Skip to main content
Log in

Helical Flow and Transient Solute Dilution in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Helical flow can occur in porous media if the hydraulic conductivity tensor is anisotropic. We study the structure of steady-state flow fields in three-dimensional anisotropic porous media formed by two homogeneous layers, one of which is anisotropic. We simulate transient transport of a conservative scalar in such flow fields by a hybrid streamline/smoothed particle hydrodynamics method and analyze dilution. We use stretching and folding metrics to characterize the flow field and the dilution index of a conservative scalar divided by the volume of the domain to quantify plume dilution. Based on the results of detailed numerical simulations, we conclude that nonlinear deformation triggers dilution and that plume dilution is controlled by two parameters: the contrast between the principal directions of the anisotropic layer, and the orientation of the hydraulic conductivity tensor with respect to the main flow direction. Furthermore, we show that in this kind of flow fields transverse dispersion is responsible for an increase in plume dilution, while the effect of longitudinal dispersion is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakker, M., Hemker, K.: Analytic solutions for groundwater whirls in box-shaped, layered anisotropic aquifers. Adv. Water Res. 27, 1075–1086 (2004)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  • Chiogna, G., Cirpka, O.A., Rolle, M., Bellin, A.: Helical flow in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resour. Res. 51, 261–280 (2015)

  • Chiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., Rolle, M.: Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39(20), L20405 (2012)

  • Chiogna, G., Eberhardt, C., Grathwohl, P., Cirpka, O.A., Rolle, M.: Evidence of compound-dependent hydrodynamic and mechanical transverse dispersion by multitracer laboratory experiments. Environ. Sci. Technol. 44(2), 688–693 (2010)

    Article  Google Scholar 

  • Chiogna, G., Rolle, M., Bellin, A., Cirpka, O.A.: Helicity and flow topology in three-dimensional anisotropic porous media. Adv. Water Resour. 73, 134–143 (2014)

    Article  Google Scholar 

  • Chiogna, G., Bellin, A.: Analytical solution for reactive solute transport considering incomplete mixing within a reference elementary volume. Water Resour. Res. 49, 2589–2600 (2013)

    Article  Google Scholar 

  • Cirpka, O.A., Chiogna, G., Rolle, M., Bellin, A.: Transverse mixing in three-dimensional nonstationary anisotropicheterogeneous porous media. Water Resour. Res. 51(1), 241–260 (2015)

  • Cleary, P.W., Monaghan, J.J.: Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 148(1), 227–264 (1999)

    Article  Google Scholar 

  • de Barros, F., Dentz, M., Koch, J., Nowak, W.: Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys. Res. Lett. 39(L08), 404 (2012)

    Google Scholar 

  • deAnna, P., Dentz, M., Tartakovsky, A., LeBorgne, T.: The filamentary structure of mixing fronts and its control on reaction kinetics in porous media flows. Geophys. Res. Lett. 41(13), 4586–4593 (2014)

    Google Scholar 

  • Ding, D., Benson, D.A., Paster, A., Bolster, D.: Modeling bimolecular reactions and transport in porous media via particle tracking. Adv. Water Resour. 53, 56–65 (2013)

    Article  Google Scholar 

  • Duplay, R., Sen, P.N.: Influence of local geometry and transition to dispersive regime by mechanical mixing in porous media. Phys. Rev. E 70(066), 309 (2004)

    Google Scholar 

  • Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192–7205 (1998)

    Article  Google Scholar 

  • Gao, Y., Zang, X., Rama, P., Liu, Y., Chen, R., Ostadi, H., Jiang, K.: Calculating the anisotropic permeability of porous media using the lattice Boltzmann method and X-ray computed tomography. Transp. Porous Med. 92, 457–472 (2012)

    Article  Google Scholar 

  • Ginzburg, I., dHumires, D.: Lattice Boltzmann and analytical modeling of flow processes in anisotropic and heterogeneous stratified aquifers. Adv. Water Resour. 30(11), 2202–2234 (2007)

