to define the interpolation

operator, respectively the restriction operator. Each multiscale-FE basis function omits

the representation

φp,MsL
m =

d∑
k=1

np∑
i=1

r̄(p,m)(i,k)ϕ
i,h
k . (3.6)

This representation defines the matrix R̄ ∈ RNd×nd which contains the coefficient vec-

tors, representing a coarse basis function in terms of the fine scale basis, by rows. Note

that R̄ does not define the final restriction operator used in the additive Schwarz set-

ting. Assuming a numbering of the degrees of freedom by unknowns, the matrix R̄

admits the block-decomposition

R̄ =
(
R̄
IJ)d

I,J=1
(3.7)
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where R̄IJ ∈ RNp×np . Each block satisfies

Np∑
p=1

R̄
IJ

(p,I)(j,J) = δIJ ∀j ∈ {1, . . . , np}.

That is, the column sum of the diagonal-blocks is one, while the off-diagonals have

column-sum zero. Note that, this is only true for the sum of the columns of each

block. In general, this does not hold for the components itself. For I 6= J , we have

R̄IJ (p,I)(j,J) = 0 for all p ∈ {1, . . . , Np} and j ∈ {1, . . . , np} if and only if the underlying

material is homogeneous. In this case, where no coefficient jumps occur, the multiscale-

FE basis functions exactly recover the vector-valued piecewise linear basis functions on

the coarse grid, separately for each unknown. By construction, each row of the matrix

R̄ contains the fine-scale representation of a basis function of VMsL. The restriction

operator RH , which we use in the additive Schwarz algorithm is then constructed as a

submatrix of R̄, which contains only the rows corresponding to coarse basis functions of

VMsL
0 . Thus, it contains the rows related to coarse basis functions which vanish on the

global Dirichlet boundaries ΓDi , i = 1, . . . , d. Denoting the entries of RH by (rp′j′)p′,j′ ,

we define

rp′j′ = R̄p′j′ , p′ ∈ DH(Ω∗), j′ ∈ Dh(Ω̄),

where DH(Ω∗), Ω∗ := Ω̄\(∪iΓDi) denotes the coarse interior degrees of freedom in Ω∗.

The matrix representing the interpolation from the coarse space VMsL
0 to the fine space

Vh0 is simply given by the adjoint operator R>H . The entries in the corresponding coarse

stiffness matrix are determined by

AH(p,m)(q,r) =
∫

Ω
ε̃(φp,MsL

m )> C̃ ε̃(φq,MsL
r ) dx

=
d∑

k,l=1

nh∑
i,j=1

r(p,m),(i,k)

∫
Ω
ε̃(ϕi,hk )>C̃ε̃(ϕj,hl ) dx r(q,r),(j,l) (3.8)

and the coarse stiffness matrix can be computed by the Galerkin product AH =

RHAR
>
H .
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3.7 Numerical Results

In this section, we give a series of examples involving binary media, i.e. exactly two

media are comprised in the composite, showing the performance of the linear multiscale-

FE preconditioner under variations of the mesh parameters as well as the material

coefficients. In addition to that, we measure the approximation error of the multiscale

coarse space to a fine scale solution. In each experiment, we compare the multiscale

coarse space with a standard linear coarse space. We perform our simulations on the

domain Ω̄ = [0, 1] × [0, 1] × [0, L], L > 0, with fine and coarse mesh as introduced in

section 2.3.2. We consider two variants of heterogeneous media. First, we assume that

the discontinuities are isolated, such that the material jumps occur only in the interior

of coarse elements. Figure 3.1 shows such a binary medium with one inclusion inside

each coarse tetrahedral element. In a second set of experiments, we do not impose

any restriction on the position of the small inclusions. More precisely, we generate

a binary medium whose inclusions are uniformly distributed. An example of such a

medium is given in Figure 3.2, the structure is generated with GeoDict [43]. In the

Figure 3.1: Medium 1: binary composite; matrix material (grey) and 1× 1× 1 inclusions
(red); discretization in 12 × 12 × 12 voxels; each voxel is decomposed in 5 tetrahedra; 3D
view (left) and 2D projection with fine mesh, showing the position of the inclusions (right)

following, we refer to the binary medium where inclusions are isolated in the interior

of coarse elements as medium 1, while the medium with the random distribution of

the inclusions is referred to as medium 2. For both media, the Young’s modulus E

as well as Poisson ratio ν for matrix material and inclusions are given in Table 3.1.

The contrast ∆E := Einc/Emat in the Young’s modulus may vary over several orders of

magnitude.
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Figure 3.2: Medium 2: binary composite: discretization in 240× 240× 12 voxels; matrix
material (grey) and 1× 1× 1 inclusions (red) uniformly distributed; 3D view (left) and 2D
projection (right)

Young’s modulus Poisson ratio

Emat = 1 MPa νmat = 0.2
Einc = ∆EEmat νinc = 0.2

Table 3.1: Young’s Modulus and Poisson ratio of matrix material and inclusions

3.7.1 Coarse Space Robustness

We choose the overlapping subdomains such that they coincide with the supports ω̄p,

p ∈ N̄H of the coarse basis functions. Then, {Ωi, i = 1, . . . , N} = {ωp, p ∈ N̄H}
defines an overlapping covering of Ω̄ with overlap width δ = O(H), which is often

referred to as generous overlap. We perform tests observing the performance of the

two-level additive Schwarz preconditioner using vector-valued linear and multiscale-

FE coarsening. We show condition numbers as well as iteration numbers of the PCG

algorithm. The stopping criterion is to reduce the preconditioned initial residual by six

orders of magnitude, i.e. ‖r‖M−1
AS
≤ 10−6‖r0‖M−1

AS
. The estimated condition numbers of

κ(M−1
ASA) are computed based on the three term recurrence which is implicitly formed

by the coefficients within the PCG algorithm (cf. [89]).

In a first experiment, we test the robustness of the method on medium 1 for fixed mesh

parameters under the variation of the contrast ∆E . The Tables 3.2 and 3.3 show the

corresponding condition numbers and iteration numbers having stiff (∆E > 1) and soft

(∆E < 1) inclusions. In the former case, robustness is achieved only for the multiscale
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finite element coarse space, while linear coarsening leads to non-uniform convergence

results. In the latter case, both coarse spaces are bounded in energy, an upper natural

Lin MsL
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

100 13 4.4 13 4.4
103 21 18.7 13 4.4
106 25 109.0 13 4.4
109 25 109.0 13 4.4

Table 3.2: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale-FE coarsening for
different contrasts ∆E ≥ 1

Lin MsL
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

10−0 13 4.4 13 4.4
10−3 13 4.4 13 4.4
10−6 13 4.4 13 4.4
10−9 13 4.4 13 4.4

Table 3.3: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale-FE coarsening for
different contrasts ∆E ≤ 1

bound is evidently given for ∆E = 1. Linear coarse space and multiscale-FE coarse

space perform equally well.

In Experiment 2, performed on medium 1, we measure the condition numbers and itera-

tion numbers under variation of the mesh parameters, while the coefficients of the PDE

remain fixed. We observe similar results as in Experiment 1. Table 3.4 shows iteration

and condition numbers for linear and multiscale-FE coarsening. For the linear coarse

space, the condition number shows a linear dependence on the number of subdomains,

while the condition number for multiscale coarsening is uniformly bounded.

To summarize, Experiment 1 and 2 show mesh and coefficient independent iteration

and condition numbers for the multiscale-FE coarse space when the inclusions are

isolated. In a second part, we test the performance of the method when small inclusions

are allowed to touch coarse element boundaries. More precisely, we perform the same
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Lin MsL
h nit κ(M−1

ASA) nit κ(M−1
ASA)

1/60 14 7.9 13 4.4
1/120 17 28.1 13 4.4
1/180 21 61.8 13 4.4
1/240 25 109.0 13 4.4

Table 3.4: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 2;

geometry: 1/h x 1/h x H/h; H = 12h; linear and multiscale-FE coarsening for different h;
contrast: ∆E = 106

experiments again and replace medium 1 by medium 2. We denote them by Experiment

3 and Experiment 4. As we already know, we cannot expect coefficient independent

convergence rates when the inclusions in the binary medium are such that they cross

coarse element boundaries. This is what we see in the Tables 3.5 and 3.6 for Experiment

3: For fixed mesh parameters under the variation of the contrast ∆E , they show the

corresponding condition numbers and iteration numbers having stiff (∆E > 1) and soft

(∆E < 1) inclusions. Robustness is only achieved in the latter case where soft inclusions

are considered. For stiff inclusions, both coarsening strategies lead to iteration numbers

and condition numbers which depend on the contrast in the medium. We observe that

in comparison with linear coarsening, the linear multiscale-FE coarse space performs

not noticeably better.

Lin MsL
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

100 13 4.4 13 4.4
103 27 19.3 18 8.4
106 66 414 78 373
109 68 427 75 465

Table 3.5: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 3;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale-FE coarsening for
different contrasts ∆E ≥ 1

In Experiment 4, we measure the condition numbers and iteration numbers under vari-

ation of the mesh parameters for medium 2. The PDE coefficients remain fixed. The

results agree with the observations in Experiment 3. Table 3.7 shows iteration and con-

dition numbers for linear and multiscale-FE coarsening. Again, for each coarse space,
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Lin MsL
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

10−0 13 4.4 13 4.4
10−3 13 4.4 13 4.4
10−6 13 4.4 13 4.4
10−9 13 4.4 13 4.4

Table 3.6: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 3;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and multiscale-FE coarsening for
different contrasts ∆E ≤ 1

Lin MsL
h nit κ(M−1

ASA) nit κ(M−1
ASA)

1/60 26 39.2 27 37.7
1/120 48 154 43 109
1/180 52 261 62 230
1/240 66 414 78 373

Table 3.7: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 4;

geometry: 1/h x 1/h x H/h; H = 12h; linear and multiscale-FE coarsening for different h;
contrast: ∆E = 106

iteration numbers as well as condition numbers grow with the number of subdomains.

The multiscale-FE coarse space performs only slightly better than the linear coarse

space.

3.7.2 Coarse Space Approximation

In a second set of experiments, we test the approximation properties of the multiscale-

FE coarse space. The domain Ω̄ = [0, 1]× [0, 1]× [0, L] contains again a binary medium

with small inclusions. Again, we distinguish between medium 1 (Figure 3.1: inclusions

in the interior of each coarse element) and medium 2 (Figure 3.2: randomly distributed

inclusions). We solve the system −divσ(u) = f in Ω̄ \ ΓD with a constant volume

force f = (1, 1, 0)> in the x- and y-component. Homogeneous Dirichlet and Neumann

boundary conditions are applied on the boundary ∂Ω. Dirichlet conditions in the

first unknown are given on Γ1 = {(x, y, z)> ∈ ∂Ω : x = 0, x = 1}, in the second

unknown on Γ2 = {(x, y, z)> ∈ ∂Ω : y = 0, y = 1}, and in the third unknown on

Γ3 = {(x, y, z)> ∈ ∂Ω : z = 0, z = L}.
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Let uh denote the approximate solution on a fine mesh Th. With the bilinear form

defined in (2.9) and the space Vh0 of piecewise linear vector-valued basis functions as

defined in (2.11), it holds a(uh,vh) = F (vh) ∀vh ∈ Vh0 . This formulation leads to

the linear system Auh = fh. We denote by VMsL
0 the space of multiscale finite ele-

ment functions on the coarse triangulation TH which vanish on the Dirichlet bound-

ary ΓD. The multiscale finite element solution is given by uMsL ∈ VMsL
0 , such that

a(uMsL,vH) = F (vH)∀vH ∈ VMsL
0 . Using the fine-scale representation of a multiscale-

FE basis function as defined in (3.6), the equivalent linear system reads AHuH = fH .

Here, AH = RHAR
>
H is the coarse stiffness matrix defined in equation (3.8), fH = RHfh

and uMsL = R>HuH is the vector whose entries define the fine-scale representation of

uMsL in terms of the basis of Vh0 .

For fixed mesh parameters h and H, under the variation of the contrast ∆E , Table 3.8

and 3.9 show the relative approximation errors ‖uh − uc‖ in l2 and in the “energy”

norm for linear (c=Lin) and linear multiscale-FE (c=MsL) coarse space for medium 1

and medium 2, respectively. The fine solution uh is computed approximately within

‖uh−uc‖l2
‖uh‖l2

‖uh−uc‖A
‖uh‖A

∆E Lin MsL Lin MsL
10−9 8.63 · 10−3 8.11 · 10−3 8.92 · 10−2 8.54 · 10−2

10−6 8.63 · 10−3 8.11 · 10−3 8.92 · 10−2 8.54 · 10−2

10−3 8.63 · 10−3 8.11 · 10−3 8.91 · 10−2 8.54 · 10−2

100 8.09 · 10−3 8.09 · 10−3 8.53 · 10−2 8.53 · 10−2

103 7.39 · 10−1 9.42 · 10−3 8.60 · 10−1 9.44 · 10−2

106 9.97 · 10−1 9.44 · 10−3 9.99 · 10−1 9.45 · 10−2

109 9.97 · 10−1 9.44 · 10−3 9.99 · 10−1 9.45 · 10−2

Table 3.8: Approximation of fine-scale solution by linear and multiscale finite element
coarse space for medium 1; geometry: 1/h x 1/h x H/h, h = 1/120, H = 12h

the PCG algorithm by reducing the initial preconditioned residual by 12 orders of

magnitude. The coarse solution uH is computed exactly using a sparse direct solver

for the coarse linear system. For medium 1, the multiscale-FE coarse space gives stable

approximation errors, only slightly varying with the contrast. This is not the case

anymore for the linear coarse space. For ∆E � 1, the fine-scale solution is contained

in a space which is nearly A-orthogonal to the space spanned by the linear coarse
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basis functions. Note that this is in agreement with the results presented in Table 3.4,

where the condition number grows almost linearly with the number of subdomains. For

∆E → ∞, the coarse space does not correct the error anymore, the two-level method

tends to perform as the one-level method. Considering medium 2, both coarse spaces

only show a poor approximation of the fine-scale solution for high contrasts ∆E � 1.

We can summarize the obtained results as follows. Assuming that the discontinuities

‖uh−uc‖l2
‖uh‖l2

‖uh−uc‖A
‖uh‖A

∆E Lin MsL Lin MsL
10−9 8.60 · 10−3 8.25 · 10−3 8.90 · 10−2 8.65 · 10−2

10−6 8.60 · 10−3 8.25 · 10−3 8.90 · 10−2 8.65 · 10−2

10−3 8.60 · 10−3 8.25 · 10−3 8.90 · 10−2 8.65 · 10−2

100 8.09 · 10−3 8.09 · 10−3 8.53 · 10−2 8.53 · 10−2

103 7.01 · 10−1 3.12 · 10−1 8.37 · 10−1 5.58 · 10−1

106 9.99 · 10−1 9.95 · 10−1 1.00 · 10−0 9.97 · 10−1

109 1.00 · 10−0 9.99 · 10−1 1.00 · 10−0 9.99 · 10−1

Table 3.9: Approximation of fine-scale solution by linear and multiscale finite element
coarse space for medium 2; geometry: 1/h x 1/h x H/h, h = 1/120, H = 12h

are isolated in the interior of coarse elements, the energy of a multiscale-FE basis

function is bounded independently of the Young’s modulus of the inclusions. Our

experiments show uniform condition number bounds w.r.t. both, coefficient variations

in the Young’s modulus and the mesh size. When the distribution of the inclusions is

such that they cross coarse element boundaries, the linear multiscale-FE basis function

cannot capture the smallest eigenvalues associated to those inclusions which touch the

coarse element boundary. The energy of the basis function depends on the Young’s

modulus of the inclusion. As the experiments show, no uniform iteration number and

condition number bounds are achieved. For the considered medium with randomly

distributed inclusions, the multiscale coarse space does not perform noticeably better

than the linear coarse space.
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3.8 Conclusions

In this chapter, we extend the linear multiscale finite element method to the PDE

system of linear elasticity. The linear boundary conditions along coarse elements and

the PDE-harmonic extension to their interior guarantee the following properties of the

linear multiscale-FE basis:

1. Given the local boundary conditions, the energy of a multiscale-FE basis function

is minimal within each coarse element (see also (6.17) for more details).

2. The rigid body translations are contained in the coarse space.

3. The rigid body rotations are contained in the coarse space.

4. Assuming homogeneous material coefficients, the multiscale-FE basis coincides

with the vector-valued piecewise linear basis on the coarse triangulation.

The costs of constructing the linear multiscale-FE basis is of order d2 more expensive

for linear elasticity than for scalar elliptic PDEs. This factor appears naturally due to

the larger number of degrees of freedom on the fine and the coarse mesh, respectively.

We utilize the multiscale basis for the construction of two-level additive Schwarz pre-

conditioners. When the discontinuities are isolated in the interior of coarse elements,

our experiments show uniform condition number bounds w.r.t. both, coefficient vari-

ations in the Young’s modulus and the mesh size. Along coarse element boundaries,

the linear multiscale-FE basis is not PDE-harmonic. When inclusions cross a coarse

element boundary, the prescribed linear boundary conditions lead to an increase in the

energy of the multiscale basis function. The magnitude of the energy grows with the

Young’s modulus of the inclusions which cross the element boundaries. The condition

number is not uniformly bounded.

Using the linear multiscale-FE coarse space in an upscaling framework, we also present

experimental results in which we use the multiscale coarse space to approximate the

fine-scale solution. When the inclusions are randomly distributed, the multiscale coarse

space suffers from the inclusions which touch the coarse element boundaries and per-

forms very similar to the linear coarse space. For the isolated inclusions, almost uni-

form approximation properties, independent of the contrast in the Young’s modulus,

are achieved.
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However, along the boundaries of the coarse elements, the small scale heterogeneities

cannot be captured accurately by the presented multiscale-FE coarse space with linear

boundary conditions. In case that material jumps occur through coarse element bound-

aries, the coarse space needs to be adapted. A possible extension can be given using

oscillatory boundary conditions, similar to the ones in the scalar case (cf. [45, 53]), or

energy minimizing methods (cf. [98, 110]). Such methods are studied in the following

chapters.

The vector-valued character and the increased kernel of the elasticity system states an

important difference to scalar elliptic PDEs, which can be seen also in the approaches

presented in [32, 41, 42, 108], where generalized eigenvalue problems are solved. As

mentioned in the introduction, numerical results for these spectral methods when ap-

plied to linear elasticity are not available yet, but a theoretical verification of the

robustness of the method is already provided in [108]. The coarse spaces constructed

there will contain the rigid body modes, multiplied with a (scalar) partition of unity.

In contrast to the scalar version, we cannot expect that the spectral coarse space in

[108] is an enrichment of the multiscale finite element basis.
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4

Multiscale Finite Elements with

Oscillatory Boundary Conditions

The application of the multiscale finite element method with vector-valued linear bound-

ary conditions to linear elasticity as presented in chapter 3 shows that, if material jumps

occur only in the interior of coarse grid elements, uniform condition number bounds

which do not depend on the contrast in the Young’s modulus are obtained. However,

when stiff inclusions touch coarse element boundaries, the method fails to be robust.

This motivates the construction of boundary conditions for the multiscale finite element

basis which adapt to the heterogeneities in the PDE coefficients.

In this chapter we extend the multiscale finite element method with oscillatory bound-

ary conditions, introduced for scalar elliptic PDEs by Hou and Wu in [53], to the

system of anisotropic linear elasticity. We apply the approach for the construction

of robust coarse spaces in the context of two-level overlapping domain decomposition

preconditioners for multi-phase elastic composites. We explain the construction on a

tetrahedral coarse mesh and present numerical results for isotropic materials showing

that robustness w.r.t. coefficient variations in the PDE can be achieved even for the

class of problems where inclusions of high stiffness cross or touch coarse element bound-

aries. For scalar elliptic PDEs, it is shown numerically and analytically in [45, 46] that

scalar multiscale finite element basis functions with oscillatory boundary conditions

may lead to robust two-level preconditioners, especially when the high contrast regions

can be characterized as a union of disjoint islands [45].
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The chapter is organized as follows. Referring to the overall setting in section 4.1, we

precisely introduce the oscillatory multiscale finite element basis in section 4.2. Details

on the construction are presented in section 4.3. The computational complexity as well

as properties of the oscillatory multiscale basis are discussed in section 4.4 and 4.5,

respectively. In Section 4.6, we present numerical results on a binary medium in 3D,

the conclusions in section 6.7 finalize the chapter.

4.1 Preliminaries

We are in the setting as stated in chapter 2. That is, we are given a bounded domain Ω ⊂
Rd which admits a decomposition into fine and coarse meshes Th and TH , respectively.

Details on the discretization are provided in section 2.2, the two-level additive Schwarz

method is introduced before in section 2.3.1. We refer to section 2.6 for a summary of

required notations.

4.2 Multiscale Coarsening: Oscillatory Boundary Condi-

tions

A good choice of the local boundary conditions for the multiscale finite element basis

can significantly improve the quality of the coarse space, as the boundary conditions

determine how well local properties of the PDE are captured by the basis functions.

Multiscale basis functions with oscillatory boundary conditions are introduced for scalar

elliptic PDEs in [53] to also reflect the heterogeneities in the PDE coefficients across

coarse element boundaries. The approach extracts boundary values on ∂T by solving

reduced problems on the edges respectively the faces of a coarse element T ∈ TH . In

the following, we extend this method to linear elasticity and formulate the reduced

problems on ∂T . Also, we precisely describe the construction of the resulting oscil-

latory multiscale-FE basis and summarize the algorithm for solving the subproblems

on the edges and faces of a coarse tetrahedral element T ∈ TH . We define the coarse

basis and introduce suitable coordinate transformations that allow the derivation of

the equations which govern the boundary data of the oscillatory multiscale-FE basis on

general meshes. On composites with isotropic constituents, we present the construc-

tion in detail. For any p ∈ N̄H and m ∈ {1, . . . , d}, the oscillatory multiscale-FE basis
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4.2 Multiscale Coarsening: Oscillatory Boundary Conditions

function Vh 3 φp,MsO
m : ωp → Rd is defined such that for T ⊂ ω̄p,

div(C : ε(φp,MsO
m )) = 0 in T, (4.1)

φp,MsO
m = ηp,Tm on ∂T, (4.2)

where the oscillatory boundary data ηp,Tm : ∂T → Rd is continuous and compatible,

i.e. ηp,Tm = ηp,T
′

m on ∂T ∩ ∂T ′ ⊂ Ω̄ for T, T ′ ∈ TH . We impose the vector-valued nodal

constraints

ηp,Tmk (xq) = δpqδmk, q ∈ NH(T ), k ∈ {1, . . . , d}, (4.3)

and show how ηp,Tm = (ηp,Tm1 , . . . , η
p,T
md )> is derived in section 4.2.2 and 4.2.3.

