Skip to main content
Log in

Impact of Surface Roughness on Capillary Trapping Using 2D-Micromodel Visualization Experiments

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

According to experimental observations, capillary trapping is strongly dependent on the roughness of the pore–solid interface. We performed imbibition experiments in the range of capillary numbers (Ca) from \(10^{-6}\) to \(5\times 10^{-5}\) using 2D-micromodels, which exhibit a rough surface. The microstructure comprises a double-porosity structure with pronounced macropores. The dynamics of precursor thin-film flow and its importance for capillary trapping are studied. The experimental data for thin-film flow advancement show a square-root time dependence. Based on the experimental data, we conducted inverse modeling to investigate the influence of surface roughness on the dynamic contact angle of precursor thin-film flow. Our experimental results show that trapped gas saturation decreases logarithmically with an increasing capillary number. Cluster analysis shows that the morphology and number of trapped clusters change with capillary number. We demonstrate that capillary trapping shows significant differences for vertical flow and horizontal flow. We found that our experimental results agree with theoretical results of percolation theory for \(Ca =10^{-6}\): (i) a universal power-like cluster size distribution, (ii) the linear surface–volume relationship of trapped clusters, and (iii) the existence of the cutoff correlation length for the maximal cluster height. The good agreement is a strong argument that the experimental cluster size distribution is caused by a percolation-like trapping process (ordinary percolation). For the first time, it is demonstrated experimentally that the transition zone model proposed by Wilkinson (Phys Rev A 30:520–531, 1984) can be applied to 2D-micromodels, if bicontinuity is generalized such that it holds for the thin-film water phase and the bulk gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler, P.M.: Multiphase flow in porous media. Ann. Rev. Fluid Mech. 20, 35–59 (1988)

    Article  Google Scholar 

  • Bico, J., Tordeux, C., Quéré, D.: Rough wetting. Europhys. Lett. 55, 214 (2001)

    Article  Google Scholar 

  • Blunt, M.J., King, M.J., Scher, H.: Simulation and theory of two-phase flow in porous media. Phys. Rev. A 46, 7680 (1992)

    Article  Google Scholar 

  • Blunt, M.J., Scher, H.: Pore-level modeling of wetting. Phys. Rev. E 52, 6387–6403 (1995). doi:10.1103/PhysRevE.52.6387

    Article  Google Scholar 

  • Brooks, M.C., Wise, W.R., Annable, M.D.: Fundamental changes in in situ air sparging flow patterns. Ground Water Monit. Rem. 19, 105–113 (1999)

    Article  Google Scholar 

  • Brusseau, M.L., Narter, M., Schnaar, G., Marble, J.: Measurement and estimation of organic-liquid/water interfacial areas for several natural porous media. Environ. Sci. Technol. 43, 3619–3625 (2009)

    Article  Google Scholar 

  • Buchgraber, M., Kovscek, A.R., Castanier, L.M.: A study of microscale gas trapping using etched silicon micromodels. Transp. Porous Med. 95, 647–668 (2012). doi:10.1007/s11242-012-0067-0

    Article  Google Scholar 

  • Burlatsky, S.F., Oshanin, G., Cazabat, A.M., Moreau, M.: Microscopic model of upward creep of an ultrathin wetting film. Phys. Rev. Lett. 76, 86–89 (1996)

    Article  Google Scholar 

  • Cazabat, A.M., Gerdes, S., Valignat, M.P., Villette, S.: Dynamics of wetting: from theory to experiment. Interface Sci. 5, 129–139 (1997)

    Article  Google Scholar 

  • Cazabat, A.M., Cohen Stuart, M.A.: Dynamics of wetting: effects of surface roughness. J. Phys. Chem. 90, 5845 (1986)

    Article  Google Scholar 

  • Chatzis, I., Morrow, N.R., Lim, H.T.: Magnitude and detailed structure of residual oil saturation. Paper SPE/DOE-10681, Presented at the 3rd Symposium on Enhanced Oil Recovery, Tulsa, April 4–7 (1982)

  • Constantinides, G.N., Payatakes, A.C.: Effects of precursor wetting films in immiscible displacement through porous media. Transp. Porous Media 38, 291–317 (2000)

    Article  Google Scholar 

  • Constanza-Robinson, M.S., Harrold, K.H., Lieb-Lappen, R.M.: X-ray microtomography determination of air-water interfacial area-water saturation relationships in sandy porous media. Environ. Sci. Technol. 42, 2949–2956 (2008)

    Article  Google Scholar 

  • de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Physics 57, 827 (1985)

    Article  Google Scholar 

  • Fisher, M.E.: The theory of condensation and the critical point. Physics 3, 255–283 (1967)

  • Geistlinger, H., Ataei-Dadavi, I.: Influence of the heterogeneous wettability on capillary trapping in glass-beads monolayers: comparison between experiments and the invasion percolation theory. J. Colloid Interface Sci. 459, 230–240 (2015)