    Article  Google Scholar 

  • Guo, P.: Dependency of tortuosity and permeability of porous media on directional distribution of pore voids. Transp. Porous Media 95(2), 285–303 (2012)

    Article  Google Scholar 

  • Hemker, K., van den Berg, E., Bakker, M.: Ground water whirls. Ground Water 42(2), 234–242 (2004)

    Article  Google Scholar 

  • Hemker, K., Bakker, M.: Analytical solutions for whirling groundwater flow in two-dimensional heterogeneous anisotropic aquifers. Water Resour. Res. 42(W12), 419 (2006)

    Google Scholar 

  • Herrera, P.A., Massabó, M., Beckie, R.D.: A meshless method to simulate solute transport in heterogeneous porous media. Adv. Water Resour. 32(3), 413–429 (2009)

    Article  Google Scholar 

  • Herrera, P.A., Valocchi, A.J., Beckie, R.D.: A multidimensional streamline-based method to simulate reactive solute transport in heterogeneous porous media. Adv. Water Resour. 33(7), 711–727 (2010)

    Article  Google Scholar 

  • Hidalgo, J.J., Fe, J., Cueto-Felgueroso, L., Juanes, R.: Scaling of convective mixing in porous media. Phys. Rev. Lett. 109(264), 503 (2012)

    Google Scholar 

  • Higler, A., Krishna, R., Ellenberger, J., Taylor, R.: Counter-current operation of a structured catalytically packed-bed reactor: Liquid phase mixing and mass transfer. Chem. Eng. Sci. 54, 5145–5152 (1999)

    Article  Google Scholar 

  • Holm, D.D., Kimura, Y.: Zero-helicity Lagrangian kinematics of three-dimensional advection. Phys. Fluids A 3(5), 1033–1038 (1991)

    Article  Google Scholar 

  • Hsieh, P., Neuman, S., Stiles, G., Simpson, E.: Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media 2. Methodology and application to fractured rocks. Water Resour. Res. 21(11), 1667–1676 (1985a)

    Article  Google Scholar 

  • Hsieh, P.A., Neuman, S.P., Stiles, G.K., Simpson, E.S.: Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. Methodology and application to fractured rocks. Water Resour. Res. 21(11), 1667–1676 (1985b)

    Article  Google Scholar 

  • Hyman, J., Winter, C.: Hyperbolic regions in flows through three-dimensional pore structures. Phys. Rev. E 88(063), 014 (2013)

    Google Scholar 

  • Indelman, P., Dagan, G.: Upscaling of permeability of anisotropic heterogeneous formations: 1. The general framework. Water Resour. Res. 29(4), 917–923 (1993)

    Article  Google Scholar 

  • Kelley, D.H., Ouellette, N.T.: Separating stretching from folding in fluid mixing. Nat. Phys. 7, 477–480 (2011)

    Article  Google Scholar 

  • Kim, J.H., Ochoa, J., Whitaker, S.: Diffusion in anisotropic porous media. Transp. Porous Media 2(4), 327–356 (1987)

    Article  Google Scholar 

  • Kitanidis, P.K.: The concept of the dilution index. Water Resour. Res. 30(7), 2011–2026 (1994)

    Article  Google Scholar 

  • Koza, Z., Matyka, M., Khalili, A.: Finite-size anisotropy in statistically uniform porous media. Phys. Rev. E 79(066), 306 (2009)

    Google Scholar 

  • Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., de Dreuzy, J.R., Davy, P.: Non-Fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33(12), 1468–1475 (2010)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110(204), 501 (2013)

    Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458–498 (2015)

    Article  Google Scholar 

  • Lester, D., Metcalfe, G., Trefry, M.: Is chaotic advection inherent to porous media flow? Phys. Rev. Lett. 111(174), 101 (2013)

    Google Scholar 

  • Matyca, M., Koza, Z., Golembiewski, J.: Anisotropy of flow in stochastically generated porous media. Phys. Rev. E 88(023018) (2013)