4.2.1 Coordinate Transformation

The boundary data ηp,Tm in equation (4.2) are extracted by solving a restricted version

of the PDE (2.1) on the coarse element boundary. The reduced problems derive from

neglecting the terms in the original PDE with partial derivatives in the direction normal

to ∂T . This needs to be done separately for the edges and faces of a coarse (tetrahedral)

element and implies that φp,MsO
m |∂T is independent of the coordinate in the direction

normal to ∂T . To make the construction applicable to edges and faces of T ∈ TH

which are not aligned with or perpendicular to one of the coordinate axis (see Figure

4.1), we apply a suitable coordinate transformation of the Cartesian coordinate system

with basis {e1, . . . , ed} to a (right handed) coordinate system with orthonormal basis

{ê1, . . . , êd}. W.l.o.g., for any

edge E: we introduce the rotated coordinate system such that ê1 is parallel to E,

face F: we introduce the rotated coordinate system such that the normal vector n

on F is parallel to one of the coordinate axis, i.e. w.l.o.g. êd = n (d = 3).

Let x̂1, . . . , x̂d be the coordinates of x = (x1, . . . , xd)> w.r.t. the transformed basis. The

coordinate transformation can be described by a linear map Θ : T → Rd, x̂ = Θx with

entries θij = êi ·ej , 1 ≤ i, j ≤ d. The coefficients of the elastic tensor Ĉ transform under

the rotation of the coordinate system to ĉijkl =
∑d

p,q,r,s=1 θip θjq θkr θls cpqrs (cf. [82]).
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4.2.2 Equations Governing the Oscillatory Boundary Data

Using transformed coordinate systems as introduced in section 4.2.1, we derive the

reduced problems on an edge E and a face F of T ∈ TH for the system of anisotropic

linear elasticity. The components of the elasticity operator in (2.1) read

d∑
j=1

∂jσij(u) =
d∑
j=1

∂j

( d∑
k,l=1

cijkl εkl(u)
)
.

Forcing that φ̂p,MsO
m = η̂p,Tm (x̂1, . . . , x̂d−1) is independent of x̂d on F (for d = 3) or E

(for d = 2) and using the symmetry ĉijkl = ĉijlk of the stiffness tensor, we obtain by

using ε̂kl(û) = 1
2(∂̂kûl + ∂̂lûk) in the rotated coordinate system

d∑
j=1

∂̂j σ̂ij(η̂p,Tm ) =
d−1∑
j=1

∂̂j

( d∑
k,l=1

ĉijkl ε̂kl(η̂p,Tm )
)

=
d−1∑
j=1

∂̂j

( d−1∑
k,l=1

ĉijkl ε̂kl(η̂p,Tm ) + 2
d−1∑
k=1

ĉijkd ε̂kd(η̂p,Tm )
)

=
d−1∑
j=1

∂̂j

( d−1∑
k,l=1

ĉijkl ε̂kl(η̂p,Tm )
)

(4.4)

+
d−1∑
j=1

∂̂j

( d−1∑
k=1

ĉijkd ∂̂kη̂
p,T
md

)
. (4.5)

While equation (4.4) affects exclusively the first two components of η̂p,Tm , equation

(4.5) acts only on the third component of the oscillatory boundary data on F. For an

anisotropic stiffness tensor, a reduced system needs to be solved on F in which the three

components of η̂p,Tm are coupled. Having a deeper look at the entries of the stiffness

tensor, the systems in (4.4) and (4.5) are fully decoupled for an orthotropic material

whose symmetry axes are normal to ê1, . . . , êd. Particularly, the components η̂p,Tm1 and

η̂p,Tm2 on F are then governed by a 2D system of linear elasticity (see (4.4)), while the

component η̂p,Tmd normal to F is governed by a scalar second order elliptic PDE (see

(4.5)). Analogously, on an edge E, we can deduce that the boundary data η̂p,Tm (x̂1) are

governed by scalar second order PDEs in each particular component which may, again,

be coupled in the anisotopic case.
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4.2 Multiscale Coarsening: Oscillatory Boundary Conditions

Figure 4.1: Coarse tetrahedral element with face Fpqr connecting the coarse nodes xp,
xq and xr (grey) and edge Epq connecting node xp and xq (red); rotated orthonormal
coordinate system ê1, ê2, ê3 with coordinates X̂1, X̂2, X̂3 is such that Fpqr ⊥ ê3 and Epq ‖ ê1

4.2.3 Isotropic Linear Elasticity

Given the formulation of the reduced problems in a suitable coordinate system, we

summarize the procedure of computing boundary data ηp,Tm on the faces and edges

of T , assuming that the stiffness tensor is isotropic. Its components are given by

cijkl = λδijδkl + µ(δikδjl + δilδjk), where the Lamé coefficients λ and µ can be assumed

to be piecewise constant in τ ∈ Th. Note that the material coefficients are not uniquely

determined on ∂T , a proper averaging (e.g. by taking their maximum values) in the

adjacent elements τ ∈ Th is required. Due to (4.4), the reduced problem on an edge E

in rotated coordinates reads

∂̂1

(
(λ+ 2µ) ∂̂1η̂

p,T
m1

)
= 0

∂̂1

(
µ ∂̂1η̂

p,T
mk

)
= 0, k = 2, 3

 on E. (4.6)

It needs to be equipped with the vector-valued nodal constraints in (4.3). Let us assume

that E = Ep1p2 connects the two nodes xp1 , xp2 ∈ ΣH(T ) with xp = xp1 , then we impose

η̂p,Tm (x̂p1) = Θem,

η̂p,Tm (x̂p2) = (0, 0, 0)>.
(4.7)
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Next, we state the equations governing the reduced problem on a face F under the

assumption that λ and µ are piecewise constant on F. This allows to simplify the

notation of the reduced system without affecting its weak formulation. According to

(4.4) and (4.5), the reduced system reads

µ (∂̂11η̂
p,T
m1 + ∂̂22η̂

p,T
m1 ) + (λ+ µ)(∂̂11η̂

p,T
m1 + ∂̂12η̂

p,T
m2 ) = 0

µ (∂̂11η̂
p,T
m2 + ∂̂22η̂

p,T
m2 ) + (λ+ µ)(∂̂21η̂

p,T
m1 + ∂̂22η̂

p,T
m2 ) = 0

µ (∂̂11η̂
p,T
m3 + ∂̂22η̂

p,T
m3 ) = 0

 on F. (4.8)

We deduce that the boundary data on a face F are governed by a reduced elasticity

system in the first two components and a scalar elliptic problem in the component

normal to F. Let F = Fp1p2p3 contain the coarse nodes xp1 , xp2 and xp3 . Then the

three edges Ep1p2 , Ep1p3 and Ep2p3 form the 2D boundary of the face F. The system in

equation (4.8) is subject to the boundary conditions

η̂p,Fm |Epkpl= η̂
p,Epkpl
m 1 ≤ k < l ≤ 3, (4.9)

where η̂
Epkpl
m is the solution of the BVP in (4.6) and (4.7) on the edge Epkpl in the

coordinate system w.r.t. F and η̂p,Dm denotes the restriction of η̂p,Tm to D ⊂ ∂T . Note

that the rotated coordinate systems differ for any face and edge. Once the boundary

data are computed on and edge or a face, they should be transformed to the original

coordinate system.

4.3 Construction of the Oscillatory Multiscale-FE Basis

For the computation of the oscillatory boundary data, first, for each face F of T ∈ TH ,

boundary conditions on ∂F are extracted from solving lower-dimensional problems on

any of their edges. The end points of an edge E of F are determined by two coarse

nodes xq, xq
′ ∈ ΣH(T ). Imposing the appropriate vector-valued boundary conditions at

these end points of E, the solution to the problem in (4.6) can be computed analytically

using a line-integral, by

η̂
Epq
mk (x̂1) = b̂k

∫ x̂1

xq1
ζkλ,µ

−1
ds∫ xp1

xq1
ζkλ,µ

−1
ds
, (4.10)
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where ζkλ,µ(x̂1) = λ+ 2µ for k = 1 and ζkλ,µ(x̂1) = µ for k = 2, 3 and b̂k = (Θem)k is the

boundary condition in (4.7). Again, note that the coefficients λ and µ might not be

uniquely determined on any edge or face. To properly average the coefficients between

adjacent elements τ ∈ Th, we simply consider their maximum values. Having derived

the oscillatory boundary conditions on all edges which form the boundary of a face F,

the reduced BVP in (4.8) can be computed using a finite element discretization on the

projection of the fine mesh Th onto F (for more details, see Algorithm 4.1).

In the following, we may omit the upper index on ηp,Tm and write ηE
m and ηF

m, referring

to the restriction ηp,Tm |D to an edge (D = E) or a face (D = F) of T . It is easy to

verify from (4.6) and (4.7) that the values on the edge Ep′q′ which is not connected to

the coarse node xp ∈ ΣH(T ) are zero. Consequently, η̂Ep′q′ only needs to be computed

on edges which touch the coarse node xp. The same holds if a face F = Fp1p2p3 is not

connected to the node xp ∈ ΣH(T ) where non-homogeneous Dirichlet conditions are

imposed. If p 6∈ {p1, p2, p3}, then from equation (4.8) and (4.9) we deduce that η̂F
m = 0.

Once the boundary data are computed, the computation of the particular basis function

can be done analogously to the procedure described in section 3.3, with the linear vector-

valued boundary data being replaced by the oscillatory boundary data. The oscillatory

multiscale finite element basis defines the coarse space

VMsO = span
{
φp,MsO
m : p ∈ N̄H , m ∈ {1, . . . , d}

}
. (4.11)

Algorithm 4.1 summarizes the overall construction of the oscillatory multiscale finite

element basis on a (tetrahedral) coarse mesh.

4.4 Complexity Estimate

While the number of degrees of freedom for computing a multiscale-FE basis function

φp,MsL
m on T ⊂ ω̄p is of order O

(
d(Hh )d

)
(see chapter 3.4), extracting the boundary data

for φp,MsO
m only requires the solution of sparse s.p.d. linear systems of size O

(
d(Hh )d−1

)
.

Hence, using a solver with optimal complexity O(1) per unknown in the linear system,

the complexity of computing an oscillatory multiscale-FE basis function is of the same

asymptotic order O
(
d(Hh )d

)
as for φp,MsL

m , with a small additional cost that is one order

of H
h cheaper (O

(
d(Hh )d

)
+ O

(
d(Hh )d−1

)
). Thus, similar to the linear multiscale-FE
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Algorithm 4.1: Construction of a Multiscale Finite Element Basis Function
φp,MsO
m |T with Oscillatory Boundary Data ηp,Tm
Require: T ∈ TH with vertices {xpk ∈ ΣH(T ) : k = 1, . . . , nT } and xp = xp1

for any face F = Fq1...qnF
, q1 6= · · · 6= qnF

∈ {p1, . . . , pnT } of T , m ∈ {1, 2, 3} do

for any edge E = Er1r2 , r1 6= r2 ∈ {q1, . . . , qnF
} of F do

1. if p 6∈ {r1, r2}, set ηEr1r2
m = 0 and go to next edge, else let p = r1

2. set ê1 := xr1−xr2
‖xr1−xr2‖2

3. if ê1 6‖ em, set ê2 := em−〈ê1,em〉2ê1

‖em−〈ê1,em〉2ê1‖2 , else ê2 = 0

4. average material coefficients on E from their values in adjacent τ ∈ Th

5. find η̂E
m by solving the BVP in (4.6) and (4.7) according to (4.10)

6. form and store ηE
m := η̂E

m1〈ê1, em〉ê1 + η̂E
m2〈ê2, em〉ê2

• form the transformation map Θ = [ê1, ê2, ê3]> for the face F with
ê1 := xq2−xq1

‖xq2−xq1‖2 , ê2 := xq3−xq1−〈xq3−xq1 ,ê1〉2ê1

‖xq3−xq1−〈xq3−xq1 ,ê1〉2ê1‖2 , ê3 := ê1 × ê2

• form the 2D-mesh T2D
h (F) on the face F by projecting fine elements

τ ∈ Th onto F which share three vertices with the face; store the 2D
coordinates of these vertices in the transformed coordinate system
spanned by ê1, ê2. Furthermore, average the material parameters
in τ2D using information of the adjacent elements τ ∈ Th which
share three vertices with τ2D(F).

• following equation (4.8) and (4.9), do

1. assemble and solve the 2D elasticity system for (η̂F
m1, η̂

F
m2)>,

equipped with b.c. on Er1r2 ⊂ ∂F, given by (η̂Er1r2
m1 , η̂

Er1r2
m̂2

)>,

where η̂Er1r2
m = ΘηEr1r2

m

2. assemble and solve the 2D scalar finite element system for η̂E
m3,

equipped with b.c. on the edges Er1r2 ⊂ ∂F, given by η̂Er1r2
m3 ,

where η̂Er1r2
m = ΘηEr1r2

m

and store the solution ηF
m = η̂F

m1ê
1 + η̂F

m2ê
2 + η̂F

m3ê
3 = Θ−1η̂F

m

• assemble and solve the discretization of the system in (4.1) with the b.c.
of (4.2), given by ηp,Tm |F= ηF

m for any face F ⊂ ∂T
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basis, the overall cost for the construction of the oscillatory multiscale-FE basis can be

estimated to O
(
d2enp

)
where e denotes the number of coarse element vertices and np

stands for the number of nodes on the fine grid Th. Note that for applications in three

dimensions, the complexity estimate still holds even if a sparse direct solver (cf. e.g. [3,

Chapter 7]) is applied for solving the subproblems on the faces of coarse elements.

4.5 Properties

As shown in chapter 3.5, the multiscale-FE basis with vector-valued linear boundary

data (MsL) recovers all the rigid body modes. Indeed, assuming constant material

coefficients in the PDE, both spaces VMsL and VMsO recover exactly the linear vector-

valued basis functions on the coarse grid TH . Moreover, if no material jumps occur

on the boundaries of coarse elements, it can be shown that φp,MsO
m = φp,MsL

m . On

general heterogeneous materials, the construction of the oscillatory multiscale basis

guarantees that the rigid body translations are contained in the coarse space. This

can be seen from the following arguments. Given T ∈ TH , and let us assume that

the edge E of T connects the two nodes xp, xq ∈ ΣH(T ). Then, due to the boundary

conditions given in (4.7), (4.6) and the uniqueness of the solution, along this edge we

have φp,MsO
mk |E +φq,MsO

mk |E = δmk, m, k ∈ {1, . . . , d}. Applying a similar argument

shows that constants are also preserved on any face F of T and the PDE-harmonic

extension of the constant boundary values to the coarse element interior ensures that

the translations are preserved inside T ∈ TH . Since Ω̄ = ∪T∈THT , the coarse space

contains the three translations globally.

However, the construction might not guarantee that all rigid body modes are globally

contained in the coarse space. For inclusions which cross coarse element boundaries,

not all the rigid body rotations might be preserved as not all the rotations can be

extracted from solving lower-dimensional problems. For instance, for an inclusion of

high stiffness which crosses a face in the plane spanned by e1 and e2, only rotations

around the axis e3 can be captured within the basis. Since the reduced system is

obtained by neglecting terms in the PDE which have partial derivatives normal to the

face, rotations around the other two axis will not occur in this specific case.
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4.6 Numerical Results

In this section we present numerical examples on a binary composite. We apply vector-

valued (i) linear coarse space as well as multiscale-FE coarse spaces with (ii) linear

and (iii) oscillatory boundary conditions. We perform the simulations on a domain

Ω̄ = [0, 1] × [0, 1] × [0, L], L > 0, with regular fine and coarse triangular mesh Th and

TH of equal structure with uniform mesh size h and H, respectively. Both meshes

are constructed from an initial voxel geometry as described in chapter 2.3.2. In the

numerical test we show condition numbers as well as iteration numbers of the PCG

algorithm. The stopping criterion is set to reduce the preconditioned initial residual

by six orders of magnitude.

The medium consists of an isotropic matrix material with coefficients µmat = 1 and

λmat = 1 and contains inclusions which are positioned equally in each coarse block of

size H ×H ×H as shown in Figure 4.2. The distribution of the inclusions as well as

Figure 4.2: Binary composite; matrix material (grey) and inclusions (red); discretization
in 14 × 14 × 7 voxels (left); 2D-projection onto the (X1, X2)-plane with position of the
inclusion (right); each coarse block is decomposed in five tetrahedra

the boundaries of the coarse tetrahedra are shown in more detail in Figure 4.3. At each

slice in the plane normal to X1 and X2, the position of the inclusions above and below

this level are indicated in dark and shaded red, respectively. Each inclusion touches

or crosses coarse element boundaries while one inclusion in the center is isolated in

the interior of a coarse element. Under the variation of the material contrast ∆E :=

µinc/µmat = λinc/λmat, Table 4.1 shows the condition and iteration numbers for the

three coarsening strategies. For ∆E > 1, condition and iteration numbers for vector-

valued linear and multiscale-FE coarse space with linear boundary conditions grow with
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Figure 4.3: 2D-slices (at X3 = l h, l ∈ {1, . . . , 6}) of a coarse block of 7 × 7 × 7 voxels
of the medium in Figure 4.2 ; boundaries of coarse tetrahedral elements (black), matrix
material (grey) and 1x1x1 inclusions (red); inclusions touch the slice from below (shaded
red) or top (dark red); inclusions touch coarse element boundaries

the contrast in the material coefficients, the latter does not perform noticeably better

than the linear coarse space. The multiscale coarse basis functions with oscillatory

boundary conditions are bounded in energy and show coefficient-independent bounds

of the condition number. For ∆E < 1, each coarse space performs well.

Lin MsL MsO
∆E nit κ(M−1

ASA) nit κ(M−1
ASA) nit κ(M−1

ASA)
10−9 28 26 28 26 28 26
10−6 28 26 28 26 28 26
10−3 28 26 28 26 28 26
100 27 25 27 25 27 25
103 91 426 76 233 27 25
106 102 965 104 955 27 25
109 102 970 104 955 27 25

Table 4.1: Iteration numbers Condition numbers nit and iteration numbers κ of precond.
matrix for H = 7h, δ = 2h
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4.7 Conclusions

In this chapter, we extend the oscillatory multiscale finite element method as introduced

in [53] to the PDE system of anisotropic linear elasticity. We derive the reduced sys-

tem which governs the oscillatory boundary data in a general setting which allows their

construction on triangular, tetrahedral, quadrilateral and hexahedral coarse meshes.

We apply the coarse basis in the context of two-level additive Schwarz domain decom-

position preconditioners. Numerical results are presented on a tetrahedral mesh for

isotropic composites where stiff inclusions touch and cross coarse element boundaries.

We observe condition number bounds of the preconditioned linear system which are

independent of the contrast in the Young’s modulus of the inclusions.

It is easy to verify (see chapter 3.4) that the computation of a multiscale finite ele-

ment basis is more costly on quadrilateral and hexahedral coarse meshes than on their

triangular and tetrahedral counterparts (by a factor of 4
3 in 2D and a factor of 2 in

3D). However, we may point out that, especially for applications in three spatial di-

mensions, using hexahedral coarse meshes may be beneficial for the robustness of the

overall method as it reduces the amount of element boundaries which are introduced

when tetrahedral coarse meshes are used.
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5

Energy Minimizing Coarse

Spaces

In this chapter we construct coarse basis functions with a minimal energy property sub-

ject to pointwise constraints which ensure that the coarse space exactly contains the

rigid body translations, while the rigid body rotations are preserved approximately.

Energy minimizing methods with pointwise constraints, often referred to as trace-

minimization, have been proposed first in [78] and [105] and were further investigated

in [98, 110] and [83]. Applications to isotropic linear elasticity are already provided

in [78], in the context of smoothed aggregation. The novel part here is the applica-

tion to the multiscale framework. It was shown in [110] that coarse spaces constructed

by explicit energy minimization share similarities with multiscale finite element basis

functions in the sense that the basis functions are locally PDE-harmonic in the interior

of coarse elements. Hence, since the construction on a coarse tetrahedral mesh as in-

troduced in chapter 2.3 allows large overlaps in the supports of the basis functions, an

energy minimizing coarse space obeys multiscale features similar to the coarse spaces

considered in the two previous chapters.

The construction of the basis functions requires the solution of additional global prob-

lems whose solutions implicitly form the counterpart to the vector-valued linear or

oscillatory boundary conditions of the multiscale finite element basis. We also study

how these so called Lagrange multiplier systems can be solved efficiently by constructing

preconditioners as proposed in [98] for scalar elliptic PDEs.
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The chapter is organized as follows. Summarizing useful notations in section 5.1, we

proceed with introducing the energy minimizing basis and the corresponding multiscale

coarse space in section 5.2. Section 5.3 is concerned with the precise construction of

the energy minimizing basis functions. A complexity estimate and details of the coarse

space properties are stated in section 5.4 and 5.5, respectively. Furthermore, we provide

in section 5.6 a detailed definition of the interpolation operators which are formed by

the coarse basis. Moreover, we show how the basis functions can be computed robustly

in section 5.7 by applying robust preconditioners to the so called Lagrange multiplier

system which arises from the energy minimizing construction. Section 5.8 is devoted

to numerical results in 3D, a short discussion in section 5.9 finalizes the chapter.

5.1 Preliminaries

We are again in the setting of chapter 2. Using the discretization introduced in section

2.2, we refer to the notations related to the fine and coarse meshes and respective

degrees of freedoms as summarized in section 2.6.

5.2 Multiscale Coarsening by Energy Minimization

We construct the energy minimizing coarse space VEM on TH according to Assumption

2.4.1. We denote by | · |a,Ω the semi-norm on [H1(Ω)]d, induced by the bilinear form in

(2.8). For each m ∈ {1, . . . , d} and p ∈ N̄H , we construct a basis function

φp,EM
m : ωp → Rd.

Ensuring that the three translations are exactly contained in the coarse space, the

construction is done separately for m ∈ {1, . . . , d}, such that

∑
p∈N̄H

|φp,EM
m |2a,Ω → min (5.1)

subject to
∑
p∈N̄H

φp,EM
mk = δmk k = 1, . . . , d, in Ω. (5.2)

Thus, the basis is constructed such that the coarse basis preserves the translations

exactly. The rigid body rotations are contained approximately. The given functions
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are linearly independent and the basis satisfies Assumption 2.4.1 (C1) - (C4). We

define the coarse space by

VEM := span
{
φp,EM
m : p ∈ N̄H , m = 1, . . . , d

}
.

