Skip to main content
Log in

Distributions of fine root length and mass with soil depth in natural ecosystems of southwestern Siberia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Forest-steppe and sub-taiga, two main biomes of southwestern Siberia, have been predicted to shift and spread northward with global change. However, ecological projections are still lacking a description of belowground processes in which fine roots play a significant role. We characterized regional fine root patterns in terms of length and mass comparing: 1) sites and 2) vegetation covers.

Methods

We assessed fine root length and mass down to one meter in aspen (Populus tremula) and in grassland stands on six sites located in the forest-steppe and sub-taiga zones and presenting contrasting climate and soil conditions. We distinguished fine roots over diameter classes and also between aspen and understorey in forest. Vertical fine root exploration, fine root densities and total length and mass were computed for all species. Morphological parameters were computed for aspen.

Results

In both forest and grassland, exploration was deeper and total length and mass were higher in forest-steppe than in sub-taiga. Exploration tended to be deeper in forest than in grassland and for trees than for understorey vegetation within forest stands.

Conclusions

The differences in rooting strategies are related with both pedo-climatic conditions and vegetation cover. Further investigations on nutrient and water availability and on fine root dynamics should permit a better understanding of these patterns and help predicting their future with global changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achat D, Bakker M, Trichet P (2008) Rooting patterns and fine root biomass of pinus pinaster assessed by trench wall and core methods. J For Res 13:165–175. doi:10.1007/s10310-008-0071-y

    Article  Google Scholar 

  • Achat D L, Bakker M R, Augusto L, Derrien D, Gallegos N, Lashchinskiy N, Milin S, Nikitich P, Raudina T, Rusalimova O, Zeller B, Barsukov P (2013) Phosphorus status of soils from contrasting forested ecosystems in southwestern siberia: effects of microbiological and physicochemical properties. Biogeosciences 10(2):733–752. doi:10.5194/bg-10-733-2013

    Article  CAS  Google Scholar 

  • Bakker M, Augusto L, Achat D (2006) Fine root distribution of trees and understory in mature stands of maritime pine (pinus pinaster) on dry and humid sites. Plant Soil 286:37–51. doi:10.1007/s11104-006-9024-4

    Article  CAS  Google Scholar 

  • Bakker M, Jolicoeur E, Trichet P, Augusto L, Plassard C, Guinberteau J, Loustau D (2009) Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old pinus pinaster stand. Tree Physiol 29(2):229–238. doi:10.1093/treephys/tpn020

    Article  PubMed  CAS  Google Scholar 

  • Berg B (1984) Decomposition of root litter and some factors regulating the process: Long-term root litter decomposition in a scots pine forest. Soil Biol Biochem 16(6):609–617. doi:10.1016/0038-0717(84)90081-6

    Article  CAS  Google Scholar 

  • Bergen KM, Hitztaler SK, Kharuk VI, Krankina ON, Loboda TV, Zhao T, Shugart HH, Sun G (2012) Human dimensions of environmental change in siberia. In: Regional environmental changes in siberia and their global consequences, Springer Science + Business Media, pp 251–302. doi:10.1007/978-94-007-4569-8_7

  • Braun-Blanquet J, Conard HS, Fuller GD (1932) Plant sociology—the study of plant communities—authorized English translation of Pflanzensoziologie, by Dr. J. Braun-Blanquet. Translated, revised and edited by George D. Fuller and Henry S. Conard. McGraw-Hill book company, inc. doi:10.5962/bhl.title.7161

  • Bulygina ON, Razuvaev VN, Korshunova N N (2009) Changes in snow cover over northern eurasia in the last few decades. Environ Res Lett 4(4):045,026. doi:10.1088/1748-9326/4/4/045026

    Article  Google Scholar 

  • Bulygina O N, Groisman P Y, Razuvaev V N, Radionov V F (2010) Snow cover basal ice layer changes over northern eurasia since 1966. Environ Res Lett 5(1):015,004. doi:10.1088/1748-9326/5/1/015004

    Article  Google Scholar 

  • Bulygina ON, Groisman PY, Razuvaev VN, Korshunova NN (1966) Changes in snow cover characteristics over northern eurasia since. Environ Res Lett 6(4):045,204. doi:10.1088/1748-9326/6/4/045204