  • Geistlinger, H., Lazik, D., Krauss, G., Vogel, H.-J.: Pore-scale and continuum modeling of gas flow pattern obtained by high-resolution optical bench-scale experiments. Water Resour. Res. 45, W04423 (2009). doi:10.1029/2007WR006548

    Article  Google Scholar 

  • Geistlinger, H., Mohammadian, S., Schlueter, S., Vogel, H.-J.: Quantification of capillary trapping of gas clusters using X-ray microtomography. Water Resour. Res. 50, 4514–4529 (2014). doi:10.1002/2013WR014657

    Article  Google Scholar 

  • Geistlinger, H., Mohammadian, S.: Capillary trapping mechanism in strongly water wet systems: comparison between experiment and percolation theory. Adv. Water Resour. 79, 35–50 (2015)

    Article  Google Scholar 

  • Georgiadis, A., Berg, S., Makurat, A., Maitland, G., Ott, H.: Pore-scale micro-computed-tomography imaging: nonwetting-phase cluster-size distribution during drainage and imbibition. Phys. Rev. E 88, 033002 (2013)

    Article  Google Scholar 

  • Hashemi, M., Dabir, B., Sahimi, M.: Dynamics of two-phase flow in porous media: simultaneous invasion of two fluids. AIChE J. 45, 1365–1382 (1999a)

    Article  Google Scholar 

  • Hashemi, M., Sahimi, M., Dabir, B.: Monte Carlo simulation of two-phase flow in porous media: invasion with two invaders and two defenders. Phys. A 267, 1–33 (1999b)

    Article  Google Scholar 

  • Hay, K.M., Dragilab, M.I., Liburdyc, J.: Theoretical model for the wetting of a rough surface. J. Colloid Interface Sci. 325, 472–477 (2008)

    Article  Google Scholar 

  • Herman, B., Lemasters, J.J.: Optical Microscopy: Emerging Methods and Applications. Academic Press, New York, NY (1993)

    Google Scholar 

  • Herring, A.L., Andersson, L., Schlüter, S., Sheppard, A.P., Wildenschild, D.: Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media. Adv. Water Resour. 79, 91–102 (2015). doi:10.1016/j.advwatres.2015.02.005

    Article  Google Scholar 

  • Hunt, A.G., Sahimi, M.: Flow and transport in porous media: percolation scaling, critical-path analysis, and effective-medium approximation. Rev. Geophys. in print (2015)

  • Iglauer, S., Favretto, S., Spinelli, G., Schena, G., Blunt, M.J.: X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones. Phys. Rev. E 82, 056315 (2010)

    Article  Google Scholar 

  • Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual CO2 imaged with X-ray microtomography. Geophys. Res. Lett. 38(L21403), 2011G (2011). doi:10.1029/L049680

    Google Scholar 

  • Iglauer, S., Paluszny, A., Blunt, M.J.: Simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ X-ray micro-tomography. Fuel 103, 905–914 (2013)

    Article  Google Scholar 

  • ImageJ, Rasband, W.S.: ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/, pp. 1997–2014

  • ISO-standard 4287 (1997) Geometrical Product Specifications (GPS)—Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters

  • Jeong, S.W., Corapcioglu, M.Y.: Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium. J. Hazard. Mater. 126, 8–13 (2005)

    Article  Google Scholar 

  • Johnson, P.C., Johnson, R.L., Brucea, C.L., Leeson, A.: Advances in in situ air sparging/biosparging. Bioremediation J. 5, 251–266 (2001)

    Article  Google Scholar 

  • Juanes, R., Spiteri, E.J., Orr Jr., F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2-storage. Water Resour. Res. 42, W12418 (2006). doi:10.1029/2005WR004806

    Article  Google Scholar 

  • Kaoa, C.M., Chena, C.Y., Chenb, S.C., Chiena, H.Y., Chen, Y.L.: Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70, 1492–1499 (2008)

    Article  Google Scholar 

  • Karadimitriou, N.K., Hassanizadeh, S.M., Joekar-Niasar, V., Kleingeld, P.J.: Micromodel study of two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res 50, 8125–8140 (2014)

    Article  Google Scholar 

  • Karpyn, Z., Piri, M., Singh, G.: Experimental investigation of trapped oil clusters in a water-wet bead pack using X-ray microtomography. Water Resour. Res. 46, W04510 (2010)

    Article  Google Scholar 

  • Kibbey, T.C.G.: The configuration of water on rough natural surfaces: implications for understanding air-water interfacial area, film thickness, and imaging resolution. Water Resour. Res. 49, 4765–4774 (2013)

    Article  Google Scholar 

  • Krummel, A.T., Datta, S.S., Münster, S., Weitz, D.A.: Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. AIChE J. 59, 1022–1029 (2013)

    Article  Google Scholar 

  • Landry, C.J., Karpyn, Z.T., Piri, M.: Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs. Geofluids 11, 209–227 (2011)