Note that we define the subspace VEM
0 ⊂ VEM as the subspace which contains only

basis functions which correspond to coarse nodes xp ∈ Σ̄H which do not touch the

global Dirichlet boundary. Furthermore, we exclude any fine grid degrees of freedom

on the boundary ΓDi , i = 1, . . . , d, when constructing the interpolation operator. More

details are given in section 5.6. In the following, we give a constructive proof for

the existence and uniqueness of the solution of the minimization problem in (5.1) and

(5.2). Therefore, we denote by Ā ∈ Rnd×nd the global stiffness matrix where no essential

boundary conditions are applied. The entries of Ā are determined by (2.13). We set

Vh(ωp) := {ϕ ∈ Vh : supp(ϕ) ⊂ ω̄p} and denote by Rp the matrix describing the

restriction to degrees of freedom in Vh(ωp) of a vector which corresponds to degrees of

freedom in Vh. The principal submatrix of Ā is then given by Āp = RpĀR
>
p . Note that

Āp is non-singular for any suitable Rp. Furthermore, let 1m ∈ Rnd be the coefficient

vector in terms of the fine-scale basis of Vh which represents a rigid body translation

in the unknown m ∈ {1, . . . , d}.

Theorem 5.2.1. The solution of the minimization problem in (5.1) and (5.2) on the
space Vh is given by

Φp,EM
m = R>p Ā

−1
p RpΛm, (5.3)

where Λm ∈ Rnd is the vector of Lagrange multipliers, which satisfies∑
p∈N̄H

R>p Ā
−1
p RpΛm = 1m.

Proof. The minimization problem couples the quadratic objective function in (5.1) with
linear constraints, given in (5.2). Introducing the Lagrange multiplier [7] Λm, a solution
can be found by the extrema of the quadratic Lagrange functional

Lm

({
Φp,EM
m

}
,Λm

)
=

1
2

∑
p∈N̄H

Φp,EM
m

>
ĀΦp,EM

m − Λm>
( ∑
p∈N̄H

Φp,EM
m − 1m

)
.
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We enforce an additional constraint on the support of the basis functions by substituting
Φp,EM
m = R>p Φ̂p,EM

m . The vector Φ̂p,EM
m can be interpreted as the local representation of

Φp,EM
m on its support ω̄p in terms of the basis of Vh(ωp). To find the critical point of

this functional we impose ∇ΛmLm = 0 and ∇
Φ̂p,EM
m

Lm = 0, which results in the saddle
point problem

ĀpΦ̂p,EM
m −RpΛm = 0 ∀ p ∈ N̄H , (5.4)∑

p∈N̄H

R>p Φ̂p,EM
m − 1m = 0. (5.5)

From equation (5.4), we conclude

Φ̂p,EM
m = Ā−1

p RpΛm ∀ p ∈ N̄H . (5.6)

Substituting equation (5.6) into (5.5) yields

1m =
∑
p∈N̄H

R>p Ā
−1
p RpΛm.

We introduce L̄ :=
∑

p∈N̄H
R>p Ā

−1
p Rp and obtain for m ∈ {1, . . . , d},

Λm = L̄−11m. (5.7)

Thus, to compute the basis of minimal energy, we have to solve a global Lagrange

multiplier system in (5.7) for each m ∈ {1, . . . , d} and solve local subproblems in (5.6)

to compute the particular basis functions.

5.3 Construction of the Energy Minimizing Basis

The Local Construction: First, we shortly describe how to compute a single coarse

basis function. We fix m ∈ {1, . . . , d} and p ∈ N̄H and assume that the Lagrange mul-

tiplier Λm is already known. By construction, the set ω̄p consists of a union of fine

elements ω̄p = ∪{τi}nTi=1 in Th. The entries of the global Neumann matrix Ā are de-

fined by Ā(i,k)(j,l) = a(ϕi,hk , ϕj,hl ) for all (i, k), (j, l) ∈ Dh and Ā is symmetric positive

semi-definite with Ker(Ā) = RBM(Ω̄). The coefficient vector Φp,EM
m = R>p Φ̂p,EM

m re-

spresenting the energy minimizing basis function in terms of the basis of Vh can be
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computed from ĀpΦ̂
p,EM
m = RpΛm, where Λm is the Lagrange multiplier given in (5.7).

The solution Φp,EM
m of the linear system defines the solution of the minimization prob-

lem in (5.1) and (5.2), discretized on the space Vh. The basis function reads

φp,EM
m =

∑
(j,k)∈Dh(Ω̄)

Φp,EM
m,(j,k) ϕ

j,h
k .

The Overall Construction: The procedure for the construction of the energy min-

imizing basis is as follows: For m = 1, . . . , d, the following applies:

1. Solve the Lagrange multiplier system L̄Λm = 1m (see equation (5.7)), using the

(P)CG algorithm:

• in each (P)CG iteration, compute the action of L to a given iterate vk by

summing over the terms R>p x̂k, p = 1, . . . , Np, where x̂k is the solution of

the local systems Āpx̂k = Rpvk.

2. For each p ∈ N̄H , the following applies:

• compute φp,EM
m : ωp → Rd w.r.t. the fine-scale discretization. That is, solve

the linear system ĀpΦ̂
p,EM
m = RpΛm. The components of Φp,EM

m = R>p Φ̂p,EM
m

define the rows in the matrix R̄ as given in equation (5.8).

5.4 Complexity Estimate

The complexity estimate for the construction of the energy minimizing basis can be

given as follows. Solving the linear system in equation (5.6) requires for m = 1, . . . , d,

and any p ∈ N̄H the solution of a local linear system. Under the idealized assumption

of applying a solver with optimal order complexity, the total cost can be estimated

to be of order O
(
d2eNp(Hh )d

)
= O(d2enp), where e is the number of coarse element

vertices. This estimate yields equal order complexity than the overall construction of

the multiscale finite element basis (see section 3.4 and 4.4). However, note that energy

minimizing construction requires inversions on the entire ω̄p while the multiscale-FE

spaces require only local inversions on any T ⊂ ω̄p. Additionally, solving the Lagrange

multiplier system in equation (5.7) needs the inversion of the local submatrices within

any (P)CG iteration. The overall complexity of solving the Lagrange multiplier system
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can be computed analogously and is of equal order O(d2enp). However, it introduces

a larger constant which is proportional to the number of iterations of the (P)CG-

algorithm. In practical applications, solving the Lagrage multiplier system with an

accuracy of three orders of magnitude has proven to be sufficient and requires at least

7 − 10 (P)CG iterations. Thus, altough both methods have equal order complexity

when optimal local solvers are used, computing the energy minimizing coarse basis is,

by a small factor, more costly than computing a multiscale finite element basis.

5.5 Properties

As we can conclude from the construction, the coarse space contains the rigid body

translations globally in Ω̄. However, it is not obvious to see how well the coarse space

approximates the set of rigid body rotations. The rotations are, in general, not exactly

contained in VEM. Energy minimizing constructions of basis functions allow quite

general supports and the method is easily applicable to unstructured meshes (cf. [104,

110]). Denoting by ωint
p := {x ∈ ωp : x 6∈ ωq for q 6= p} the subset of ωp which is

not overlapped with the support of any other basis function, it is clear that rigid body

rotations cannot be globally contained in the coarse space as long as meas(ωint
p ) > 0.

Thus, to ensure that the presented construction of the coarse space allows an adequate

approximation of the rigid body rotations, a necessary requirement needs to be stated

on the supports of the basis functions. Defining the coarse basis functions on the coarse

mesh TH as introduced before yields large overlaps in the supports of neighboring basis

functions. It holds ωint
p = {xp} and thus, we obtain meas(ωint

p ) = 0. However, this

criterion is not sufficient to ensure that all the rigid body rotations are preserved exactly

by the coarse space. Indeed, the quality of the approximation may even depend on the

underlying mesh itself.

An important property, showing the multiscale character of the presented energy min-

imizing coarse space, is summarized in the following. We show that the Lagrange mul-

tipliers Λm,m = 1, . . . , d, are supported exclusively on the coarse element boundaries

and thus, the energy minimizing basis functions are given by a discrete PDE-harmonic

extension of local boundary data. Before proving this statement, we introduce the
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following notation. For T ∈ TH , let

range(T ) :=
⋂

p∈NH(T )

range(R>p )

be the set of vectors in Rnd which correspond to functions in Vh which are supported

in the interior of T ⊂ Ω̄. We show that the Lagrange multiplier Λm, m = 1, . . . , d has

non-zero values only in a set which is complementary to {range(T ) : T ∈ TH}. The

entries which are non-zero correspond to fine basis functions which are supported along

the boundaries of coarse elements.

Lemma 5.5.1. Let m ∈ {1, . . . , d} be fixed and let Λm = L̄−11m. Then for each
T ∈ TH , we have

ξ> Λm = 0 ∀ ξ ∈ range(T ).

Proof. Let nT = #{p ∈ NH(T )} be the number of vertices of T . For m ∈ {1, . . . , d}, it
holds ∑

p∈NH(T )

Φp,EM
mk = δmk on T, k ∈ {1, . . . , d}.

For each ξ ∈ range(T ), let ξ̂p := Rp ξ, p ∈ NH(T ) be the local representation of ξ
in ωp ⊂ Ω. Note that it also holds R>p ξ̂p = ξ since ξp is supported in range(R>p ) by
assumption. Moreover, we have by equation (5.4),

nT ξ
> Λm =

∑
p∈NH(T )

ξ̂>p RpΛm =
∑

p∈NH(T )

ξ̂>p ĀpΦ̂
p,EM
m = ξ>Ā1m = 0,

where we used ξ ∈ range(T ) twice. The last equality follows since 1m ∈ Ker(Ā).

This shows that the basis functions are locally PDE-harmonic, a well known property

of energy minimizing bases (cf. [110]). From the solution of the Lagrange multiplier

system, optimal boundary conditions for the local basis functions are extracted on

{∂T, T ∈ TH}. It is obvious that the energy minimizing basis functions are continuous

along the boundaries of the coarse elements and lead to a conforming coarse space.
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5.6 Interpolation Operator

In the following, we form the interpolation operator which is obtained from the energy

minimizing coarse space. We refer to the summary of notations in section 2.6 to recall

notations of fine and coarse nodes and related degrees of freedom. We use the fine scale

representation of a coarse basis function φp,EM
m to define the interpolation operator,

respectively the restriction operator. Each energy minimizing basis function omits the

representation

φp,EM
m =

d∑
k=1

np∑
i=1

r̄(p,m)(i,k)ϕ
i,h
k . (5.8)

This representation defines a matrix R̄ ∈ RNd×nd which contains the coefficient vec-

tors, representing a coarse basis function in terms of the fine scale basis, by rows. The

restriction operator RH , which we use in the additive Schwarz algorithm is then con-

structed as a submatrix of R̄, which contains only the rows corresponding to coarse

basis functions which vanish on the global Dirichlet boundaries ΓDi , i = 1, . . . , d and

do not contain any fine degrees of freedom on the global Dirichlet boundary. Denoting

the entries of RH by (rp′j′)p′,j′ , we define

rp′j′ =

{
R̄p′j′ if p′ ∈ DH(Ω∗), j′ ∈ Dh,0(Ω̄),
0 if p′ ∈ DH(Ω∗), j′ ∈ Dh,ΓD(Ω̄),

where DH(Ω∗), Ω∗ := Ω̄\(∪iΓDi) denotes the coarse interior degrees of freedom in Ω∗.

The matrix representing the interpolation from the coarse space VEM
0 to the fine space

Vh0 is simply given by R>H and the coarse stiffness matrix can be computed by the

Galerkin product AH = RHAR
>
H .

5.7 Preconditioning the Lagrange Multiplier System

As we have seen, in order to compute the energy minimizing basis functions, a global

Lagrange multiplier system has to be solved for each m ∈ {1, . . . , d}. We solve these

systems using the PCG algorithm. To ensure that the overall cost of the method, includ-

ing the setup of the energy minimizing basis as well as the application of the two-level

additive Schwarz preconditioner, does not grow with the contrast in the material co-
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efficients, we apply a preconditioner for the Lagrange multiplier system which allows

to robustly compute the Lagrange multipliers independently of variations in mesh and

material parameters. Different such preconditioners are studied in the literature for

finite element discretizations of scalar PDEs. They are summarized in [98] where their

robustness properties are also studied numerically. As presented in [110], a diagonal

preconditioner is sufficient to achieve robustness when applied in the context of AMG,

where small coarsening factors cf ≈ 2 are used to generate the coarser elements. How-

ever, the results in [98] show that robustness may be lost when the supports ωp of

the basis functions are large. Therefore, the authors in [98] apply a one-level additive

Schwarz preconditioner for the Lagrange multiplier system and show its robustness and

performance numerically. In the following, we apply this preconditioner to linear elas-

ticity problems, i.e. we present a one-level additive Schwarz preconditioner as proposed

before in [98] for the Lagrange multiplier system

L̄ =
∑
p∈N̄H

R>p Ā
−1
p Rp.

Note that, once the stiffness matrix and the restriction operators are defined, the

construction is equivalent for scalar elliptic and vector-valued problems. To apply

a one-level additive Schwarz preconditioner for L̄, we introduce the local submatrix L̄p

describing the action of L̄ when restricted from Ω̄ to ωp, by

L̄p = RpL̄R
>
p .

The one-level additive Schwarz preconditioner Q̄−1
1AS to L̄ is then given by

Q̄−1
1AS =

∑
p∈N̄H

R>p L̄
−1
p Rp. (5.9)

In the following, we show that the preconditioner in (5.9) can be applied efficiently

without explicitely forming the dense matrices L̄p. To simplify the illustration, let us

first assume that the domain ωp is overlapped by only two others, ωl and ωr. Thus,

it holds Rp←q := RpR
>
q 6= 0 if and only if q ∈ {l, r, p} and it is R>p←q = (RpR>q )> =

RqR
>
p = Rq←p. Furthermore, we have Rp←p = RpR

>
p = Ip where Ip denotes the matrix
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representing the identity mapping on Vh(ωp). Thus, we obtain

L̄p = Rp

( ∑
q∈N̄H

R>q Ā
−1
q Rq

)
R>p

= Ā−1
p +

[
Rp←l Rp←r

] [Ā−1
l

Ā−1
r

] [
Rl←p
Rr←p

]
.

To obtain the inverse of L̄p, we apply a Woodbury matrix identity. We substitute

B ↔ Āp, X ↔
[
Rp←l Rp←r

]
, C ↔

[
Āl

Ār

]
,

and use a Sherman-Morrison-Woodbury formula [88, Sec.2.7] in the form

(B−1 +XC−1X>)−1 = B −BX(C +X>BX)−1X>B.

We obtain

L̄−1
p = Āp − Āp

[
Rp←l Rp←r

]
J̄−1
p

[
Rl←p
Rr←p

]
Āp,

where

J̄p =
[
Āl

Ār

]
+
[
Rl←p
Rr←p

]
Āp
[
Rp←l Rp←r

]
.

Now we consider the general case where ns basis functions have an intersecting support

with ωp. Let q1, . . . , qns be such that ωp∩ωqi 6= ∅, ωp 6= ωqi , i = 1, . . . , ns. We introduce

Rp←{q} :=
[
Rp←q1 . . . Rp←qns

]
.

Then we set, for the general case,

J̄p := diag(Āq1 , . . . , Āqns ) +Rp←{q}ĀpR
>
p←{q} (5.10)

and obtain

L̄−1
p = Āp − ĀpRp←{q}J̄−1

p R>p←{q}Āp. (5.11)
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Hence, the action of L̄−1
p can be applied efficiently to a vector without forming the

dense matrix L̄p. According to (5.11), it involves sparse matrix-vector multiplications

and requires solving a linear system which is determined by the sparse matrix in (5.10).

Figure 5.1 illustrates the support in which the action of L̄−1
p applies.

Figure 5.1: Example of fine and coarse mesh in 2D indicating the support ω̄p (dark grey)
of a coarse basis function and the supports {ω̄q, ωq∩ωp 6= ∅} of neighboring basis functions
(light grey)

Next, we numerically test the robustness of the one-level additive Schwarz precondi-

tioner in (5.9) for the Lagrange multiplier system in (5.7). We consider heterogeneous

(a) 0.25 VP (b) 1 VP (c) 5 VP (d) 10 VP

Figure 5.2: 2D-projections of random media, discretized with 50 × 50 × 5 voxels; small
inclusions uniformly distributed in matrix material for different volume fractions: 0.25 −
10.0 volume percent (VP); darker color indicates that inclusion is positioned in a higher
voxel-layer of the 3D microstructure

media of different coefficient distributions in Ω̄ = [0, 1]× [0, 1]× [0, 2]. Figure 5.2 shows

2D projections of such media in 3D, small inclusions are uniformly distributed in a
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matrix material for different volume fractions. Matrix material and inclusions are both

isotropic, the material parameters are set to µmat = 3, λmat = 2 and µmat = 3∆E ,

λinc = 2∆E and ∆E varies over several orders of magnitude.

On these media, we solve the Lagrange multiplier system L̄ in equation (5.7) with the

one-level additive Schwarz preconditioner presented in (5.9) for fixed mesh parameters.

For comparison, we also apply a diagonal preconditioner to L̄.

Table 5.1 shows the PCG-iteration numbers needed to solve the Lagrange multiplier

system by reducing the preconditioned initial residual by three orders of magnitude.

The given accuracy has shown to be fully sufficient for the construction of the basis

functions. Applying the one-level additive Schwarz preconditioner to the Lagrange

Diagonal precond. 1-Level AS
∆E \ VP 0.25 1 5 10 0.25 1 5 10

100 12 12 12 12 7 7 7 7
103 24 43 111 124 8 8 10 11
106 13 15 200+ 200+ 8 8 10 11
109 13 15 200+ 200+ 8 8 9 11

Table 5.1: PCG iteration numbers for solving the Lagrange multiplier system using
diagonal and one-level additive Schwarz preconditioner

multiplier system, the numerical results show constant iteration numbers, independent

of the coefficient distribution and the magnitude of the discontinuities in the Young’s

modulus. The method allows a robust construction of the energy minimizing basis.

Using a diagonal preconditioner, the iteration numbers act very sensitive to coefficient

variations. We can say that the additive Schwarz preconditioner as proposed before in

[98] is robust w.r.t. the contrast in the coefficients also when applied to linear elasticity

problems.

5.8 Numerical Results

Following the numerical tests for the multiscale finite element coarse space in chapter

3.7, we give a series of examples involving binary media, showing the performance of

the energy minimizing preconditioner under variations of the mesh parameters as well

as the material coefficients. Additionally, we measure the approximation error of the

energy minimizing coarse space to a fine scale solution. In each experiment, the energy
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minimizing coarse space is compared with a standard linear coarse space. We perform

simulations on the domain Ω̄ = [0, 1] × [0, 1] × [0, L], L > 0 consisting of different

heterogeneous media, with fine and coarse mesh as introduced in section 2.3.2. Figure

5.3 shows a binary medium with isolated inclusions, one inclusion is located inside each

coarse tetrahedra. The inclusions of the second binary medium, given in Figure 5.4, are

identically distributed. In the subsequent parts, we refer to the binary medium where

inclusions are isolated in the interior of coarse elements as medium 1.

Figure 5.3: Medium 1: binary composite; matrix material (grey) and 1× 1× 1 inclusions
(red); discretization in 12× 12× 12 voxels; each voxel is decomposed in 5 tetrahedra; 3D
view (left) and 2D projection with fine mesh, showing the position of the inclusions (right);
inclusions in the interior of coarse tetrahedral elements

The medium with identically distributed inclusions is referred to as medium 2. For

both media, the Young’s modulus E as well as Poisson ratio ν for matrix material and

inclusions are given in Table 5.2. The contrast ∆E := Einc/Emat may vary over several

orders of magnitude.

Young’s modulus Poisson ratio

Emat = 1 MPa νmat = 0.2
Einc = ∆EEmat νinc = 0.2

Table 5.2: Young’s Modulus and Poisson ratio of matrix material and inclusions

5.8.1 Coarse Space Robustness

We choose the overlapping subdomains such that they coincide with the supports ω̄p,

p ∈ N̄H of the coarse basis functions. Then, {Ωi, i = 1, . . . , N} = {ωp, p ∈ N̄H}
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Figure 5.4: Medium 2: binary composite: discretization in 240× 240× 12 voxels; matrix
material (grey) and 1 × 1 × 1 inclusions (red) identically distributed; 3D view (left) and
2D projection (right)

defines an overlapping covering of Ω̄ with overlap width δ = O(H), often referred

to as a generous overlap. We perform tests observing the performance of the two-

level additive Schwarz preconditioner using linear and energy minimizing coarsening.

Condition numbers as well as iteration numbers of the PCG algorithm are presented.

The stopping criterion is to reduce the preconditioned initial residual by six orders of

magnitude. For the construction of the energy minimizing basis functions, the Lagrange

multiplier systems are solved using the CG algorithm, the initial residual is reduced by

three orders of magnitude.

In the first experiment, we test the robustness of the method on medium 1 for fixed

mesh parameters under the variation of the contrast ∆E . The Tables 5.3 and 5.4

show the corresponding condition numbers and iteration numbers having stiff (∆E >

1) and soft (∆E < 1) inclusions. In the former case, robustness is achieved only

for the energy minimizing coarse space, while linear coarsening leads to non-uniform

convergence results. Considering soft inclusions, both coarse spaces are bounded in

energy, an upper natural bound is evidently given for ∆E = 1. Linear coarse space and

energy minimizing coarse space both perform well.

In Experiment 2, performed on medium 1, we measure the condition numbers and

iteration numbers under variation of the mesh parameters, while keeping the PDE

coefficients fixed. We observe similar results as in Experiment 1. Table 5.5 shows the

condition numbers for linear and energy minimizing coarsening. For the linear coarse

space, the condition number shows a linear dependence on the number of subdomains,
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LIN EM
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

100 13 4.4 14 4.9
103 21 18.7 14 5.0
106 25 109.0 14 5.0
109 25 109.0 14 5.0

Table 5.3: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and energy minimizing coarsening
for different contrasts ∆E ≥ 1

LIN EM
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

10−0 13 4.4 13 4.9
10−3 13 4.4 13 5.0
10−6 13 4.4 13 5.0
10−9 13 4.4 13 5.0

Table 5.4: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1;

geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and energy minimizing coarsening
for different contrasts ∆E ≤ 1

LIN EM
h nit κ(M−1

ASA) nit κ(M−1
ASA)

1/60 14 7.9 13 4.4
1/120 17 28.1 14 5.0
1/180 21 61.8 14 4.9
1/240 25 109.0 14 5.0

Table 5.5: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 2;

geometry: 1/h x 1/h x H/h; H = 12h; linear and energy minimizing coarsening for
different h; contrast: ∆E = 106

while the condition number for energy minimizing coarsening is uniformly bounded.