  • Moffatt, H.K.: Helicity and singular structures in fluid dynamics. PNAS 111(10), 3663–3670 (2014)

    Article  Google Scholar 

  • Moffatt, H.K., Tsinober, A.: Helicity in laminar and turbulent flow. Ann. Rev. Fluid Mech. 24(1), 281–312 (1992)

    Article  Google Scholar 

  • Neuman, S.P., Walter, G.R., Bentley, H.W., Ward, J.J., Gonzalez, D.D.: Determination of horizontal aquifer anisotropy with three wells. Ground Water 22(1), 66–72 (1984)

    Article  Google Scholar 

  • Ottino, J.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Pilotti, M.: Generation of realistic porous media by grains sedimentation. Transp. Porous Media 33(3), 257–278 (1998)

    Article  Google Scholar 

  • Rolle, M., Hochstetler, D., Chiogna, G., Kitanidis, P.K., Grathwohl, P.: Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media. Transp. Porous Media 93(3), 347–362 (2012)

    Article  Google Scholar 

  • Rolle, M., Chiogna, G., Hochstetler, D.L., Kitanidis, P.K.: On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale. J. Contam. Hydrol. 153, 51–68 (2013)

    Article  Google Scholar 

  • Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)

    Article  Google Scholar 

  • Scheven, U.M.: Pore-scale mixing and transverse dispersivity of randomly packed monodisperse spheres. Phys. Rev. Lett. 110(214), 504 (2013)

    Google Scholar 

  • Sposito, G.: Steady groundwater flow as a dynamical system. Water Resour. Res. 20(8), 2395–2401 (1994)

    Article  Google Scholar 

  • Sposito, G.: Topological groundwater hydrodynamics. Adv. Water Res. 24, 793–801 (2001)

    Article  Google Scholar 

  • Stauffer, F.: Impact of highly permeable sediment units with inclined bedding on solute transport in aquifers. Adv. Water Res. 30, 2194–2201 (2007)

    Article  Google Scholar 

  • Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezi, I., Stone, H.A., Whitesides, G.M.: Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002)

    Article  Google Scholar 

  • Tartakovsky, A.M., Tartakovsky, D.M., Meakin, P.: Stochastic langevin model for flow and transport in porous media. Phys. Rev. Lett. 101(044), 502 (2008)

    Google Scholar 

  • Tartakovsky, A., Tartakovsky, G., Scheibe, T.: Effects of incomplete mixing on multicomponent reactive transport. Adv. Water Res. 32(11), 1674–1679 (2009)

    Article  Google Scholar 

  • Toussaint, V., Carrire, P., Raynal, F.: A numerical Eulerian approach to mixing by chaotic advection. Phys. Fluids (1994-present) 7(11), 2587–2600 (1995)

  • van Baten, J., Ellenberger, J., Krishna, : Radial and axial dispersion of the liquid phase within a katapak-s structure: experiments vs. CFD simulations. Chem. Eng. Sci. 56, 813–821 (2001)

    Article  Google Scholar 

  • Villermaux, E., Stroock, A.D., Stone, H.A.: Bridging kinematics and concentration content in a chaotic micromixer. Phys. Rev. E 77(015), 301 (2008)

    Google Scholar 

  • Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P., Rolle, M.: Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115(194), 502 (2015)

    Google Scholar 

  • Zhu, Y., Fox, P.J.: Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J. Comput. Phys. 182(2), 622–645 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the DFG (Deutsche Forschungsgemeinschaft, CI\(-26/11-1\)) and Conicyt Chile through Fondecyt Project \(\# 11110228\). P. Herrera also acknowledges financial support provided by Fondap Project \(\# 15090013\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo A. Herrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiogna, G., Cirpka, O.A. & Herrera, P.A. Helical Flow and Transient Solute Dilution in Porous Media. Transp Porous Med 111, 591–603 (2016). https://doi.org/10.1007/s11242-015-0613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0613-7

Keywords

Navigation