    Article  Google Scholar 

  • Lenormand, R., Zarcone, C.: Role of roughness and edges during imbibition in square capillaries, SPE-paper No. 13264. In: Proceedings of the 59th Ann. Tech. Conf. of the SPE, Houston, TX (SPE, Richardson, TX, 1984) (1984)

  • Levinson, P., Cazabat, A.M., Cohen Stuart, M.A., Heslot, F., Nicolet, S.: The spreading of macroscopic droplets. Revue Phys. Appl. 23, 1009–1016 (1988)

    Article  Google Scholar 

  • Mohammadian, S., Geistlinger, H., Vogel, H.-J.: Quantification of gas phase trapping within the capillary fringe using micro-CT, Special section: dynamic processes in capillary fringes. Vadose Zone J. doi:10.2136/vzj2014.06.0063

  • Mohammadian, S.: A micro-CT-study of capillary trapping and pore-scale quantification of effective mass transfer parameters. PhD-thesis, Faculty of Geosciences. Technical University Freiberg (2015)

  • Pan, C., Dalla, E., Franzosi, D., Miller, C.T.: Pore-scale simulation of entrapped non-aqueous phase liquid dissolution. Adv. Water Resour. 30, 623–640 (2007)

    Article  Google Scholar 

  • Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D., Butt, H.-J.: How superhydrophobicity breaks down. PNAS 110, 3254–3258 (2013)

    Article  Google Scholar 

  • Prodanovic, M., Lindquist, W.B., Seright, R.S.: 3D-image based characterization of fluid displacement in a Berea core. Adv. Water Resour. 46, 214 (2007)

    Article  Google Scholar 

  • Ronen, D., Magaritz, M., Paldor, N., Bachmat, Y.: The behavior of groundwater in the vicinity of the water table evidence by specific discharge profiles. Wat. Resour. Res. 22, 1217–1224 (1986)

    Article  Google Scholar 

  • Stauffer, D., Aharony, A.: Introduction to Percolation Theory, Revised, 2nd edn. Taylor and Francis, Philadelphia (1994)

    Google Scholar 

  • Suekane, T., Zhou, N., Hosokawa, T., Matsumoto, T.: Direct observation of trapped gas bubbles by capillarity in sandy porous media. Transp. Porous Med. 82, 111–122 (2010). doi:10.1007/s11242-009-9439-5

    Article  Google Scholar 

  • Vizika, O., Avraam, D.G., Payatakes, A.C.: On the role of the viscosity ratio during low-capillary number forced imbibition in porous media. J. Colloid Interface Sci. 165, 386–401 (1994)

    Article  Google Scholar 

  • Voburger, T.V., Raja, J.: Surface Finish Metrology Tutorial. US Department of Commerce, National Institute of Standards and Technology, NISTIR 89-4088 (1999)

  • Washburn, E.W.: Phys. Rev. 17, 273 (1921)

    Article  Google Scholar 

  • Wenzel, R.N.: Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  • Wenzel, R.N.: J. Phys. Colloid Chem. 53, 1466 (1949)

    Article  Google Scholar 

  • Werth, C.J., Zhang, C., Brusseau, M.L., Oostrom, M., Baumann, T.: A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J. Cont. Hydrol. 113, 1–24 (2010)

    Article  Google Scholar 

  • Wiesendanger, R.: Scanning Probe Microscopy: Methods and Applications. Cambridge University Press, New York, NY (1994)

    Book  Google Scholar 

  • Wildenschild, D., Armstrong, R.T., Herring, A.L., Young, I.M., Careyc, J.W.: Exploring capillary trapping efficiency as a function of interfacial tension, viscosity, and flow rate. Energy Procedia 4, 4945–4952 (2011)

    Article  Google Scholar 

  • Wildenschild, D., Shepard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Wilkinson, D.: Percolation model of immiscible displacement in the presence of buoyancy forces. Phys. Rev. A 30, 520–531 (1984)

    Article  Google Scholar 

  • Zhou, D., Sten, E.J.: Displacement of trapped oil from water-wet reservoir rock. Transp. Porous Med. 11, 1 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding of the project Dynamically Capillary Fringe (DYCAP) by the German Research Foundation DFG. We thank Dr. Ralf Scholz and Dr. Freitag from Invenios Europe GmbH for developing, creatively improving and constructing the micromodels, as well as Dr. Christian Elsner from the Leibnitz Institute for Surface Modification IOM Leipzig for providing the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Geistlinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 13836 KB)

Supplementary material 2 (mp4 14981 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geistlinger, H., Ataei-Dadavi, I. & Vogel, HJ. Impact of Surface Roughness on Capillary Trapping Using 2D-Micromodel Visualization Experiments. Transp Porous Med 112, 207–227 (2016). https://doi.org/10.1007/s11242-016-0641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0641-y

Keywords

Navigation