In the first experiment, we obtained coefficient independent convergence rates of the

energy minimizing coarse space on medium 1. In a second part, we test the performance

of the method on medium 2, where the small inclusions are identically distributed.

This is what we see in the Tables 5.6 and 5.7 for Experiment 1 on medium 2: For fixed

mesh parameters under the variation of the contrast ∆E , the corresponding condition
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numbers and iteration numbers are shown having stiff (∆E > 1) and soft (∆E <

1) inclusions. Robustness for the linear coarse space is only achieved in the latter

case where soft inclusions are considered. For stiff inclusions, the linear coarsening

strategy leads to iteration numbers and condition numbers which strongly depend on

the contrast in the medium. The energy minimizing coarse space is fully robust w.r.t.

coefficient variations.

LIN EM
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

100 13 4.4 14 4.9
103 27 19.3 14 4.9
106 66 414 14 5.0
109 68 427 14 5.0

Table 5.6: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1 on

medium 2; geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and energy minimizing
coarsening for different contrasts ∆E ≥ 1

LIN EM
∆E nit κ(M−1

ASA) nit κ(M−1
ASA)

10−0 13 4.4 14 4.9
10−3 13 4.4 14 5.0
10−6 13 4.4 14 5.0
10−9 13 4.4 14 5.0

Table 5.7: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 1 on

medium 2; geometry: 1/h x 1/h x H/h, h = 1/240, H = 12h; linear and energy minimizing
coarsening for different contrasts ∆E ≤ 1

Now, we perform Experiment 2 on medium 2 and measure the condition numbers and

iteration numbers under variation of the mesh parameters and fixed PDE coefficients.

Table 5.8 shows iteration and condition numbers for linear and energy minimizing coars-

ening. Mesh independent bounds are achieved for the energy minimizing coarse space.

Using the vector-valued linear coarse space, iteration numbers as well as condition

numbers grow with the number of subdomains.
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LIN EM
h nit κ(M−1

ASA) nit κ(M−1
ASA)

1/60 26 39.2 13 4.4
1/120 48 154 14 5.0
1/180 52 261 14 4.9
1/240 66 414 14 5.0

Table 5.8: Iteration numbers nit and condition numbers κ(M−1
ASA) for Experiment 2 on

medium 2; geometry: 1/h x 1/h x H/h; H = 12h; linear and energy minimizing coarsening
for different h; contrast: ∆E = 106

5.8.2 Coarse Space Approximation

In a second set of experiments, we test the approximation properties of the energy

minimizing coarse space. The domain Ω̄ = [0, 1] × [0, 1] × [0, L] contains a binary

medium with small inclusions. Again, we distinguish between medium 1 (Figure 5.3:

inclusions in the interior of each coarse element) and medium 2 (Figure 5.4: identically

distributed inclusions). We solve the linear system −divσ(u) = f in Ω̄ \ ΓD with

a constant volume force f = (1, 1, 0)> in the x- and y-component. Homogeneous

Dirichlet and Neumann boundary conditions are applied on the boundary ∂Ω. Dirichlet

conditions in the first unknown are given on Γ1 = {(x, y, z)> ∈ ∂Ω : x = 0, x = 1},
in the second unknown on Γ2 = {(x, y, z)> ∈ ∂Ω : y = 0, y = 1}, and in the third

unknown on Γ3 = {(x, y, z)> ∈ ∂Ω : z = 0, z = L}.

Let uh denote the approximate solution on a fine mesh Th. With the bilinear form

defined in (2.9) and the space Vh0 of piecewise linear vector-valued basis functions

as defined in (2.11), it holds a(uh,vh) = F (vh) ∀vh ∈ Vh0 . This formulation leads

to the linear system Auh = fh. Let VEM
0 be the space of energy minimizing ba-

sis functions on the coarse triangulation TH which vanish on the Dirichlet boundary

Γi, i = 1, 2, 3 (see section 5.6). The energy minimizing solution is given by uEM ∈ VEM
0 ,

such that a(uEM,vH) = F (vH) ∀vH ∈ VEM
0 . Using the fine-scale representation of an

energy minimizing basis function as defined in (5.8), the equivalent linear system reads

AHuH = fH . Here, AH = RHAR
>
H is the coarse stiffness matrix, fH = RHfh and

uEM = R>HuH is the vector whose entries define the fine-scale representation of uEM in

terms of the basis of Vh0 .

For fixed mesh parameters h and H, under the variation of the contrast ∆E , the Tables
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5.9 and 5.10 show the relative approximation errors ‖uh−uc‖ in l2 and in the “energy”

norm for linear (c=LIN) and energy minimizing (c=EM) coarse space for medium 1

and medium 2, respectively. The fine solution uh is computed approximately within

‖uh−uc‖l2
‖uh‖l2

‖uh−uc‖A
‖uh‖A

∆E LIN EM LIN EM
10−9 8.63 · 10−3 1.09 · 10−1 8.92 · 10−2 3.32 · 10−1

10−6 8.63 · 10−3 1.09 · 10−1 8.92 · 10−2 3.32 · 10−1

10−3 8.63 · 10−3 1.09 · 10−1 8.91 · 10−2 3.32 · 10−1

100 8.09 · 10−3 1.09 · 10−1 8.53 · 10−2 3.31 · 10−1

103 7.39 · 10−1 1.07 · 10−1 8.60 · 10−1 3.28 · 10−1

106 9.97 · 10−1 1.07 · 10−1 9.99 · 10−1 3.28 · 10−1

109 9.97 · 10−1 1.07 · 10−1 9.99 · 10−1 3.28 · 10−1

Table 5.9: Approximation of fine-scale solution by linear and energy minimizing coarse
space for medium 1; geometry: 1/h x 1/h x H/h, h = 1/120, H = 12h

the PCG algorithm by reducing the initial preconditioned residual by 12 orders of

magnitude. The coarse solution uH is computed exactly using a sparse direct solver

for the coarse linear system. For both media, the energy minimizing coarse space gives

stable approximation errors, only slightly varying with the contrast. The linear coarse

space shows only a poor approximation of the fine-scale solution for high contrasts

∆E � 1. The explanation is that for ∆E � 1, the fine-scale solution is contained in

a space which is nearly A-orthogonal to the space spanned by the linear coarse basis

functions. Note that this is in agreement with the results presented in Table 5.5, where

the condition number grows almost linearly with the number of subdomains.

We also observe from Table 5.9 and 5.10 that for soft inclusions (∆E ≤ 1), the approxi-

mation error is smaller by the linear coarse space than by the energy minimizing coarse

space. The latter is due to the circumstance that the vector-valued energy minimizing

basis is, even for homogeneous coefficients, not piecewise linear on the coarse triangula-

tion. It is known that the shape of the energy minimizing basis functions is in general

mesh dependent, e.g. for the discretization of the scalar Poisson problem on a regular

mesh in 2D, an energy minimizing basis is observed to be piecewise linear in [105] (see

also [98]). However, for the vector-valued problem considered here with the mesh as in

section 2.3.2, the vector-valued energy minimizing basis is not piecewise linear on the
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‖uh−uc‖l2
‖uh‖l2

‖uh−uc‖A
‖uh‖A

∆E LIN EM LIN EM
10−9 8.60 · 10−3 1.09 · 10−1 8.90 · 10−2 3.32 · 10−1

10−6 8.60 · 10−3 1.09 · 10−1 8.90 · 10−2 3.32 · 10−1

10−3 8.60 · 10−3 1.09 · 10−1 8.90 · 10−2 3.32 · 10−1

100 8.09 · 10−3 1.09 · 10−1 8.53 · 10−2 3.31 · 10−1

103 7.01 · 10−1 1.15 · 10−1 8.37 · 10−1 3.40 · 10−1

106 9.99 · 10−1 1.12 · 10−1 1.00 · 10−0 3.36 · 10−1

109 1.00 · 10−0 1.12 · 10−1 1.00 · 10−0 3.36 · 10−1

Table 5.10: Approximation of fine-scale solution by linear and energy minimizing coarse
space for medium 2; geometry: 1/h x 1/h x H/h, h = 1/120, H = 12h

coarse mesh for reasonable mesh sizes H > h > 0. The latter also implies that the rigid

body rotations are only approximated globally.

We can summarize the numerical results obtained in this section as follows. The en-

ergy minimizing construction allows a low energy approximation of the basis functions,

independently of the Young’s modulus of the inclusions. We considered different me-

dia where the discontinuities are either isolated in the interior of coarse elements or

randomly distributed. Using an energy minimizing coarse space, our experiments show

uniform condition number bounds w.r.t. both, coefficient variations in the Young’s

modulus and the mesh size. In contrast, robustness is not achieved with the linear

coarse space. The linear basis function cannot capture the smallest eigenvalues associ-

ated to the discontinuities in the material parameters. The energy of the basis function

strongly depends on the Young’s modulus of the inclusion. As the experiments show, no

uniform iteration number and condition number bounds are achieved. This observation

holds for all considered media.

5.9 Conclusions

In this chapter, we construct energy minimizing coarse spaces for microstructural prob-

lems in linear elasticity. The coarse basis is such that it contains the rigid body transla-

tions exactly, while the rigid body rotations are preserved approximately. We utilize the

coarse basis for the construction of two-level overlapping domain decomposition pre-
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conditioners in the additive version and perform experiments on 3D binary media. For

the class of problems which excludes pure traction boundary values, the results show

uniform condition number bounds w.r.t. both, coefficient variations in the Young’s mod-

ulus and the mesh size. Furthermore, we test the fine-scale approximation of the energy

minimizing coarse space and observe uniform results, independent of the contrast in

the composite material.

We presented the construction by performing the minimization w.r.t. the global Neu-

mann matrix Ā. However, if the Neumann matrix is not available, the minimization can

also be performed w.r.t. the stiffness matrix A, where Dirichlet boundary conditions

are already applied. We illustrate in the following consideration that this may even

lead to an improved treatment of high contrast inclusions which are positioned such

that they touch the global Dirichlet boundary. Note that, in both cases, no fine degree

of freedom on the Dirichlet boundary should contribute to the interpolation operator.

If the global Dirichlet boundary is such that ΓD := ΓD1 = ΓD2 = ΓD3 , i.e., Dirichlet

conditions are imposed in each component at x ∈ ΓD, the construction of the energy

minimizing basis as opposed before does not require additional attention. However, if

the Dirichlet boundaries are such that ΓDi 6= ΓDj , i 6= j, then the construction might

produce high energy basis functions near the global Dirichlet boundary when measured

in terms of the energy-norm induced by A. More precisely, let us assume that a stiff

and small inclusion touches the global boundary and fully lies in a set ωp with p ∈ N̄H ,

xp ∈ ∂Ω. Thus, we have three basis functions φp,EM
m : ωp → R3,m = 1, 2, 3, with low

energy w.r.t. the semi-norm induced by Ā. Now, we assume that Dirichlet conditions

are applied only in the first component on ωp ∩ ΓD1 6= ∅. By construction, each basis

function has small energy w.r.t. Ā. However, the situation might not be the same when

the energy is measured in A-norm, which derives from Ā be deleting entries related to

fine Dirichlet degrees of freedom. The energy might depend on the contrast between

matrix material and inclusion when measured w.r.t. the A-norm. For instance, if each

of the three basis functions describes a rotation of the inclusion, deleting the entries

related to Dirichlet DOFs in the first component yields basis functions whose energy

grows with the magnitude of the material parameters in the inclusion also for m = 2 and

m = 3. By construction, the “first basis function” does not remain in the coarse space

due to the applied Dirichlet boundary conditions. However, the second and third basis
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function remain there with possibly high energy w.r.t. A. This specific characteristic

can be overcome by performing the overall construction w.r.t. the norm induced by A.
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6

Convergence Analysis

In this chapter, we present a novel convergence analysis for two-level overlapping

Schwarz preconditioners for multiscale problems in linear elasticity, arising from a

vector-valued piecewise-linear finite element discretization. In the context of the devel-

oped condition number bounds, we analyse the robustness properties of the multiscale

coarse spaces which are introduced in chapter 3, 4 and 5 again in more detail.

The experimental results presented in the previous chapters (see also [16, 17, 19])

justify expectations to obtain condition number bounds for the PDE system of linear

elasticity similar to the existing ones for scalar elliptic PDEs in [45] (cf. also the bound

in equation (1.4)). This issue is investigated in detail in this chapter (see also [15]). The

bounds developed here are sharp and show that robustness may also be achieved for

problems where the coefficients cannot be resolved by a coarse mesh. Furthermore, they

provide guidance in the construction of robust coarse spaces for two-level overlapping

domain decomposition preconditioners. The analysis carried out in this chapter follows

the outstanding framework provided in [45]. A condition number bound for the linear

elasticity system in the form of the bound in equation (1.4) is obtained.

To give a comprehensive understanding of the analysis presented subsequently, we

also recall notations introduced in earlier chapters and equip them by the extensions

required.

The chapter is organized as follows. Since we are considering problems with homoge-

neous boundary conditions on the Dirichlet boundary, we shortly recall the governing

equations and the discretization in this setting in section 6.1. Section 6.2 deals with the

two-level additive Schwarz method, further notations and assumptions on the ingredi-
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ents are introduced. We present the framework for the analysis in section 6.3, section

6.4 contains the main convergence result of the analysis. In the context of the developed

convergence results, we investigate the properties of the different multiscale coarsening

strategies which are introduced in the previous chapters in section 6.5. We validate

the sharpness of the theoretical findings in section 6.6 using the multiscale coarsen-

ing strategies to perform numerical tests on binary media in 3D. A short discussion

finalizes the chapter in section 6.7.

6.1 Preliminaries

Let Ω ⊂ Rd be a bounded, open, polygonal (d = 2) or polyhedral (d = 3) domain.

We consider a solid body in Ω, deformed under the influence of volume forces f and

traction t, the displacement field u of which is governed by the system of linear elas-

ticity as introduced in section 2.2. For simplicity, we may assume in this chapter that

homogeneous Dirichlet boundary conditions are imposed on ΓD in each component of

the vector-field, where ΓD ⊂ Γ = ∂Ω and Γ admits the decomposition into two disjoint

subsets ΓD and ΓN , Γ = ΓD ∪ ΓN with meas(ΓD) > 0. Thus, we are in the setting

as introduced in section 2.2 with homogeneous boundary conditions on the Dirichlet

boundary. Additionally, we may assume here that the global Dirichlet boundary ΓD
can be characterized by a union of faces F ⊂ T of elements T ∈ TH . More precisely, if

there is a point x ∈ ΓD, then we find T ∈ TH such that an entire face F of T touches ΓD.

Additionally, we introduce the following convention. We denote by ΣH := ΣH(Ω̄ \ ΓD)

the set of coarse nodes of TH which do not touch the global Dirichlet boundary. This

convention applies to the index-set of coarse nodes NH := NH(Ω̄ \ ΓD) in a straight-

forward manner. Moreover, we make a slight modification of the primarily introduced

notation of coarse degrees of freedom in section 2.6. We redefine DH to the set of coarse

degrees of freedom which do not touch the Dirichlet boundary ΓD, i.e.

DH := DH(Ω̄ \ ΓD) =
{

(p,m) ∈ NNp×d : p ∈ NH , m ∈ {1, . . . , d}, xp 6∈ ΓD
}
.

For any set D ⊂ Ω̄, we denote by DH(D) := {(p,m) ∈ DH : p ∈ NH(D)} the set

of coarse degrees of freedom in D. Beyond the slight modification of the Dirichlet

boundary and the notation of DH , all other notations introduced in chapter 2 remain

unchanged.
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6.2 Two Level Overlapping Domain Decomposition

The following two theorems repeat basic results in domain decomposition theory. Proofs

can be found in [97]. They provide the basis for the convergence analysis presented in

the next section. Theorem 6.2.1 also states a reasonable assumption on the choice of

the overlapping subdomains.

Theorem 6.2.1. (Colouring argument) The set of overlapping subspaces {Ωi, i =
1, . . . , N} can be coloured by NC ≤ N different colours such that if two subspaces
Ωi and Ωj have the same colour, it holds Ωi ∩ Ωj = ∅. Let NC be the smallest possible
number such that the colouring argument holds. Then, the largest eigenvalue of the
two-level additive Schwarz preconditioned linear system is bounded by

λmax(M−1
ASA) ≤ NC + 1.

Theorem 6.2.2. (Stable decomposition) Suppose there exists a number C0 ≥ 1 , such
that for every uh ∈ Vh0 , there exists a decomposition uh =

∑N
i=0 u

i with u0 ∈ VH0 and
ui ∈ Vh(Ωi), i = 1, . . . , N such that

N∑
i=0

a(ui,ui) ≤ C2
0 a(uh,uh).

Then, it holds
λmin(M−1

ASA) ≥ C−2
0 .

As we can see, the choice of the coarse space has no influence on the estimate of the

largest eigenvalue of the preconditioned system. However, it is crucial for obtaining

a small constant C0 in the estimate of the smallest eigenvalue in Theorem 6.2.2. We

proceed with stating some assumptions on the overlapping covering {Ωi, i = 1, . . . , N},
the coarse triangulation TH and the coarse space VH and introduce some notations.

6.2.1 The Overlapping Subdomains

For each i = 1, . . . , N, let Ω◦i := {x ∈ Ωi : x 6∈ Ω̄j for any j 6= i} be the subset of

Ωi which is not overlapped with the closure of any other subdomain. Being oriented

towards the analysis for scalar elliptic PDEs in [45], we use the tools introduced in [45]

which allow us stating regularity assumptions on the subdomains and the width of the
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overlap Ωi \ Ω◦i between subdomains and their direct neighbours. We introduce the

near boundary subsets, defined for θ > 0 by:

Ωi,θ :=
{
x ∈ Ωi : dist(x,Γi) < θ

}
,

where Γi := ∂Ωi \ ΓD. The part of Ωi which is overlapped with its neighbours should

be of uniform width δi > 0. In the following, we refer to δi as the overlap parameter.

Assumption 6.2.1. (Overlap assumption [45]) For a fixed constant 0 < c < 1 and
δi > 0, it holds

Ωi,cδi ⊂ Ωi \ Ω◦i ⊂ Ωi,δi .

Figure 6.1: Illustration of the subdomain Ωi, the interior Ω◦i which is not overlapped by
any other subdomain and the near boundary subset Ωi,δi

in 1D

Definition 6.2.1. (Partition property [45]) We say that the set Ωi,θ has the partition
property if there exists a finite covering of Ωi,θ with Lipschitz polyhedra, each of which
has: volume ∼ θd; a closure which intersects Γi in a set of measure ∼ θd−1; diameter
∼ θ; length of edges ∼ θ;

We extend the concept of the regularity of meshes (cf. Definition 2.3.2) to subdomains

in the following way:

Definition 6.2.2. (Shape regularity) Let Ωi ⊂ Ω̄ be such that Assumption 6.2.1 holds.
We introduce the shape parameter ρi of Ωi by

ρi := sup
{
θ : Ωi,θ has the partition property

}
.

Then, Ωi is said to be shape-regular if ρi ∼ diam(Ωi).

Assuming that Ωi consists of the interior of a union of shape-regular elements τ ∈ Th (cf.

section 2.3.1), the same applies to the overlapped part Ωi\Ω◦i . Hence, Ωi,δi ⊃ Ωi\Ω◦i has

the partition property and by Assumption 6.2.1, we have 0 < δi ≤ c′ρi. As introduced
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in equation (2.21), we denote the restriction of the subspace Vh to the subdomain Ωi by

Vi = Vh(Ωi) for i = 1, . . . , N . For our analysis in the next section, we require partition

of unity functions subordinate to the covering Ωi, which are defined as follows [45].

Definition 6.2.3. (Partition of unity) A partition of unity subordinate to a covering
{Ωi, i = 1, . . . , N} of Ω is a set of functions {χi ∈ W 1,∞(Ω), i = 1, . . . , N}, with the
properties:

(PU1) suppχi ⊂ Ω̄i, i = 1, . . . , N ;

(PU2) 0 ≤ χi(x) ≤ 1, x ∈ Ω̄, i = 1, . . . , N ;

(PU3)
∑N

i=1 χi(x) = 1, x ∈ Ω̄;

The existence of such a partition of unity can be shown, given that for each Ωi, the

overlap assumption holds with an overlap parameter δi > 0 (e.g. [97, Lemma 3.4]).

Indeed, we have χi(x) = 1 and thus, ∇χi(x) = 0 in Ωi \Ω◦i . We denote by Π({Ωi}) the

set of all partitions of unity {χi} subordinate to the covering {Ωi, i = 1, . . . , N}.

6.2.2 The Coarse Space

As introduced in section 2.3.2 and 2.4, let the coarse mesh TH consist of triangles

(d = 2) or tetrahedra (d = 3), with coarse mesh diameter H := maxT∈TH HT where

HT = diamT . For p ∈ N̄H , we recall respectively introduce the sets

ωp := interior
( ⋃
{T∈TH : p∈NH(T )}

T

)
, ωT := interior

( ⋃
{p∈NH(T )}

ω̄p

)
,

which consist of the interior of the union of coarse elements which are attached to the

node xp ∈ Σ̄H and the element T ∈ TH , respectively. Following section 2.4, for any p ∈

Figure 6.2: Illustration of the sets ωp and ωT in 1D

N̄H and m ∈ {1, . . . , d}, we define a vector-valued basis function φp,Hm : Ω̄ → Rd ∈ Vh,

such that the abstract coarse space VH0 = span
{
φp,Hm : p ∈ N̄H , x

p 6∈ ΓD
}

satisfies the

constraints in Assumption 2.4.1, which are repeated here for a better reading:
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Assumption 6.2.2. (Abstract coarse space)

(C1) φp,Hm = (φp,Hm1 , . . . , φ
p,H
md )>, φp,Hmk (xq) = δpq δmk, p ∈ N̄H , k ∈ {1, . . . , d},

(C2) supp φp,Hm ⊂ ω̄p,

(C3) ‖φp,Hmk‖L∞(Ω) ≤ C, k ∈ {1, . . . , d},

(C4)
∑

p∈N̄H
φp,Hmk (x) = δmk, x ∈ Ω̄, k ∈ {1, . . . , d},

(C5) RBM ⊂ span
{
φp,Hm : p ∈ N̄H , k ∈ {1, . . . , d}

}
.

The set of rigid body modes are defined in chapter 2.4. We make one assumption on

the correlation of the size of the overlapping subdomains and the diameter of the coarse

mesh and introduce

TH(Ωi) :=
{
T ∈ TH : T ∩ Ω̄i 6= ∅

}
.

We define the local coarse mesh diameter [45]

Hi := max
T∈TH(Ωi)

HT . (6.1)

Assumption 6.2.3. (Coarse space and subdomains) Let Hi be the local coarse mesh
diameter in (6.1) and let ρi be the shape parameter in Definition 6.2.2. We require that
there exists a constant C, such that

(C6) Hi ≤ Cρi, i = 1, . . . , N .

6.3 General Framework for Analysis

In the following two sections we present a comprehensive convergence analysis for two-

level additive Schwarz domain decomposition methods for multiscale problems in linear

elasticity. We first introduce further semi-norms and state assumptions on the stiffness

tensor in section 6.3.1. Important technical lemmas are provided in section 6.3.2. They

are necessary to prove the coefficient explicit condition number bound in Theorem 6.4.1.

6.3.1 Notation and Assumptions on Material Parameters

In our analysis, we may assume that the heterogeneities of the underlying material are

resolved by the fine mesh Th. Thus, the stiffness tensor C is piecewise constant in
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τ ∈ Th. For any domain ω ⊂ Ω, we define the bilinear form

aω(u,v) :=
∫
ω
(C : ε(u)) : ε(v) dx. (6.2)

If ω = Ω, we may omit the index and write a(u,v) = aΩ(u,v) instead. Furthermore,

we assume the stiffness tensor C to be positive definite and uniformly bounded in Ω̄.

To be more specific, we assume that a lower and upper bound for the eigenvalues of

the stiffness tensor exists not only globally in Ω̄, but also locally in each τ ∈ Th. More

precisely, we assume there is cmin = cmin(τ) > 0 and cmax = cmax(τ) such that the

strain energy in τ is bounded by cmin ε(v) : ε(v) ≤ (C : ε(v)) : ε(v) ≤ cmax ε(v) : ε(v)

a.e. for all v ∈ [H1(τ)]d. By proper rescaling of the stiffness tensor with a constant,

we may assume that cmin ≥ 1 a.e. in Ω. Note that this does not change the condition

number of the corresponding linear system in equation (2.14).

The bilinear form in equation (6.2) induces a weighted semi-norm on [H1(ω)]d, which

we denote by | · |a,ω. It is also referred to as the “energy” norm. Furthermore, we

introduce the unweighted semi-norm

|v|2ε,ω:=
∫
ω
ε(v) : ε(v) dx. (6.3)

Due to the assumption on the smallest eigenvalue of C, we have |v|ε,ω ≤ |v|a,ω for

all v ∈ [H1(ω)]d. Additionally, for any τ ∈ Th, there is cmax uniformly bounded in Ω,

cmax(τ) <∞ such that |v|2a,τ ≤ cmax(τ)|v|2ε,τ for v ∈ [H1(τ)]d. As introduced in section

2.1, the L2-norm on [H1(ω)]d reads

‖v‖2[L2(ω)]d :=
∫
ω
|v|2 dx.

Equation (2.1) and (2.2) state the general form of the PDE system of anisotropic linear

elasticity. When each of the constituent materials of the solid body is isotropic, the elas-

ticity tensor simplifies to cijkl(x) = λ(x)δijδjk+µ(x)(δikδjl+δilδjk) in Ω, with Lamé co-

efficients λ and µ. The stress tensor reduces to σ(u) = C : ε(u) = λtr(ε(u))I+2µε(u).

To simplify the notations, in the following analysis, we assume that each constituent of

the underlying composite is isotropic. However, all the theoretical results also apply if

the stiffness tensor C is anisotropic. Remark 6.4.1 summarizes the adaptions required

to make the theory applicable.
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To ensure that the “isotropic stiffness tensor” is positive definite with cmin ≥ 1, it

is sufficient to assume that µ ≥ 1/2 and 2µ + dλ ≥ 1 a.e. in Ω̄. A bound for the

largest eigenvalue of the stiffness tensor is given by cmax(τ) = max{2µ, 2µ + dλ} for

each τ ∈ Th. It can also be derived from the following relation, valid in Rd: We have

for each τ ∈ Th,

∫
τ
ε(u) : ε(u) dx =

d∑
i,j=1

∫
τ
εij(u)2 dx ≥

d∑
i=1

∫
τ
εii(u)2 dx,

and ∫
τ
ε(u) :

(
tr(ε(u))I

)
dx =

d∑
i,j=1

∫
τ
εii(u)εjj(u) dx ≤ d

d∑
i=1

∫
τ
εii(u)2 dx.

Thus, we obtain
∫
τ ε(u) : ε(u) dx ≥ d−1

∫
τ ε(u) :

(
tr(ε(u))I

)
dx ∀u ∈ [H1(τ)]d.

Recalling the bilinear form in equation (6.2) with C : ε(u) = λtr(ε(u))I + 2µε(u)

yields the estimate. Note that the above relation holds also pointwise a.e. in Ω. Since∫
τ ∇ · u dx =

∫
τ tr(ε(u)) dx, the divergence-free term is dominating if λ� µ.

6.3.2 Technical Lemmas

In this section we introduce two indicators which measure the coefficient robustness

of the coarse basis as well as the coefficient robustness w.r.t. the partitioning into

overlapping subdomains. These indicators both appear in the condition number bound

of the preconditioned linear system which is stated in Theorem 6.4.2.

To prove the existence of a stable decomposition (Theorem 6.2.2), we need to show

the existence of a coarse interpolant which satisfies the approximation property and is

stable in the appropriate norms. Therefore, we introduce a quasi-interpolant (cf. [24])

in the following way.

Definition 6.3.1. Let the coarse basis functions be given according to Assumption
6.2.2. We define the (linear) quasi-interpolant IH : [H1

0 (Ω)]d → VH by

IHu =
∑
p∈NH

d∑
m=1

πp,um (xp)φp,Hm ,

102



6.3 General Framework for Analysis

where πp,u := (πp,u1 , . . . , πp,ud )> ∈ [H1(ωp)]d is the L2-projection of u onto the space of
rigid body modes RBM(ωp).

The following lemma gives the approximation property of the quasi-interpolant.

Lemma 6.3.1. (Approximation property) For the linear operator IH : [H1
0 (Ω)]d → VH

of Definition 6.3.1, the following approximation property holds: For all u ∈ [H1
0 (Ω)]d

and T ∈ TH ,
‖u− IHu‖2[L2(T )]d ≤ CH

2|u|2ε,ωT ,

where the constant C is independent of H.

Proof. Let T ∈ TH such that ωT does not touch the boundary ΓD ⊂ ∂Ω. Let r be the
L2-projection of u onto the space of rigid body modes RBM(ωT ). Define û := u− r.
Then, r ∈ RBM(ωT ) and û is orthogonal to r in [L2(ωT )]d. By Assumption 6.2.2 (C5),
the coarse space VH |ω̄p contains the rigid body modes on ω̄p ⊂ Ω̄ for all p ∈ NH(T ).
It holds pointwise in T that IHu = IH(û+ r) = IH(û) + r. Thus we obtain

‖u− IHu‖2[L2(T )]d = ‖û+ r − (IH(û) + r)‖2[L2(T )]d

= ‖û− IHû‖2[L2(T )]d

≤ 2
(
‖û‖2[L2(T )]d + ‖IHû‖2[L2(T )]d

)
.

Now, we obtain

‖IHû‖[L2(T )]d =
∥∥∥ ∑
p∈NH(T )

d∑
m=1

πp,ûm (xp)φp,Hm
∥∥∥

[L2(T )]d

≤
∑

p∈NH(T )

∥∥∥ d∑
m=1

πp,ûm (xp)φp,Hm
∥∥∥

[L2(ωp)]d
(6.4)

≤ C‖û‖[L2(ωT )]d ,

where the last inequality follows from the property of the L2-projection. Thus, using
Lemma 2.5.6, we obtain

‖u− IHu‖2[L2(T )]d ≤ C‖û‖2[L2(ωT )]d

= C‖u− r‖2[L2(ωT )]d

≤ CH2|u|2ε,ωT .
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If T ∈ TH is such that ωT touches the boundary ΓD at a whole face (3D), the result is
obtained using Lemma 2.5.7,

‖IHu‖2[L2(T )]d ≤ C‖u‖
2
[L2(ωT )]d ≤ CH

2|u|2ε,ωT .

Otherwise, if ωT touches the Dirichlet boundary only on a node or an edge (3D), the
argument before can be applied by adding an additional element to ωT .

Remark 6.3.1. Note that from the estimates in equation (6.4), we can conclude that
|πp,um (xp)|2≤ C|ωp|−1‖u‖2

[L2(ωp)]d
for m ∈ {1, . . . , d}. This is due to

φp,Hm ‖2[L2(ωp)]d ∼ H
d,

and ∥∥πp,um (xp)φp,Hm
∥∥

[L2(ωp)]d
≤ C|πp,um (xp)|

∥∥φp,Hm ∥∥
[L2(ωp)]d

.

Before we prove the stability estimate for the quasi-interpolant in Definition 6.3.1, we

introduce the following “stability measure”. Note that the dependence of the following

indicator on the coefficients λ and µ is implicitly given over the energy functional | · |a,Ω

as defined in section 6.3.1.

Definition 6.3.2. (Coarse space robustness indicator) Let the coarse space satisfy
Assumption 6.2.2. We define the coarse space robustness indicator

γ(λ, µ) := max
(p,m)∈DH

{
H2−d
p |φp,Hm |2a,Ω

}
, Hp = diam(ωp). (6.5)

Lemma 6.3.2. (Stability estimate) For the linear operator IH : [H1
0 (Ω)]d → VH in-

troduced in Definition 6.3.1, it holds for all u ∈ [H1
0 (Ω)]d and T ∈ TH ,

|IHu|2a,T ≤ C γ(λ, µ) |u|2a,ωT .

Proof. Let T ∈ TH . We first consider the case where ωT does not touch the boundary
ΓD ⊂ ∂Ω. Let r be the L2-projection of u onto the space of rigid body modes RBM(ωT )
and define û := u− r. By Assumption 6.2.2 (C5), the coarse space VH |ω̄p preserves
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the rigid body modes. Hence, it holds IHr = r pointwise in ωT and we obtain

|IHu|2a,T = |IHû|2a,T =
∣∣∣ ∑
p∈NH(T )

d∑
m=1

πp,ûm (xp)φp,Hm
∣∣∣2
a,T

≤ C max
(p,m)∈DH(T )

|πp,ûm (xp)φp,Hm |2a,T

≤ C max
(p,m)∈DH(T )

(
|ωp|−1‖û‖2[L2(ωp)]d

)
|φp,Hm |2a,T

≤ C|T |−1‖û‖2[L2(ωT )]d max
(p,m)∈DH(T )

|φp,Hm |2a,T .

Since û is L2-orthogonal to any rigid body motion on ωT , we can apply the scaled
Poincaré-Korn inequality (Lemma 2.5.6) and obtain,

|IHu|2a,T ≤ C|T |−1H2|û|2ε,ωT max
(p,m)∈DH(T )

|φp,Hm |2a,T

≤ C max
(p,m)∈DH(T )

H2−d
p |φp,Hm |2a,T |û|2ε,ωT

≤ Cγ(λ, µ)|û|2a,ωT ,

where we used the assumption that |v|ε,ωT≤ |v|a,ωT for all v ∈ [H1(ωT )]d in the last
estimate. If ωT touches ΓD on a face (3D), we apply Lemma 2.5.7 and obtain

|IHu|2a,T ≤ C|T |−1‖u‖2[L2(ωT )]d max
(p,m)∈DH(T )

|φp,Hm |2a,Ω

≤ C|T |−1|u|2ε,ωT max
(p,m)∈DH(T )

H2−d
p |φp,Hm |2a,Ω

≤ Cγ(λ, µ)|u|2a,Ω.

If ωT touches ΓD ⊂ ∂Ω in a single node or edge (3D), an additional element can be
added to ωT and the previous estimate can be applied.

In the proof of the next lemma (Lemma 6.3.3), we are dealing with vector-valued

functions which are not piecewise linear on Th. Therefore, we require the vector-valued

nodal interpolant Ih : [H1(Ω)]d → Vh which projects the quadratic functions onto Vh.

The interpolant is defined by

Ihv =
∑
j∈N̄h

d∑
k=1

vk(xj)ϕ
j,h
k ,
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where any basis function ϕj,hk of Vh is defined according to (2.10). First, we introduce an

indicator which defines a measure for the coefficient robustness w.r.t. the partitioning

into overlapping subdomains {Ωi, i = 1, . . . , N}.

Definition 6.3.3. (Partitioning robustness indicator) Let the overlap parameter δi be
as in Assumption 6.2.1. For a particular partition of unity {χi} (see Definition 6.2.3),
let

π(λ, µ, {χi}) :=
N

max
i=1

{
δ2
i ‖ max{2µ, 2µ+ dλ} |∇χi|2‖L∞(Ω)

}
.

Then, the partitioning robustness indicator is defined by

π(λ, µ) := inf
{χi}∈Π({Ωi})

π(λ, µ, {χi}). (6.6)

Lemma 6.3.3. Let Assumption 6.2.1 hold and let vh ∈ Vh. Then for all i = 1, . . . , N ,

|Ih(χivh)|2a,Ω ≤ C‖max{2µ, 2µ+ dλ}|∇χi|2‖L∞(Ωi) ‖v
h‖2[L2(Ωi\Ω◦i )]d + |vh|2a,Ωi

= C
π(λ, µ, {χi})

δ2
i

‖vh‖2[L2(Ωi\Ω◦i )]d + |vh|2a,Ωi .

Proof. Let τ ∈ Th, and let χi(τ) be the value of χi at the centroid of τ . For x ∈ τ ,

|Ih(χivh)(x)| = |Ih((χi − χi(τ))vh)(x) + χi(τ)vh(x)|

≤ |Ih((χi − χi(τ)vh)(x)| + |vh(x)|.

Since |u|2a,τ ≤ max {2µ, 2µ + dλ} |u|2ε,τ ∀u ∈ [H1(τ)]d for an isotropic material (see
section 6.3.1), we obtain

|Ih(χivh)|2a,τ ≤ max {2µ, 2µ+ dλ} |Ih((χi − χi(τ))vh)|2ε,τ + |vh|2a,τ . (6.7)

Let hτ denote the diameter of τ . Using the shape regularity of Th, we get

|Ih((χi − χi(τ))vh)(x)| =
∣∣ ∑
j∈Nh(τ)

(χi(xj)− χi(τ))vh(xj)ϕj,h(x)
∣∣

≤
∑

j∈Nh(τ)

|χi(xj)− χi(τ)| |vh(xj)|

≤ Chτ‖∇χi‖L∞(τ)

∑
j∈Nh(τ)

|vh(xj)|

≤ Ch1−d/2
τ ‖∇χi‖L∞(τ)‖vh‖[L2(τ)]d .

(6.8)
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Furthermore, we have by an inverse inequality (cf. [36]) and the shape regularity,

|Ih((χi − χi(τ))vh)|ε,τ ≤ Ch−1
τ ‖Ih((χi − χi(τ))vh)‖[L2(τ)]d . (6.9)

Now, we combine equation (6.7) with equation (6.9). Using |τ |∼ hdτ , together with
equation (6.8), we conclude,

|Ih(χivh)|2a,τ ≤ C max {2µ, 2µ+ dλ} h−2
τ ‖Ih((χi − χi(τ))vh)‖2[L2(τ)]d + |vh|2a,τ

≤ C max {2µ, 2µ+ dλ} ‖∇χi‖2L∞(τ)‖v
h‖2[L2(τ)]d + |vh|2a,τ .

Summing over all τ ⊂ Ωi and using that ∇χi = 0 in Ωi \ Ω◦i finishes the proof.

Before we state the main convergence result in Theorem 6.4.1, we need the following

lemma, which can be found for scalar-valued functions in [45]. It is a generalization of

[97, Lemma 3.10] and carries over to the case of vector-valued functions by component-

wise application.

Lemma 6.3.4. Let δi ≤ Hi ≤ ρi and let u ∈ [H1(Ωi,Hi)]
d, i = 1, . . . , N . Then it holds,

‖u‖2[L2(Ωi,δi )]
d ≤ Cδ2

i

((
1 +

Hi

δi

)
|u|2[H1(Ωi,Hi )]

d +
1

Hiδi
‖u‖2[L2(Ωi,Hi )]

d

)
.

Proof. Using the shape regularity of the finite partiton {Ωi}, Ωi,δi can be covered by a
suitable set of Lipschitz polyhedra, that admit the application of Friedrich’s inequality
(cf. [97, Corollary A.15]). Summing over the finite set of polyhedra, we obtain

‖u‖2[L2(Ωi,δi )]
d ≤ C

(
δ2
i |u|2[H1(Ωi,δi )]

d + δi‖u‖2[L2(∂Ωi)]d

)
≤ C

(
δ2
i |u|2[H1(Ωi,Hi )]

d + δi‖u‖2[L2(∂Ωi)]d

)
. (6.10)

To bound the second term in equation (6.10), we cover Ωi,Hi by a suitable set of
polyhedra. Applying the trace theorem (cf. [97, Lemma A.6]) to such a polyhedron D,
together with a scaling argument, we obtain

‖u‖2[L2(∂D)]d ≤ C
(
H−1
i ‖u‖

2
[L2(D)]d + Hi|u|2[H1(D)]d

)
.

The result follows when summing over all polyhedra D and substituting into the right-
hand side of equation (6.10).

Based on Lemma 6.3.4, we can prove a result which involves the semi-norm in (6.3).
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Lemma 6.3.5. Let δi ≤ Hi ≤ ρi and let u ∈ [H1(Ωi,Hi)]
d, i = 1, . . . , N . Then it holds,

‖u‖2[L2(Ωi,δi )]
d ≤ Cδ2

i

((
1 +

Hi

δi

)
|u|2ε,(Ωi,Hi ) +

1
Hiδi

‖u‖2[L2(Ωi,Hi )]
d

)
.

Proof. We cover Ωi,Hi by a suitable finite set of polyhedra. We denote such a polyhe-
dron by D. Using Korn inequality in Lemma 2.5.4, the equivalence of norms in finite
dimensional spaces and a scaling argument, it exists a constant CD which only depends
on the shape of D, such that

|u|2[H1(D)]d ≤ CD
(
|u|2ε,D + diam(D)−2‖u‖2[L2(D)]d

)
.

Summing over the finite set of polyhedra with diam(D) = Hi and using Lemma 6.3.4,
we get

‖u‖2[L2(Ωi,δi )]
d ≤ Cδ2

i

((
1 +

Hi

δi

)
|u|2ε,(Ωi,Hi ) +

( 1
H2
i

+
2

δiHi

)
‖u‖2[L2(Ωi,Hi )]

d

)
.

Since Hi ≥ δi by assumption, we obtain δ−1
i H−1

i ≥ H−2
i and the result follows.

6.4 Convergence Results

The following theorem provides the basis for the main convergence result in this chapter.

Together with Theorem 6.4.2, it states a coefficient explicit condition number bound

of the additive Schwarz preconditioned linear system.

Theorem 6.4.1. Under Assumption 6.2.1, 6.2.2 and 6.2.3, for all uh ∈ Vh, there
exists a decomposition

uh =
N∑
i=0

ui with u0 ∈ VH0 , u
i ∈ Vh(Ωi), i = 1, . . . , N, (6.11)

such that
N∑
i=0

a(ui,ui) ≤ C2
0 a(uh,uh), (6.12)

with
C2

0 ≤ C
(
π(λ, µ) γ(0, 1)

N
max
i=1

(
1 +

Hi

δi

)
+ γ(λ, µ)

)
,

and the constant C is independent of mesh and material parameters.
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Proof. Let {χi} ∈ Π({Ωi}) be any partition of unity. Define

u0 := IHuh and ui = Ih(χi(uh − u0)),

where IH is the quasi-interpolant defined in Definition 6.3.1. Then, by Definition 6.2.3,
we have

∑N
i=1 u

i = uh − u0 and equation (6.11) follows. From Lemma 6.3.2 and the
shape regularity of the coarse mesh TH , we obtain

|u0|2a,Ω =
∑
T∈TH

|IHuh|2a,T ≤ Cγ(λ, µ)
∑
T∈TH

|uh|2a,ωT ≤ Cγ(λ, µ)|uh|2a,Ω.

Recalling the definition of π(λ, µ, {χi}) and using Lemma 6.3.3, it follows for i =
1, . . . , N ,

|ui|2a,Ω ≤ Cπ(λ, µ, {χi})
1
δ2
i

‖uh − u0‖2[L2(Ωi,δi)]d
+ |uh − u0|2a,Ωi . (6.13)

Furthermore, using Lemma 6.3.5, we obtain for δi ≤ Hi,

‖uh − u0‖2[L2(Ωi,δi)]d
≤ Cδ2

i

((
1 +

Hi

δi

)
|uh − u0|2ε,Ωi +

1
Hiδi

‖uh − u0‖2[L2(Ωi)]d

)
.(6.14)

This estimate trivially holds if δi > Hi. Inserting (6.14) in (6.13), we obtain

|ui|2a,Ω ≤ Cπ(λ, µ, {χi})
((

1 +
Hi

δi

)
|uh − u0|2ε,Ωi+

1
Hiδi

‖uh − u0‖2[L2(Ωi)]d

)
+|uh − u0|2a,Ωi . (6.15)

Using the triangle inequality |uh − u0|2ε,Ωi≤ 2(|uh|2ε,Ωi+|u
0|2ε,Ωi) and Lemma 6.3.2 of

the quasi-interpolant, we obtain

|uh − u0|2ε,Ωi ≤ C γ(0, 1)
∑

T∈TH(Ωi)

|uh|2ε,ωT ,

and

|uh − u0|2a,Ωi ≤ C γ(λ, µ)
∑

T∈TH(Ωi)

|uh|2a,ωT .
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Furthermore, due to Lemma 6.3.1, we obtain

‖uh − u0‖2[L2(Ω)]d ≤
∑

T∈TH(Ωi)

‖uh − u0‖2[L2(T )]d ≤ CH
2
i

∑
T∈TH(Ωi)

|uh|2ε,ωT .

We substitute the last estimates into (6.15), take the sum over the subdomains and use
the assumption | · |ε,Ω≤ | · |a,Ω(see section 6.3.1), to obtain

N∑
i=0

|ui|2a,Ω ≤ C

(
π(λ, µ, {χi}) γ(0, 1)

N
max
i=1

(
1 +

Hi

δi

)
+ γ(λ, µ)

)
|uh|2a,Ω.

The estimate holds for any partition of unity {χi} ∈ Π({χi}). Recalling the definition
of the partitioning robustness indicator π(λ, µ), the result follows.

Theorem 6.4.2. (Condition number bound) Let Assumption 6.2.1, 6.2.2 and 6.2.3
hold. Then, the condition number of the preconditioned linear system M−1

ASA is bounded
by

κ(M−1
ASA) ≤ C

(
π(λ, µ) γ(0, 1)

N
max
i=1

(
1 +

Hi

δi

)
+ γ(λ, µ)

)
,

with a constant C independent of mesh parameters Hi and h, overlap parameters δi
and material coefficients λ and µ.

Proof. According to Theorem 6.2.1, it holds λmax(M−1
ASA) ≤ NC + 1. Furthermore,

from Theorem 6.2.2 and Theorem 6.4.1, we conclude that λmin(M−1
ASA) ≥ C−2

0 . Thus,
Theorem 6.4.2 follows immediately since κ(M−1

ASA) = λmax(M−1
ASA)/λmin(M−1

ASA).

Before we proceed with investigating the classes of problems for which the robustness

indicator of the particular multiscale coarse spaces is well behaved, we note that these

results are also applicable when the stiffness tensor is not isotropic.

Remark 6.4.1. The definitions of the coarse space robustness indicator as well as
the partitioning robustness indicator are based on the Lamé coefficients λ and µ. As
such, the convergence result shown in Theorem 6.4.1 is only valid for isotropic linear
elasticity. However, it can be easily extended to the bilinear form defined in equa-
tion (6.2) with anisotropic stiffness tensor C. The coarse space robustness indicator
γ(λ, µ) =: γ̃(C) only needs an adaption in its notation, i.e. γ(0, 1) = γ̃(I). The par-
titioning robustness indicator π(λ, µ) needs the following adaption. In Definition 6.3.3
and in the proof of Lemma 6.3.3, max{2µ, 2µ+ dλ} needs to be replaced by the largest
eigenvalue cmax of the stiffness tensor as mentioned in section 6.3.1. Note that, by

110



6.5 Coarsening Strategies

assumption, such an upper bound is available locally in each element τ ∈ Th such that
(C : ε(v)) : ε(v) ≤ cmax(τ) ε(v) : ε(v) a.e. for all v ∈ [H1(τ)]d. W.l.o.g., we also
require the minimal eigenvalue of C to be larger than 1.

Assuming that the overlap δi of the subdomain Ωi, i = 1, . . . , N , and its neighbors is

large enough such that each high contrast inclusion lies in at least one subdomain, the

partitioning robustness indicator π(λ, µ) is well behaved, i.e. it is bounded indepen-

dently of the magnitude of the coefficient jumps. However, to obtain a robust two-level

method, the coarse space robustness indicator γ(λ, µ) implies the construction of basis

functions with minimal energy.

6.5 Coarsening Strategies

In the next section we present numerical experiments in 3D using the multiscale coars-

ening strategies introduced in the previous chapters. Next to the vector-valued (i) linear

coarse spaces, we also apply (ii) multiscale finite element coarse spaces with linear and

oscillatory boundary conditions as well as (iii) energy minimizing coarse spaces for lin-

ear elasticity. Having summarized the construction of the multiscale coarse spaces in

chapter 3, 4 and 5 in detail, in the following, we discuss how their coarse space robust-

ness indicators γ(λ, µ) behave in terms of the heterogeneities in the PDE coefficients

λ and µ. In section 6.6, we then show numerically that the robustness of each coarse

space is correctly predicted by the novel coefficient robustness indicators, they clearly

indicate why the developed multiscale coarsening strategies should be preferred over

standard vector-valued piecewise linear coarse spaces.

6.5.1 Linear Coarsening

Let φp,Hm = φp,Lm be a vector-valued piecewise linear coarse basis function on TH . Its val-

ues are uniquely determined by the nodal constraints φp,Lmk(x
q) = δpq δmk, p ∈ N̄H , k ∈

{1, . . . , 3}, given in Assumption 6.2.2 (C1). Assumptions 6.2.2 (C2) - (C3) follow

immediately, while (C4) and (C5) hold since the space of rigid body modes RBM(Ω̄)

is a subspace of the space of piecewise linear vector-valued functions. It can be verified

that

∣∣φp,Lm ∣∣2
a

=
∫
ωp

2µ ε2(φp,Lm ) + λ(∇ · φp,Lm )2 dx ∼ H−2
p

∑
τ⊂ω̄p

∫
τ

4µ+ λ dx, (6.16)
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where Hp is the local coarse mesh diameter. Thus, the coarse space robustness indi-

cator γL(λ, µ) is unbounded if λ or µ → ∞ in some τ ∈ Th. This explains the poor

performance when linear coarsening is used when large coefficient jumps occur.

6.5.2 Multiscale Coarsening with Linear Boundary Conditions

The multiscale coarse space with vector-valued linear boundary conditions performs

much better than linear coarsening when coefficient jumps occur in the interior of

coarse elements (see chapter 3). An important feature of multiscale-FE coarse spaces

is their energy minimizing property in the interior of coarse elements. It follows from

the definition of a linear multiscale-FE basis function φp,MsL
m in T ∈ TH ,

aT (φp,MsL
m ,vh) = 0 ∀ vh ∈ Vh(T )

φp,MsL
m = φp,Lm on ∂T,

that ∣∣φp,MsL
m

∣∣
a,T
≤
∣∣ψ∣∣

a,T
∀ ψ ∈ Vh(T ) with ψ = φp,Lm on ∂T. (6.17)

Thus, it holds γMsL(λ, µ) ≤ γL(λ, µ). The property in (6.17) allows that the coarse

space robustness indicator γMsL(λ, µ) can be bounded independently of the material

coefficients if coefficient jumps appear in the interior of coarse elements.

According to the analysis in chapter 3, it is clear that the coarse space VMsL satisfies

Assumption 6.2.2, (C1) - (C5). Assumption (C1) follows since φp,MsL
m coincides

with a vector-valued linear coarse basis function on ∂T , (C4) and (C5) hold since

the PDE-harmonic extension of vector-valued linear boundary data to the interior of

coarse elements guarantees that the rigid body modes are preserved.

Remark 6.5.1. For scalar elliptic PDEs, it its shown in [45] that the coarse space
robustness indicator γMsL is bounded independently of the material contrast assuming
that the high contrast inclusions have a distance to coarse element boundaries of at least
one layer of fine elements τ ∈ Th. The argument used in the proof in [45] can also be
applied to linear elasticity. That is, we can construct a function ψ which coincides with
φp,Lm on ∂T and vanishes outside the near boundary strip of width ∆λ,µ ≥ h in which
λ and µ appear to be small. The energy of this function ψ is bounded independently of
the high contrast coefficients since the constructed function is zero there where the PDE
coefficients are large. Using the energy minimizing property of the multiscale coarse
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space in equation (6.17) yields the bound for γMsL(λ, µ). Note that the bound we obtain
by following these arguments might be pessimistic as it depends on the smallest distance
of the high contrast inclusions in T ∈ TH to the element boundary ∂T by ∆−2

λ,µ.

We may conclude that γMsL(λ, µ) remains bounded if λ and µ are small in the strip

of width proportional to HT near the boundaries ∂T of coarse elements T ∈ TH . The

linear multiscale basis allows robust two-level convergence of the additive Schwarz pre-

conditioned system, given that the coarse mesh can be constructed such that large

coefficient variations appear exclusively in the interior of coarse elements. Robustness

may be lost as soon as high contrast regions touch or cross coarse element bound-

aries. Since a basis function φp,MsL
m is linear on ∂T , we know from equation (6.16) that

γMsL(λ, µ) grows unboundedly as soon as λ → ∞ or µ → ∞ in some τ ∈ Th which

touches ∂T , T ∈ TH .

6.5.3 Multiscale Coarsening with Oscillatory Boundary Conditions

As we have seen in chapter 4, this dependence may be overcome by adapting the bound-

ary data to the underlying heterogeneities. The oscillatory multiscale basis function

φp,MsO
m is defined such that for each T ∈ TH ,

aT (φp,MsL
m ,vh) = 0 ∀ vh ∈ Vh(T ) (6.18)

φp,MsL
m = ηp,Tm on ∂T,

where the “oscillatory boundary data”

ηp,Tm : ∂T → R3

are constructed following Algorithm 4.1 by solving reduced problems on the edges and

faces of coarse elements.

The oscillatory multiscale finite element method hierarchically applies the local energy

minimizing property in (6.17). More precisely, computing subproblems on the edges

and faces of coarse elements yields boundary data which also obey a minimal energy

property (w.r.t. the reduced operator) on a k-dimensional (k < d) manifold, similar to

that in (6.17). For most out of all possible scenarios of coefficient distributions, we may

deduce that γMsO ≤ γMsL.
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The boundary conditions of the oscillatory multiscale finite element basis are imposed

in (4.3) such that the nodal constraints in Assumption 6.2.2 (C1) are satisfied. Fol-

lowing the analysis in chapter 4, Assumptions 6.2.2, (C2) - (C4) are also fulfilled.

As mentioned in section 4.5, not all the rigid body rotations can be extracted from

solving lower-dimensional problems on the coarse element boundaries, the multiscale

coarse space with oscillatory boundary conditions satisfies Assumption 6.2.2 (C5) ap-

proximately.

Considering the scalar elliptic case, it its shown in [45] that the coarse space robustness

indicator γMsO can be bounded independently of the contrast in the material param-

eters for certain classes of heterogeneous problems. A proof is provided when high

contrast regions can be characterized as a union of disjoint “islands”. The proof is

quite technical and is presented for problems in 2D under a few assumptions [45, As-

sumption 4.3]. It applies the energy minimizing property by constructing a particular

finite element function for which an energy bound is presented. The function is obtained

by (i) extending the oscillatory boundary data (by a linear function) to the interior of

high contrast regions which touch the coarse element boundary, (ii) extending the re-

sulting function to the remaining part of the element interior using the trace-theorem

and further by (iii) applying a H1-stable quasi-interpolant to obtain a piecewise linear

function which preserves the boundary values which are obtained in (i). While some of

these assumptions which are required in the proof ([45, Assumption 4.3]) are of purely

technical nature, one of them reveals the class of problems for which an energy bound

cannot be obtained.

To specify this restriction in more detail, we consider a high contrast region Υ, a subset

of T ⊂ TH which shall be simply connected and touch the boundary ∂T . We denote

by Υ |∂T the intersection of the high contrast region with ∂T . The assumption stated

in [45, Assumption 4.3] says that Υ |∂T must be simply connected on ∂T . Indeed, if

the latter is not satisfied, the energy of the basis function may not be bounded.

To see this, we examine a scenario in 3D where the high contrast region touches two faces

of the tetrahedral element, without touching the edge which connects these two faces.

Hence, Υ |∂T is not simply connected (on ∂T ). Depending on the precise boundary

values on Υ |∂T , extending the boundary data from the two faces to the coarse element

interior may introduce a large gradient in the oscillatory multiscale-FE basis function

between the two faces inside the high contrast region Υ. In this case, the energy of
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the multiscale-FE basis function may depend explicitly on the material coefficient in

Υ. Inversely, if Υ |∂T is simply connected, the oscillatory boundary data may be such

that their gradient is low on Υ |∂T (this typically holds for scalar elliptic PDEs and

elasticity problems due to the energy minimizing property w.r.t. the restricted PDE on

∂T ), the boundary values on the two faces are almost constant and do not introduce

large gradients in the basis functions when extended to the coarse element interior.

For linear elasticity problems and variations in the Young’s modulus, a similar strategy

can be used. In 2D, the energy of the basis can be approximated by applying the

concept provided for scalar problems separately to each component of the vector-field

in R2. However, in R3, such an estimate may be too pessimistic. This difficulty appears

in 3D on the faces of coarse elements since the boundary data on a face may prescribe

a rotation of a stiff inclusion which touches the interior of a face but none of the

edges. The pessimistic energy estimate in such a scenario can be avoided by measuring

the energy of the finite element function in the high contrast regions directly in the

energy-norm, which introduces further technicalities.

Remark 6.5.2. To summarize, we shall say that energy bounds similar to the ones
proven for scalar elliptic PDEs in [45] can be achieved also for elasticity problems with
variations in the Young’s modulus. Restrictions similar to them in [45, Assumption
4.3] apply. The requirement of Υ |∂T (intersection of high contrast region with the
coarse element boundary) to be simply connected can be quite restrictive in 3D when
tetrahedral elements are used, especially in the vicinity of sharp edges and corners. This
specific circumstance does not hold exclusively for linear elasticity problems but applies
to scalar elliptic problems as well. In the context of the energy bound we may conclude
that hexahedral coarse meshes may be preferred as they reduce the amount of element
boundaries which are introduced when tetrahedral coarse meshes are used.

6.5.4 Energy Minimizing Coarsening

The explicit dependence of the coarse space robustness indicator in equation (6.5) on

the energy of the basis functions encourages the construction of basis function with

minimal energy as presented in chapter 5. The energy minimizing coarse basis function

φp,Hm = φp,EM
m is defined such that

∑
p∈N̄H

∣∣φp,EM
m

∣∣2
a,Ω
→ min, subject to

∑
p∈N̄H

φp,EM
mk = δmk k = 1, 2, 3.
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The coarse space satisfies Assumption 6.2.2, (C1) - (C4). In general, the global rota-

tions are not preserved exactly and thus, assumption (C5) is fulfilled approximately.

It is proven in Lemma 5.5.1 that the coarse space presented here is locally PDE-

harmonic in the interior of coarse elements. As such, it also has a local energy minimiz-

ing property in the interior of coarse elements. However, the boundary conditions of the

energy minimizing coarse basis functions are not explicitely given, “optimal boundary

conditions” are computed implicitly by solving the global Lagrange multiplier system

in equation (5.7) for each m ∈ {1, 2, 3}.
This implies that for the construction of the boundary values of the energy minimizing

basis, not only the local coefficient distribution (e.g. on ∂T ) is taken into account.

Instead, the main difference to the oscillatory multiscale finite element basis is that the

coefficient distribution is considered at least in a small neighborhood of the supports of

a particular basis function. We may point out here that this circumstance is confirmed

by the robustness of the one-level additive Schwarz preconditioner for the Lagrange

multiplier system in section 5.7. The local corrections in a small neighbourhood of ω̄p
(see Figure 5.1) ensure a robust construction of the boundary values for the energy

minimizing basis functions.

Provided that high contrast regions are small compared to the coarse mesh diameter,

the coarse space robustness indicator γEM(λ, µ) is in most cases well behaved. It holds

the relation c−1γEM(λ, µ) ≤ γMsO(λ, µ), where a small constant c ≥ 1 in the first

inequality may be required since the coarse basis is defined by minimizing the sum

of their energies and not their maximum as it appears in the coarse space robustness

indicator.

6.6 Numerical Results

In this section, we show numerically the sharpness of the theoretical bounds given in

Theorem 6.4.2. We give a series of examples involving binary composites and apply

the developed multiscale coarsening strategies within the two-level additive Schwarz

preconditioner. We perform the simulations on domains Ω̄ = [0, 1]× [0, 1]× [0, L], L >

0, with regular fine and coarse triangular mesh Th and TH of uniform mesh size h

and H, respectively. According to the description in chapter 2.3.2, both meshes are

constructed from an initial voxel geometry (1/h× 1/h×H/h voxels), where each voxel
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is further decomposed into five tetrahedra. If not mentioned otherwise, the overlapping

subdomains Ωi, i = 1, . . . , N , are chosen to consist of a coarse element T ∈ TH , extended

by a few layers of fine elements τ ∈ Th. The overlap width δ > 0 is specified as a multiple

of h.

We show condition numbers as well as iteration numbers of the PCG algorithm. The

stopping criterion is to reduce the preconditioned initial residual by six orders of mag-

nitude. The estimated condition numbers κ(M−1
ASA) are computed based on the three

term recurrence which is implicitly formed by the coefficients within the PCG algorithm

(cf. [89]).

We consider different heterogeneous media, each of which consists of a matrix material

with small inclusions. If not mentioned otherwise, the coefficients of the matrix material

are chosen to be µmat = 1 and λmat = 2
3 in the rest of this section. Keeping the

coefficients of the matrix material fixed, we perform tests in which we either vary the

stiffness of the inclusions or we let them approach the incompressible limit. Note that

the latter is not in contradiction with Remark 2.2.1 as the matrix material itself is not

incompressible. To indicate variations in the material stiffness, we denote by ∆E the

ratio between stiff or soft inclusions and the matrix material, i.e. the material coefficients

are such that µinc = ∆Eµmat and λinc = ∆Eλmat. Note that this is equivalent to varying

the Young’s modulus of the inclusions while the Poisson number remains unchanged.

Letting λinc →∞, we test the performance of the preconditioners when the inclusions

tend to become incompressible, i.e. ν → 1
2 (cf. the relation between λ, µ and E, ν in

equation (2.5)).

In a first numerical test, we assume that the discontinuities in the material coefficients

are isolated, such that the material jumps occur only in the interior of coarse elements.

Figure 6.3 shows such a binary composite (medium 1) with one tetrahedral inclusion

inside each coarse tetrahedron. The inclusions in the interior are of the same form as

the coarse elements in which they appear and have a distance to the coarse element

boundaries of two layers of fine elements. First, we use linear coarsening and observe

the condition number of the preconditioned matrix under variations in the material

coefficients. The coefficients of the inclusions vary as shown in Table 6.1. Indicated

is the condition number of the preconditioned matrix and the robustness indicator

γL(λ, µ) for the linear coarse space. Table 6.1 (a) corresponds to increasing the Young’s

modulus of the inclusions, while in Table 6.1 (b), the Poisson number ν of the inclusions
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Figure 6.3: Medium 1: binary composite; matrix material (grey) and tetrahedral inclu-
sions (red) in the interior of the coarse elements; discretization in 12× 12× 12 voxels; each
voxel is decomposed into 5 tetrahedra; 3D view (left) and 2D projection with fine mesh,
showing the position of the inclusions (right);

approach the incompressible limit (ν → 1
2). The coarse space robustness indicator is

unbounded and indicates the loss of robustness of the linear coarse space with increasing

contrast. It holds γL(λ, µ)→∞ for λinc →∞ or µinc →∞ and the condition number

increases with the contrast in the material parameters.

∆E κ(M−1
ASA) γL(λ, µ)

100 40 5.0 · 100

103 546 1.9 · 102

106 2240 1.85 · 105

109 2240 1.85 · 108

(a)

λinc κ(M−1
ASA) γL(λ, µ)

100 40 5.0 · 100

103 220 4.2 · 101

106 1870 3.7 · 104

109 1890 3.7 · 107

(b)

Table 6.1: Condition numbers of the preconditioned matrix on medium 1 with linear
coarsening; h = 1/240, H = 12h, δ = 2h; (a): λmat = 1 ; (b): λmat = µinc = 1

We repeat this experiment and replace the vector-valued linear coarse space with the

multiscale-FE coarse space. Note that on medium 1, the multiscale-FE coarse spaces

with linear and oscillatory boundary conditions coincide since the medium appears ho-

mogeneous on the faces and edges of coarse elements. Inhomogeneities occur only in

the interior of coarse elements. Table 6.2 shows the condition number of the precondi-

tioned matrix using the multiscale finite element coarse basis, the material coefficients

coincide with the ones presented for the vector-valued linear coarse space in Table 6.1.

Since the inclusions in medium 1 have a distance to the coarse element boundaries of

at least one layer of fine elements, the multiscale-FE basis is bounded in energy as the

material contrast increases. This is reflected by the coarse space robustness indicator,
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∆E κ(M−1
ASA) γMsL(λ, µ)

100 40 5.0
103 42 5.9
106 42 6.0
109 42 6.0

(a)

λinc κ(M−1
ASA) γMsL(λ, µ)

100 40.0 5.0
103 44.5 5.2
106 44.5 5.2
109 44.5 5.2

(b)

Table 6.2: Condition numbers of the preconditioned matrix on medium 1 with multiscale-
FE coarsening; h = 1/240, H = 12h, δ = 2h; (a): λmat = 1 ; (b): λmat = µinc = 1

it holds γMsL(λ, µ) ≤ C independent of λinc and µinc. We see that γMsL(λ, µ) cor-

rectly indicates the robustness of the method. Note that, representing λ and µ by the

equivalent counterparts E and ν, the condition number of the preconditioned system

is bounded independently of variations in the Young’s modulus as well as the Poisson

ratio of the inclusions which may even approach the incompressible limit νinc → 1
2 .

Now, we observe the sharpness of the bound in Theorem 6.4.2 w.r.t. the partitioning

robustness indicator π(λ, µ), defined in equation (6.6). Therefore, we consider different

choices of the overlap width of the subdomains {Ωi, i = 1, . . . , N} on medium 2 where

the discontinuities in the material coefficients are not isolated, but occur on any of the

coarse element boundaries. Figure 6.4 shows such a binary composite with inclusions

positioned in an alternating structured ordering.

Figure 6.4: Medium 2: binary composite; matrix material (grey) and 1× 1× 1 inclusions
(red); Discretization with 15× 15× 5 voxels (left), 2D projection with fine & coarse mesh
(right); inclusions touch the boundaries of coarse tetrahedral elements

In a first experiment, we choose each Ωi, i = 1, . . . , N to have a minimal overlap δ = 1h

with its neighbours. Table 6.3 shows the condition numbers of the preconditioned

matrix for different coarsening strategies and ∆E → ∞. If δ = 1h, any partition
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∆E LIN MsL EM γEM(λ, µ)
100 3.8 · 101 3.8 · 101 5.8 · 101 5.3
103 2.1 · 103 2.2 · 103 2.2 · 103 11.1
106 1.8 · 106 1.9 · 106 2.0 · 106 11.2
109 1.3 · 109 1.2 · 109 1.3 · 109 11.2

Table 6.3: Condition number of preconditioned matrix on medium 2: h = 1/225, H = 5h,
δ = 1h

of unity {χi, i = 1, . . . , N} subordinate to the covering {Ωi, i = 1, . . . , N} has high

gradients at some high contrast regions along the coarse element boundaries. The

partitioning robustness indicator remains unbounded, we have π(λ, µ) = O(∆E). For

any coarsening strategy, the condition numbers shown in Table 6.3 grow with the

material contrast. The small overlap width deteriorates convergence and the condition

number is dominated by the partitioning robustness indicator, even for the energy

minimizing coarse space for which the coarse space robustness indicator γEM(λ, µ) is

bounded.

We repeat the experiment by increasing the overlap width of the subdomains from

δ = 1h to δ = 2h. Table 6.4 shows the condition numbers of the preconditioned

matrix for increasing contrast ∆E → ∞. For δ = 2h, there exists a partition of

unity {χi, i = 1, . . . , N} subordinate to the covering {Ωi, i = 1, . . . , N} that allows low

gradients in any area where λ or µ is large and the partitioning robustness indicator

π(λ, µ) remains bounded independently of the contrast. We see that the condition

numbers in Table 6.4 are determined by the coarse space robustness indicators.

∆E LIN MsL EM γEM(λ, µ)
100 16 16 18 5.3
103 716 407 25 11.1
106 2560 2550 26 11.2
109 2560 2580 26 11.2

Table 6.4: Condition number of preconditioned matrix for medium 2: h = 1/225, H = 5h,
δ = 2h

Linear and multiscale-FE coarse space with linear boundary conditions are unbounded

in energy. According to equation (6.16), any inclusion has a high (coefficient dependent)
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∆E γL(λ, µ) γMsL(λ, µ) γEM(λ, µ)
100 4.6 · 100 4.6 · 100 5.3
103 4.7 · 102 2.8 · 102 11.1
106 4.6 · 105 2.7 · 105 11.2
109 4.6 · 108 2.7 · 108 11.2

Table 6.5: Coarse space robustness indicators for linear, multiscale-FE and energy mini-
mizing coarse space on medium 2

contribution to the energy of the vector-valued linear basis. For the linear multiscale-

FE coarse space, only inclusions which touch the coarse element boundaries contribute

to the total energy with a factor proportional to the material coefficient. Inclusions

in the interior of coarse elements are captured properly. Only the energy minimizing

coarse space ensures a contrast independent bound of the energy. Table 6.5 summarizes

the robustness indicators for linear, linear multiscale-FE and energy minimizing coarse

space.

For the third medium, we do not impose any restriction on the position of the small

inclusions and consider a binary medium whose inclusions are uniformly distributed

(see Figure 6.5. Table 6.6 shows the condition numbers for different contrasts ∆E

Figure 6.5: Medium 3: binary composite discretized with 240× 240× 12 voxels; matrix
material (grey) and 1× 1× 1 inclusions (red) uniformly distributed; 3D view (left) and 2D
projection showing the position of the inclusions (right)

which varies over several orders of magnitude. The overlapping subdomains are formed

by the interior of a union of coarse elements, such that they coincide with the supports

of the basis functions. This leads to an overlap width δ = O(H), which is often referred
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∆E LIN MsL EM γEM(λ, µ)
100 4.4 4.4 4.4 5.5
103 19.3 8.4 4.8 5.7
106 414 373 5.0 5.8
109 427 465 5.0 5.8

Table 6.6: Condition numbers on medium 3; h = 1/240, H = 12h, generous overlap;
linear, multiscale-FE and energy minimizing coarsening for different ∆E

to as a generous overlap. Again, γEM(λ, µ) correctly indicates the robustness of the

energy minimizing coarse space for the randomly distributed inclusions.

In the next set of numerical tests we investigate the robustness of the multiscale-FE

basis with oscillatory boundary conditions on medium 4 in Figure 6.6. The medium

contains a coarse block of 7× 7× 7 voxels which alternates its orientation. The distri-

bution of the inclusions is shown in more detail in Figure 6.7. At each slice in the plane

normal to X3, the position of the inclusions above and below this level are indicated

with dark and shaded red, respectively. The material parameters of the matrix material

are given by λmat = µmat = 1, for the inclusions we have λinc = µinc = ∆E .

Figure 6.6: Medium 4: binary composite; matrix material (grey) and 1× 1× 1 inclusions
(red); discretization in 14 × 14 × 7 voxels (left); 2D projection onto the (X1, X2)-plane
with position of the inclusion (right); each coarse block is decomposed in 5 tetrahedrons;
inclusions touch the boundaries of coarse tetrahedral elements

The results show that the multiscale finite element coarse space with oscillatory bound-

ary conditions gives coefficient-independent condition numbers. The PDE-harmonic

extension of the oscillatory boundary data to the interior of the coarse elements allow

the energy of the basis functions to be bounded and γMsO(λ, µ) correctly predicts the
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Figure 6.7: 2D slices (at X3 = l h, l ∈ {1, . . . , 6}) of a coarse block of 7× 7× 7 voxels of
medium 4; boundaries of coarse tetrahedral elements (black), matrix material (grey) and
1× 1× 1 inclusions (red); inclusions touch the slice from below (shaded red) or top (dark
red).

robustness of the preconditioner.

∆E LIN MsL MsO γMsO

100 25 25 25 4.8
103 426 233 25 6.8
106 965 955 25 6.9
109 970 955 25 6.9

Table 6.7: Condition number of preconditioned matrix on medium 4: H = 7h, δ = 2h

6.7 Conclusions

In this work, we present a novel analysis for two-level additive Schwarz domain decom-

position preconditioners for multiscale problems which arise from the finite element

discretization of the PDE system of linear elasticity. Of main interest in our analysis is

the application to highly heterogeneous, particle reinforced composite materials in three

spatial dimensions. For scalar elliptic PDEs of multiscale character, such an analysis

is already provided by Graham, Lechner and Scheichl in [45]. The work presented here

can be seen as an extension of their work from scalar elliptic PDEs to the PDE system

of linear elasticity. We present coefficient-explicit bounds for the condition number

of the two-level additive Schwarz preconditioned linear system. These estimates give
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sharper bounds than existing ones, without requiring that the coefficients are resolved

by the coarse mesh. The bounds show a dependence of the condition number on the

energy of the coarse basis functions, the coarse mesh and the overlap parameters. The

coarse space is assumed to contain the rigid body modes and can be considered as a

generalization of the space of vector-valued piecewise linear functions on a coarse tri-

angulation. The sharpness of the theoretical findings is demonstrated numerically by

performing tests on binary media using linear, multiscale-FE and energy minimizing

coarse spaces. The results show also that, using an oscillatory multiscale finite element

coarse space, robustness w.r.t. variations in the material coefficients can be achieved

not only for the class of problems where inclusions of high stiffness are isolated in the

interior of coarse elements, but also when inclusions cross coarse element boundaries.
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7

Parallelization: Application to

Multi-Phase Elastic Composites

As we can conclude from the model problems considered in the previous chapters,

energy minimizing coarse spaces are robust for a larger class of problems than e.g. the

multiscale finite element coarse space with vector-valued linear boundary conditions.

The latter shows only poor performance when inclusions of high stiffness touch coarse

element bondaries. In return, setting up the energy minimizing basis functions is, due

to the global problems which need to be solved, computationally more costly and shows

only poor scalability in a parallel implementation. The computation of the multiscale

finite element basis requires only local problems to be solved and is as such parallelizable

with optimal scaling properties. According to the considerations in chapter 4 and

chapter 6, the poor robustness properties of the linear multiscale-FE coarse space can be

circumvented to some extent by constructing boundary-values for the multiscale finite

element basis functions which are better adapted to the heterogeneities in the PDE

coefficients. Moreover, a coarse hexahedral mesh should be preferred over tetrahedral

coarse meshes as it significantly reduces the number of edges and faces, which is essential

for the robustness of the oscillatory multiscale finite element basis. This requires no

further adaptions of Algorithm 4.1 presented in section 4.3.

In this chapter we combine the results presented in the previous chapters to perform

material simulations on large heterogeneous multi-phase composites. More precisely,

we present an efficient, scalable and memory saving MPI (message passing interface,

cf. [39]) parallel implementation of the Preconditioned Conjugate Gradient algorithm,
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using the two-level additive Schwarz preconditioner with coarse space given by the

oscillatory multiscale finite element basis on a coarse hexahedral mesh. We investigate

the scalability of the implementation as well as the robustness of the preconditioner on

different test problems and give an application to large composites which are discretized

by more than 108 degrees of freedom.

One of the main challenges in the implementation are restrictions of the computer

architecture in the number of computational nodes itself and, of even greater impor-

tance, the resticted memory capacity at each particular node. The implementation of

the MPI-parallelized method for distributed memory architectures needs to be adapted

to these constraints. The key requirements are

• Efficiency and good parallel scalability on up to 27 processors;

• Memory saving implementation;

The latter is achieved by reassembling local stiffness matrices, which decreases the

required memory as the global stiffness matrix in (2.14) is stored only on local subsets

of the entire domain Ω. Before facing these issues in more detail in section 7.3, we

state the overall setting in section 7.1 and summarize the main components of the

parallelization in section 7.2. Numerical results are given in section 7.4, followed by the

finalizing conclusions in section 7.5.

7.1 Preliminaries

We are again in the setting as stated in chapter 2 and use the discretization provided

in section 2.2. Particularly, we apply the tetrahedral fine mesh Th in the form as

introduced in section 2.3.2. However, within this chapter, we replace the coarse tetra-

hedral elements and use a hexahedral coarse mesh TH for the construction of the basis

functions instead. The coarse elements, denoted by T ∈ TH , are formed by an agglom-

eration of fine elements τ ∈ Th to coarse blocks of size H ×H ×H. We then construct

the multiscale finite element basis with oscillatory boundary conditions as in chapter 4

by following Algorithm 4.1 for a hexahedral coarse mesh.

We use exactly the same method in parallel than we used before in the sequential

version, no specific variations in the PCG algorithm are pursued. Also, we apply

the classical two-level additive Schwarz preconditioner in the form presented in (2.23).
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Other variants such as restricted additive Schwarz (RAS) as introduced in [20] are

sometimes preferred due to a better parallel scaling behaviour. However, the RAS

preconditioner is not symmetric and cannot be used within the CG algorithm. It can

be combined with other Krylov subscape methods such as GMRES [89], which requires

extra memory for storing additional vectors which are not required for the CG method.

7.2 Aspects of the Parallelization

We summarize in detail the main components which are affected by the parallelization.

Starting with a brief summary of the overall ingredients, the details on the parallel

PCG method and the two-level additive Schwarz preconditioner follow subsequently.

7.2.1 Overview

1. Distribution of the mesh: The global regular fine mesh (see section 2.3.2)

is distributed into a set of P non-overlapping meshes on a set of (closed) sub-

structures {
�

Ωp, p = 1, . . . ,P},
⋃P

p=1

�

Ωp = Ω̄, each of which is assigned to one of

the processes p ∈ {1, . . . ,P}. Furthermore, each process p ∈ {1, . . . ,P} receives

the set of fine tetrahedral elements in the overlapping subdomain Ωp, which is

obtained by extending the substructure
�

Ωp by δ
h > 0 voxel-layers of fine elements.

We assume that the mesh can be distributed such that
�

Ωp does not cut coarse

hexahedral elements. The hexahedra are formed by agglomerating fine tetrahe-

dral elements τ ∈ Th(
�

Ωp) to coarse blocks of size H × H × H as described in

section 2.3.2. We denote the coarse mesh on process p by TH(
�

Ωp).

2. Computing the basis functions: The computation of the multiscale-FE ba-

sis functions with oscillatory boundary conditions requires the solution of local

problems within each hexahedral element T ∈ TH(
�

Ωp), p ∈ {1, . . . ,P}. For the

computation of the boundary values on ∂TH (see Algorithm 4.1), averaging the

material coefficients on the adjacent fine elements requires material information

on elements τ ∈ Th ⊃ Th(
�

Ωp) which touch ∂T with at least two of their vertices.

If ∂TH ∩ ∂
�

Ωp 6= ∅, this also requires the material parameters on elements outside

of
�

Ωp. However, the information can be found locally on process p since the over-

lapping subdomain Ωp extends the substructure
�

Ωp by at least one layer of fine

elements. Hence, no parallel communication is required for the determination of
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the material coefficients within the fine elements adjacent to ∂
�

Ωp. The computa-

tion of the oscillatory multiscale finite element basis functions in (4.1) and (4.2)

on TH(
�

Ωp) can be done fully in parallel.

3. Parallel PCG: The vectors and matrices used within the (P)CG algorithm have

to be distributed on the non-overlapping mesh on
�

Ωp, p ∈ {1, . . . ,P}. Within

each CG iteration, degrees of freedom at the interfaces need to be communicated

between the parallel processes. A scalable implementation depends on an efficient

parallelization of the (P)CG algorithm. Details on its parallelization are given in

section 7.2.2.

4. Two-Level preconditioning: The two-level additive Schwarz preconditioner

in (2.23) is applied once in each PCG iteration. It requires the exchange of

information in the entire overlap between processes of neighboring subdomains

and a global correction. Details on this procedure are stated in section 7.2.3.

Next, we address details concerning the implementation of the PCG algorithm in par-

allel. The CG algorithm and the two-level preconditioner are considered separately.

7.2.2 Parallel Preconditioned CG

The concepts of the parallelization of the PCG method which we present next can be

found also in [28]. For p ∈ {1, . . . ,P}, let R�
Ωp

denote the matrix which restricts a

(global) vector defined on Th(Ω̄) to a vector defined on Th(
�

Ωp), where
⋃P

p=1

�

Ωp = Ω̄

with
�

Ωp being a closed subset of Ω̄ as described above. The parallelization of algorithms

resulting from a finite element discretization with a non-overlapping distribution of

the global mesh Th typically involves two types of parallel vectors. Within the CG

algorithm, we need to distinguish between distributed and accumulated vectors.

Definition 7.2.1 (Accumulated vector). [28] Let vp be the information of a global vec-
tor v which is stored on process p. Then the vector v is said to be (stored) accumulated,
if

vp = R�
Ωp

v

for any p ∈ {1, . . . ,P}. That is, each process contains the full information of the
degrees of freedom on the interfaces of the non-overlapping substructures.
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Definition 7.2.2 (Distributed vector). [28] Let p ∈ {1, . . . ,P} and let up be the infor-
mation of a global vector u which is stored on process p. Then the vector u is said to
be (stored) distributed, if

u =
P∑

p=1

R>�
Ωp

up.

That is, each process contains only a part of the information of the degrees of freedom
which lie on the interfaces of the non-overlapping substructures.

Distributed vectors are e.g. obtained by an elementwise assembling of a vector over a

non-overlapping set of elements which are stored locally on each process. A typical

example of such a distributed vector is the right-hand side f in equation (2.14), which

is assembled in parallel over the fine elements τ ∈ Th(
�

Ωp) according to equation (2.18).

Any distributed vector can be easily transformed into an accumulated vector. The

transformation requires communication, values of degrees of freedom at the interfaces

need to be accumulated over processes which contain information of the particular

degree of freedom. As it is important for the parallel implemention to distinguish

between the two introduced types of vectors, we make the following convention. For

the rest of this chapter, we denote a global vector by u if it is stored accumulated on the

parallel processes, while the vector is indicated by u when being stored in a distributed

manner. The same differentiation can be applied to matrices. The global stiffness

matrix A can be assembled in parallel without communication by assembling the local

stiffness matrices A�
Ωp

according to section 2.2.4 over the non-overlapping set of elements

τ ∈ Th(
�

Ωp) which are stored locally on process p ∈ {1, . . . ,P}. Thus, the matrix A can

be classified as a distributed matrix in the sense that A =
∑P

p=1R
>
�
Ωp

A�
Ωp

R�
Ωp

.

To keep the amount of communication in each iteration of the parallel PCG-algorithm

(see Algorithm 7.1) as low as possible, the vectors r,v, f are stored in parallel as

distributed vectors while the vectors u, p, z are treated as accumulated vectors.

Now, we take a deeper look at the particular steps of the CG algorithm. Applying a

scalar product between a distributed vector r and an accumulated vector z yields [28]

〈r, z〉 = 〈
P∑

p=1

R>�
Ωp

rp, z〉 =
P∑

p=1

〈rp, R�
Ωp

z〉 =
P∑

p=1

〈rp, zp〉.
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Algorithm 7.1: The Preconditioned Conjugate Gradient Algorithm [28]
Require: initial guess u0, stopping tolerance ε > 0, max. # of iterations mit

Return: (approximated) solution of Au = fm1 r0 := f −Au0m2 z0 := M−1
AS r0m3 p0 := z0m4 σ0 := 〈r0, z0〉m5 k := 0

while k < mit and
√
σk/σ0 > ε dom6 vk := Apkm7 αk := σk

〈pk,vk〉m8 uk+1 := uk + αkpkm9 rk+1 := rk − αkvkm10 zk+1 := M−1
AS rk+1m11 σk+1 := 〈rk+1, zk+1〉m12 βk := σk+1

σkm13 σk+1 := σkm14 pk+1 := zk+1 + βkpkm15 k := k + 1

end

That is, the scalar products can be calculated locally on
�

Ωp, p ∈ {1, . . . ,P}, and

their sum needs to be accumulated and distributed to all processes. Thus, due to the

combination of an accumulated with a distributed vector, the application of the scalar

product in m4 , m7 and m11 of Algorithm 7.1 requires only one MPI ALLREDUCE (see

[39, 47]) for a real value. The application of the preconditioner in the CG algorithm

in m2 and m10 takes as input a distributed vector and returns an accumulated vector

and thus, requires communication between processes. The application of the two-level

additive Schwarz preconditioner is presented in more detail below. All other operations

including the daxpy (see e.g. [44]) operation in m8 , m9 and m14 as well as the matrix-

vector multiplication in m1 and m6 do not require further communication. The latter
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is true since the multiplication of a distributed matrix with an accumulated vector gives

a distributed vector, which can be seen from (cf. also [28])

Au =
P∑

p=1

R>�
Ωp

A�
Ωp

R�
Ωp

u =
P∑

p=1

R>�
Ωp

A�
Ωp

up =
P∑

p=1

R>�
Ωp

rp = r,

where rp :=
�

Apup. Summarized, we conclude that the parallel PCG algorithm requires

(i) two MPI ALLREDUCE operations within each PCG-iteration and (ii) communication

within the application of the preconditioner itself.

7.2.3 Two-Level Additive Schwarz Preconditioning in Parallel

Here we address the application of the classical two-level Schwarz preconditioner in

its additive version, i.e. in the form presented in (2.23). The preconditioner combines

local corrections on the overlapping subdomains and a coarse grid correction. In the

following, we analyse their parallelization separately.

Parallel One-Level Additive Schwarz

We are given a set of overlapping subdomains {Ωp, p = 1, . . . ,P} which are obtained by

extending the non-overlapping distribution of the regular mesh Th(
�

Ωp) by a few layers

of fine elements. We assume that Ωp\∂Ω is open. Let RΩp be the restriction operator of

a vector corresponding to degrees of freedom on the fine mesh from Ω̄ \ΓD to Ωp. The

one-level additive Schwarz preconditioner on the subdomains reads
∑P

p=1R
>
Ωp
A−1

Ωp
RΩp .

Given the overlapping distribution of the mesh with Ωp \ ∂Ω open, the computation

of the local submatrices AΩp , i = 1, . . . ,P can be done in parallel since the global

degrees of freedom outside of Ωp, which includes ∂Ωp, can be considered as homogeneous

Dirichlet degrees of freedom and thus, they may not enter the linear system. Only the

application of the one-level preconditioner to a vector requires communication. Before

the local corrections, as a part of the additive Schwarz preconditioner in step m2 andm10 of Algorithm 7.1, can be applied to a distributed vector r, communication between

neighboring subdomains is required. Due to the relation

Ωp =
( P⋃

q=1

(
Ωp \

�

Ωp

)
∩

�

Ωq

)
∪

�

Ωp,
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a parallel application of an distributed vector r to RΩp can be written as

rextd
p =

( P∑
q=1

R
(Ωp\

�
Ωp)∩

�
Ωq︸ ︷︷ ︸

DOFs outside of
�
Ωp

+
P∑

p=1

R�
Ωp︸ ︷︷ ︸

DOFs on
�
Ωp

)
r. (7.1)

Here, R
(Ωp\

�
Ωp)∩

�
Ωq

denotes the restriction matrix of a vector defined on Th(Ω̄) to

Th((Ωp \
�

Ωp) ∩
�

Ωq). Applying the first term in equation (7.1) to r requires commu-

nication of degrees of freedom in the overlapping regions of Ωp with the neighboring

substructures
�

Ωq. The second term is obtained by a vector-accumulation of degrees of

freedom at the interfaces of the non-overlapping distribution of the mesh. Since AΩp

can be assembled in parallel on process p, the action sextd
p := A−1

Ωp
rextd
p can be easily

applied and leaves flexibility in choosing the solver for the local problems. Finally, we

obtain the accumulated vector r1L with r1L
p = R�

Ωp

r1L by

r1L
p = R�

Ωp

r1L = R�
Ωp

P∑
q=1

R>Ωq
sextd
q =

P∑
q=1

R�
Ωp

R>Ωq
sextd
q . (7.2)

Thus, process p collects and accumulates the values of degrees of freedom on
�

Ωp from

overlapping regions Ωq, q 6= p of other processes. The resulting vector r1L is accumu-

lated, as desired in step m2 and m10 of Algorithm 7.1. Thus, applying the one-level

additive Schwarz preconditioner requires communication twice to transfer information

between the overlapping regions of neighboring subdomains.

Parallel Coarse Grid Correction

In the following we describe the parallel application of a coarse grid correction R>HA
−1
H RH

to a distributed vector r. We define by R�
ΩHp

the restriction matrix of a vector defined

on TH(Ω̄) on the coarse triangulation to TH(
�

Ωp). Here we use the assumption that the

distribution of the non-overlapping substructures {
�

Ωp, p = 1, . . . ,P}, is such that any

coarse element T ∈ TH(Ω̄) is fully contained in exactly one substructure
�

Ωq for some
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q ∈ 1 . . . ,P. The coarse stiffness matrix AH can be computed in parallel by (cf. [28])

AH = RHAR>H

=
P∑

p=1

RH(R>�
Ωp

A�
Ωp

R�
Ωp

)R>H

=
P∑

p=1

R>�
ΩHp

R�
ΩHp

(RHR
>
�
Ωp

A�
Ωp

R�
Ωp

R>H)R>�
ΩHp

R�
ΩHp

=
P∑

p=1

R>�
ΩHp

(R�
ΩHp

RHR
>
�
Ωp

)A�
Ωp

(R�
ΩHp

RHR
>
�
Ωp

)>R�
ΩHp

=:
P∑

p=1

R>�
ΩHp

A�
ΩHp
R�

ΩHp
. (7.3)

In the third equality we used that R>�
ΩHp

R�
ΩHp

= I�
ΩHp

(identity on range(R>�
ΩHp

)), which

underlies some general restrictions. However, the restrictions do not apply to the

regular mesh and its distribution considered here, we refer to [28] for more details.

As mentioned before in section 7.2.1, the basis functions can be computed locally

within the coarse hexahedral elements T ∈ TH(
�

Ωp), p = 1, . . . ,P. As a consequence,

since R�
ΩHp

RHR
>
�
Ωp

contains values of the basis functions restricted to
�

Ωp, computing

the global stiffness matrix A�
ΩHp

in the form of equation (7.3) can be done in parallel

without communication. Furthermore, the application of the distributed vector r to the

restricted matrix RH can be applied in parallel by rH
p = R�

ΩHp
RHR

>
�
Ωp

rp. We accumulate

the global stiffness matrix AH and the coarse residual vector rH =
∑P

p=1R
>
�
ΩHp

rH
p on

process p = 1 by collecting information of coarse degrees of freedom from all other

processes p = 2, . . . ,P. The coarse solve A−1
H sH = rH is applied locally on process

p = 1 using a direct sequential solver for the coarse linear system. The result sH is then

distributed to the other processes and yields the vector sHp = R�
ΩHp

sH which is stored

accumulated. Finally, from the coarse grid correction, we obtain the accumulated vector

r2L
p := R�

Ωp

R>HR
>
�
ΩHp

sHp . The latter step does not require further communication. The

result is added to r1L
p which we obtain in (7.2) from the correction on local subdomains.

Thus, the coarse grid correction needs communication in the way that (i) the data is

collected on a single process, solved sequentially and (ii) the result is distributed to all

processes.
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7.3 Details on the Implementation

We divide the initial fine mesh into overlapping subdomains of cuboidal form. Each

subdomain Ωp consists of a substructure
�

Ωp and their extension by δ
h layers of fine

elements (layers in terms of the underlying voxel structure). Moreover, each substruc-

ture
�

Ωp allows a further decomposition into hexahedral coarse elements T ∈ TH(
�

Ωp).

Given that the number of coarse elements stored on process p is large, we typically have

H � diam(Ωp). To ensure that the size of the coarse elements T ∈ TH(
�

Ωp) is com-

parable to the diameter of the overlapping subdomains used in the additive Schwarz

method, we further decompose Ωp into a set of overlapping subdomains

Ωp =
Sp⋃
`=1

Ωp`,

where Ω̄p` is obtained by extending T` ∈ TH(
�

Ωp) by δ
h layers of fine elements. The

coarse mesh diameter H can be large enough such that the coarse linear system has

a reasonably low number of degrees of freedom, allowing the application of a direct

sequential solver. Specifically, we use the PARDISO Intel MKL library [85]. Advantages

of introducing the additional level of subdomains are:

1. Memory requirements: For memory saving purposes, we do not store the full

matrices AΩp or A�
Ωp

on process p. Instead, we reassemble the local matrices

AΩp`
or AT` on Ωp` ⊂ Ωp and T` ⊂

�

Ωp, respectively.

2. Scalability: keeping the ratio H
δ fixed, the overlap width δ can be reduced while

decreasing the coarse mesh diameter H. A smaller overlap parameter δ increases

the ratio between local computations and parallel communication for the benefit

of a better parallel scalability.

3. Mesh parameters: As the condition number bound in 6.4.2 depends linearly on

1 + H
δ and δ shall be small, choosing H � diam(

�

Ωp) allows a lower number of

total PCG-iterations.

4. Flexibility: The substructuring allows a better control of the mesh parameters

which may otherwise be predicted by the initial geometry and the number of

processes used. Hence, the further decomposition introduces additional flexibility.

134



7.4 Numerical Results

7.4 Numerical Results

For the parallel two-level preconditioner with oscillatory multiscale finite element coarse

space, we perform numerical experiments testing the robustness of the method as well

as the scalability of the implementation. Furthermore, we apply the developed method

for a parallel simulation on a real composite microstructure.

7.4.1 Robustness w.r.t. Material Parameters

In the first set of numerical tests we observe the robustness of the oscillatory multiscale

finite element coarse space w.r.t. variations in the material parameters. To confirm the

argument that the two-level Schwarz preconditioner with the coarse space developed

within this chapter should be preferred over the oscillatory multiscale-FE coarse space

on a tetrahedral coarse mesh, we perform tests on the binary medium consisting of the

matrix material with uniformly distributed inclusions in Figure 7.1. On that medium

Figure 7.1: Binary composite discretized with 240 × 240 × 12 voxels; matrix material
(grey) and 1×1×1 inclusions (red) uniformly distributed; 3D view (left) and 2D projection
showing the position of the inclusions (right)

we performed tests before in section 6.6. Specifically, for the problem in Table 6.6, the

vector-valued linear and the linear multiscale finite element coarse space are not robust

for variations in the Young’s modulus of the inclusions. Robustness is achieved only

for the energy minimizing coarse space.

Here, we apply the multiscale finite element coarse space with oscillatory boundary

conditions to the medium in Figure 7.1. Once we use coarse elements in the form

of tetrahedra, once a hexahedral coarse mesh is used. A sparse direct solver of the
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tetrahedral mesh TH hexahedral mesh TH
∆E nit κ(M−1

ASA) γMsO(λ, µ) nit κ(M−1
ASA) γMsO(λ, µ)

100 34 4.0 · 101 5.0 · 100 16 9.0 2.1
103 61 2.9 · 102 1.6 · 101 16 9.5 2.1
106 297 6.9 · 103 1.3 · 104 16 9.5 2.1
109 810 4.0 · 106 1.3 · 107 16 9.5 2.1

Table 7.1: Iteration numbers nit, condition numbers κ(M−1
ASA) and coarse space robust-

ness indicator γMsO(λ, µ) for the medium in Figure 6.5; geometry: 1/h x 1/h x H/h,
h = 1/240, H = 12h, δ = 2h; oscillatory multiscale-FE coarse space with tetrahedral and
hexahedral coarse mesh under variation of the contrast ∆E

PARDISO Intel MKL library [85] is applied to compute the local subproblems and

the coarse problem which arise within the algorithm. The material parameters for the

matrix material are given by λmat = µmat = 1. Table 7.1 shows iteration and con-

dition numbers as well as the coarse space robustness indicator for different contrasts

∆E = λinc/λmat = µinc/µmat. Table 7.2 shows similar results under variations in the

parameter λinc, while µinc = 1. The iteration numbers shown are to reduce the precon-

ditioned initial residual by six orders of magnitude. The results in Table 7.1 and 7.2

tetrahedral mesh TH hexahedral mesh TH
λinc nit κ(M−1

ASA) γMsO(λ, µ) nit κ(M−1
ASA) γMsO(λ, µ)

100 34 4.0 · 101 5.0 · 100 16 9.0 2.1
103 40 5.5 · 101 5.7 · 100 16 9.5 2.1
106 109 4.2 · 102 1.0 · 103 16 9.5 2.1
109 215 1.9 · 103 1.0 · 106 16 9.5 2.1

Table 7.2: Iteration numbers nit, condition numbers κ(M−1
ASA) and coarse space robust-

ness indicator γMsO(λ, µ) for the medium in Figure 6.5; geometry: 1/h x 1/h x H/h,
h = 1/240, H = 12h, δ = 2h; oscillatory multiscale-FE coarse space with tetrahedral and
hexahedral coarse mesh for different values of λinc

show that the robustness of the oscillatory multiscale-FE coarse space is clearly influ-

enced by the choice of the coarse mesh. In the vicinity of sharp edges on the tetrahedral

mesh, inclusions are positioned such that they touch three edges of a tetrahedron, but

not the coarse node which touches these edges. This leads to an increase of the energy

of the basis. We refer to Remark 6.5.2 for more details. The situation is different on

the hexahedral mesh, robustness is achieved for any variation in the Lamé coefficients.
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7.4.2 Robustness w.r.t. Mesh Parameters

In the following test we observe the sharpness of the bound in Theorem 6.4.2 w.r.t. the

mesh parameter H and the overlap parameter δ. Table 7.3 shows the condition number

for a simulation on a domain Ω̄ = [0, 1]3 with fine mesh parameter h = 1/128. The

coarse mesh parameter H and the overlap width δ take different values while λ = 1 and

µ = 1 are constant. A direct sparse solver (PARDISO [85]) is used to solve the coarse

H \ δ 1h 2h 4h 8h 16h
2h 8, 91 - - - -
4h 13, 9 8, 32 - - -
8h 23, 5 12, 3 8, 35 - -
16h 45, 8 23, 1 11, 9 8, 34 -
32h 74, 8 37, 7 19, 2 8, 8 8, 25

Table 7.3: Condition numbers κ(M−1
ASA) for different values of H and δ; geometry: 1/h

x 1/h x 1/h, h = 1/128; λ = µ = 1

linear system in all cases except for H = 2h and H = 4h, where the coarse system is

solved using a fixed number of 20 V-cycles using SAMG (cf. [23]) as an approximate

linear solver. For the corrections on the subdomains, 10 SAMG V-cycle iterations

are applied. The condition numbers indicate their dependence on the ratio 1 + H
δ as

expected from the bound in Theorem 6.4.2.

7.4.3 Scaling Efficiency

In the next numerical test we examine the (strong) scalability of the implementation of

the developed preconditioner. We explore the times for computations on the medium in

Figure 7.2 for different numbers of processes. We calculate the speedup and the parallel

efficiency using P processes by SP := T1
TP

and EP := SP

P , respectively. We consider the

medium in Figure 7.2, discretized with 384× 72× 72 voxels. The material parameters

are chosen to Emat = 10MPa, Einc = 300MPa and νmat = νinc = 0.2. Table 7.4 shows

the run times for the parallel computations on a total of up to P = 32 processors. The

non-overlapping distribution of the mesh onto the parallel processes is such that each

process receives a block of size 384/P × 72 × 72 voxels. The mesh diameter is chosen

to be H = 12h and the overlap width equals δ = 2h. The tests are performed on a

shared memory architecture with 8 quad-core AMD Opteron processors. Inexact local
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Figure 7.2: Voxel geometry discretized with 384×72×72 voxels; inclusions (red) randomly
distributed

setup precond. solve total
P TP EP TP TP SP EP

1 4870 1.00 18800 23670 1.00 1.00
2 2370 1.02 9090 11460 2.06 1.03
4 1190 1.02 4640 5830 4.06 1.01
8 610 1.00 2400 3010 7.86 0.98
16 299 1.01 1250 1549 15.3 0.96
32 153 0.99 720 873 27.1 0.85

Table 7.4: Scalability (time TP in seconds) of the parallel algorithm for the medium in
Figure 7.2; H = 12h, δ = 2h;

solves (10 V-cycles) are applied for the correction on local subdomains. A total of 14

iterations are performed to reduce the initial residual by four orders of magnitude. The

basis functions are computed using SAMG as an approximate solver (initial residual

reduced by 10−8).

As summarized in section 7.2.1, the setup of the preconditioner or more precisely, the

construction of the oscillatory multiscale-FE basis, requires no communication. This is

in agreement with the results in Table 7.4, optimal scaling properties are obtained also

for larger numbers of parallel processes. According to section 7.2.3, communication

is required within each PCG iteration to exchange information of degrees of freedom

locally between neighboring subdomains as well as globally when applying the scalar

products or solving the coarse problem. We see from Table 7.4 that the implementation

allows a good overall scalability, the large workload on any processor ensures that the

local computation dominates the latency due to parallel communication.
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7.4.4 Application to Multi-Phase Elastic Composites

Now, we apply the developed preconditioner to a elastic microstructure which is dis-

cretized with more than 200 Mio degrees of freedom. The composite consists of a steel

matrix material which is enriched by nearly incompressible rubber inclusions. Figure

7.3 shows the material and the uniformly distributed inclusions which are identified by

different colours, depending on their specific shape (ellipsoids or circles) and diameter

(6h− 24h). The Young’s modulus E as well as the Poisson ratio ν for steel and rubber

Figure 7.3: Composite microstructure: discretized with 512 × 512 × 256 voxels (≈ 200
Mio DOFs); rubber inclusions of different shape and diameter distributed in steel matrix

are given in Table 7.5. The mesh parameters are h = 1/512, H = 32h, and the overlap

width is δ = 4h. The computation is performed on P = 16 processes.

The linear systems from the computation of the multiscale finite element basis functions

are solved using SAMG (V-Cycle & PCG: reducing initial residual by 10−8). Specifi-

cally, for each T ∈ TH , the discrete linear system according to the problem in (4.1) is

assembled once, the right-hand sides are determind by the oscillatory boundary values

in (4.2) and are computed using a direct sparse solver (PARDISO) for the discrete

problems on the faces of T . We also apply SAMG as an approximate solver to the

subdomain problems (10 V-cycles). As a result, we need 15 iterations to reduce the

initial preconditioned residual by 4 orders of magnitude and require t = 7.6·104 seconds
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Young’s modulus Poisson ratio

Esteel = 210 GPa νsteel = 0.3
Erubber = 13.43 MPa νrubber = 0.4776

Table 7.5: Young’s Modulus and Poisson ratio for the composite in Figure 7.3

for the overall computation. The condition number of the preconditioned linear system

is estimated to κ(M−1
ASA) = 20.4.

The total memory consumption and the savings by not storing the entire global stiffness

matrix in parallel at a time can be analyzed as follows. Storing a global vector of

length 2 · 108 requires approximately 1.6 GB (double) or 0.8 GB (integer) of memory

on the 64bit infrastructure. Within the PCG algorithm, 6 global vectors are stored

on the non-overlapping distribution of the fine mesh (see Algorithm 7.1). Storing the

restriction operator RH in compact sparse row (CSR) format (cf. [89]) is equivalent to

storing approximately 24 double and 24 integer vectors of length 2 · 108. Additionally,

global vectors are required which allow to efficiently switch between the global and

local numbering of degrees of freedom. Such a vector is e.g. required when applying

the operator RΩp`
on process p, which restricts global degrees of freedom in Ωp to local

degrees of freedom in Ωp`. Its entries are initially set to a negative number. When

a local computation is performed, say on Ωp`, the entries in the global index which

correspond to degrees of freedom in Ωp` are replaced by the number of their degree of

freedom in the local numbering within Vh(Ωp`). After the computation, the modified

global entries are reset to the negative number and the vector can be used in an equal

manner for a computation on the other subdomains.

Each process initially receives 21 Mio tetrahedral fine elements of the substructure of

32 × 512 × 256 voxels. Additionally, the fine elements τ ∈ Th in the four adjacent

voxel-layers are stored locally. Hence, 335 Mio elements from the non-overlapping

distribution of the mesh and additionally 78 Mio elements in the overlaps are required.

To each element, the global index-number of the four vertices are stored which gives

a total of 1.6 · 109 integer values. Also, about 87 Mio fine mesh nodes are stored

on the parallel processes, each of which contains the coordinates in the three spatial

dimensions (2.6 · 108 double values).
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Alltogether, this leads to a total consumption of approximately 80 GB of memory.

Slightly more memory is required e.g. to perform the local computations, for storing

the material information of fine elements or for storing the table AE element (see

section 2.3.2) as a boolean matrix (cf. [102]).

To estimate the memory savings by not storing the global stiffness matrix, we deduce

the sparsity pattern of the matrix A from the structure of the fine mesh in section 2.3.2.

Each node xj ∈ Σh is connected over an edge to either 6 or 26 (alternating) other nodes

of Th. In average, with d = 3 degrees of freedom stored at each node, we obtain an

average number of 51 non-zero entries per row in the sparse stiffness matrix. Hence,

storing the matrix A in CSR-format has an approximate memory consumption which

is equivalent to storing 51 double and 51 integer vectors of length 2 · 108 and requires

more than 122 GB.

Given the 80+ GB memory consumption from before, we save more than 50% by not

storing the entire stiffness matrix A on the parallel processes. Assembling only the

upper triangular part of the symmetric matrix might slightly reduce the total gain,

however, additional memory would be required also for the matrices AΩp , Ωp ⊃
�

Ωp,

p = 1 . . . ,P, or possibly for their approximate inverses.

7.5 Conclusions

We present a distributed memory (MPI) parallel implementation of the PCG-accelerated

two-level additive Schwarz method. The coarse space is constructed on a hexahedral

coarse mesh by the multiscale finite element method with oscillatory boundary condi-

tions. In the implementation, the only parallel tool we use is the Open MPI message

passing library [84]. We give details of the parallel algorithm and provide adaptions

of the sequential algorithm. The particular steps which require communication are

discused in detail.

We perform numerical experiments on heterogeneous media testing the scaling efficiency

of the algorithm and the robustness of the presented method. For the latter, the

results clearly demonstrate that the construction of the oscillatory multiscale finite

element basis on a hexahedral rather than a tetrahedral coarse mesh is beneficial for the

robustness of the overall method. The strong scalability of the algorithm is tested on a

microstructure using up to 32 parallel processes. It shows very good scaling properties,
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7. PARALLELIZATION: APPLICATION TO MULTI-PHASE ELASTIC
COMPOSITES

not only for the construction of the multiscale finite element basis, but also in the

PCG method itself. Furthermore, computations on a heterogeneous microstructure are

presented leading to a problem with more than 200 Mio degrees of freedom.

Given the good scalability and robustness results, we shortly discuss possible extensions

in the implementation:

• In order to obtain the parallel mesh distribution as discussed in section 7.2.1,

the material numbers of the entire voxel structure are initially accessible to any

process. Then, process p ∈ {1, . . . ,P} constructs the mesh exclusively on the

substructure
�

Ωp, extended by δ
h layers of fine elements. Also, the parallel imple-

mentation allows a decomposition of the global geometry only in the direction

of one spatial coordinate. Other approaches are conceivable, such as a purely

distributed mesh generation (see e.g. [2]) or by pre-processing the microstructure

such that each process initially receives only a subset of the overall domain.

• For the coarse grid correction, a sequential solver is applied to solve the coarse

linear system on a single process. This requires global communication when col-

lecting the coarse residual vector and distributing the solution vector to the other

processes. The global communication can be replaced by local communications

when a parallel sparse direct solver is used (see e.g. [48]).

• Saving memory by not storing the full stiffness matrix A goes to the expense of the

efficiency of the overall algorithm. Local matrices need to be reassembled twice

per PCG iteration, once for the application of a matrix-vector multiplication,

once to apply the correction on a local subdomain. Fast assembling processes

need to be developed by using the regular structure of the underlying mesh to

allow a faster application and thus, to improve the overall efficiency. The regular

structure may also allow the application of a sparse solver which is adapted to

the grid in an optimal manner. Using the structure of the grid to apply a direct

solver for the corrections on local subdomains may be beneficial for the stability

and the efficiency of the method.
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Discussion

In this thesis, we study two-level additive Schwarz domain decomposition precondition-

ers for finite element discretizations of multiscale problems in linear elasticity. Of main

interest in our analysis is the application to highly heterogeneous composite materials

in three spatial dimensions. The underlying composites typically combine multiscale

features, having highly oscillating material coefficients on very small scales which make

the discrete systems hard to solve.

Efficient iterative solution methods perform a good portion of the total computation on

grid levels coarser than the fine discretization. Provided that the coefficient variations

can be resolved by the coarse(st) grid, such methods allow to robustly solve the discrete

linear systems with iteration numbers independent of the PDE coefficients. However,

as coefficient variations in the multiscale problems considered here appear even on very

small scales, they cannot be resolved by coarser grids.

In the framework of this thesis, multiscale coarsening strategies are developed which

guarantee optimal robustness properties for large classes of heterogeneous problems,

even if variations in the PDE coefficients of the elastic tensor cannot be resolved by

a coarse mesh. Therefore, we extend the linear and oscillatory multiscale finite ele-

ment method as formulated by Hou and Wu [53] to the system of linear elasticity. We

apply the coarse spaces in the context of two-level overlapping domain decomposition

preconditioners. For isolated inclusions of high contrast in the interior of coarse mesh

elements, the condition number of the additive Schwarz preconditioned system does

not depend on variations in Young’s modulus and the Poisson ratio when the linear

multiscale finite element coarse space is applied. By using oscillatory boundary condi-
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8. DISCUSSION

tions for the multiscale finite element basis, the method is robust also in cases where

stiff inclusions cross or touch coarse element boundaries. Furthermore, energy minimiz-

ing coarse spaces are developed and their robustness properties are studied on various

multiscale test problems.

This is followed by a comprehensive analysis of two-level additive Schwarz domain de-

composition preconditioners for the multiscale elasticity problems. For scalar elliptic

PDEs of multiscale character, such an analysis is provided by Graham, Lechner and

Scheichl in [45]. The work which we present here includes an extension of the work

in [45] from scalar elliptic PDEs to the PDE system of linear elasticity. We present

coefficient-explicit bounds for the condition number of the two-level additive Schwarz

preconditioned linear system. These estimates give sharper bounds than existing ones

(see section 1.2) and do not require that the coarse mesh resolves the material coeffi-

cients. The bounds show a dependence of the condition number on the energy of the

coarse basis functions, the coefficient distribution, the coarse mesh and the overlap pa-

rameters. Furthermore, the developed estimates provide a concept for the construction

of coarse spaces which can lead to preconditioners which are robust w.r.t. discontinuities

in the Young’s modulus and the Poisson ratio of the underlying composite.

The theoretical analysis included allows the detailed examination of the coarse space

robustness properties of the developed multiscale coarse spaces. Numerical tests on

binary media using the multiscale finite element and energy minimizing coarse spaces

confirm the theoretical findings. Furthermore, we present a parallel and memory saving

implementation of the developed methods and perform calculations on a 3D microstruc-

ture which is discretized with more than 200 Mio degrees of freedom.

The methods developed within the thesis may also be used in other interesting applica-

tions including computations on stochastic geometries as well as for solving nonlinear

(e.g. hyperelastic, plastic) or time dependent (viscoelastic) problems.
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[93] V. Schulz, H. Andrä, and K. Schmidt, Robuste Netzgenerierung zur Mikro-

FE-Analyse mikrostrukturierter Materialien, in NAFEMS Magazin, vol. 2, 2007,

pp. 28–30.

[94] B. F. Smith, Domain decomposition algorithms for the partial differential equa-

tions of linear elasticity, PhD thesis, Courant Institute of Mathematical Sciences,

New York University, 1990.

[95] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and

R. Scheichl, Abstract robust coarse spaces for systems of PDEs via generalized

eigenproblems in the overlaps, Tech. Rep. 2011-07, University of Linz, Institute

of Computational Mathematics, 2011.

[96] E. T. Thostenson, Z. Ren, and T. W. Chou, Advances in the science and

technology of carbon nanotubes and their composites: a review, Compos. Sci.

Technol., 61 (2001), pp. 1899–1912.

[97] A. Toselli and O. B. Widlund, Domain decomposition methods, algorithms

and theory, Springer, 2005.

153



BIBLIOGRAPHY

[98] J. Van lent, R. Scheichl, and I. G. Graham, Energy-minimizing coarse

spaces for two-level Schwarz methods for multiscale PDEs, Numer. Linear Algebra

Appl., 16 (2009), pp. 775–799.
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