    Article  Google Scholar 

  • Cabestan JP, Colin S, Facon I, Meidan M (2008) La Chine et la Russie: Entre convergences et méfiance. UNICOMM

  • Cleavitt NL, Fahey TJ, Groffman PM, Hardy JP, Henry KS, Driscoll CT (2008) Effects of soil freezing on fine roots in a northern hardwood forest. Can J For Res 38(1):82–91. doi:10.1139/x07-133

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173. doi:10.1038/nature04514

    Article  PubMed  CAS  Google Scholar 

  • Dominé F, Taillandier A, Houdier S, Parrenin F, Simpson W, Douglas T (2007) Interactions between snow metamorphism and climate: physical and chemical aspects. Royal Society of Chemistry, Cambridge, pp 27– 46

    Google Scholar 

  • Finėr L, Helmisaari H S, Lȯhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konȯpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three european tree species: Beech (fagus sylvatica l.), norway spruce (picea abies l. karst.), and scots pine (pinus sylvestris l.) Plant Biosyst 141(3):394–405. doi:10.1080/11263500701625897

    Article  Google Scholar 

  • Finėr L, Ohashi M, Noguchi K, Hirano Y (2011a) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manage 261(2):265–277. doi:10.1016/j.foreco.2010.10.016

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011b) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manage 262(11):2008–2023. doi:10.1016/j.foreco.2011.08.042

    Article  Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17(8):829–834. doi:10.1139/x87-131

    Article  Google Scholar 

  • Gaul D, Hertel D, Leuschner C (2008) Effects of experimental soil frost on the fine-root system of mature norway spruce. J Plant Nutr Soil Sci 171(5):690–698. doi:10.1002/jpln.200700284

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147(1):13–31. doi:10.1046/j.1469-8137.2000.00681.x

    Article  Google Scholar 

  • Gonzalez M, Augusto L, Gallet-Budynek A, Xue J, Yauschew-Raguenes N, Guyon D, Trichet P, Delerue F, Niollet S, Andreasson F, Achat DL, Bakker MR (2013) Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate pinus pinaster ait. forests. For Ecol Manage 289:38–47. doi:10.1016/j.foreco.2012.10.026

    Article  Google Scholar 

  • Göransson H, Wallander H, Ingerslev M, Rosengren U (2006) Estimating the relative nutrient uptake from different soil depths in quercus robur, fagus sylvatica and picea abies. Plant Soil 286 (1–2):87–97. doi:10.1007/s11104-006-9028-0

    Article  CAS  Google Scholar 

  • Göransson H, Fransson AM, Jönsson-Belyazid U (2007) Do oaks have different strategies for uptake of n, k and p depending on soil depth? Plant Soil 297(1-2):119–125. doi:10.1007/s11104-007-9325-2

    Article  CAS  Google Scholar 

  • Göransson H, Ingerslev M, Wallander H (2008) The vertical distribution of n and k uptake in relation to root distribution and root uptake capacity in mature quercus robur, fagus sylvatica and picea abies stands. Plant Soil 306(1–2):129–137. doi:10.1007/s11104-007-9524-x

    Article  CAS  Google Scholar 

  • Gordov EP, Vaganov EA (2010) Siberia integrated regional study: multidisciplinary investigations of the dynamic relationship between the siberian environment and global climate change. Environ Res Lett 5(1):015,007. doi:10.1088/1748-9326/5/1/015007

    Article  Google Scholar 

  • Gouttevin I, Menegoz M, Dominé F, Krinner G, Koven C, Ciais P, Tarnocai C, Boike J (2012) How the insulating properties of snow affect soil carbon distribution in the continental pan-arctic area. J Geophys Res G2. doi:10.1029/2011jg001916

  • Groisman P, Soja A J (2009) Ongoing climatic change in northern eurasia: justification for expedient research. Environ Res Lett 4(4):045,002. doi:10.1088/1748-9326/4/4/045002

    Article  Google Scholar 

  • Groisman PY, Knight RW, Razuvaev VN, Bulygina ON, Karl TR (2006) State of the ground: Climatology and changes during the past 69 years over northern eurasia for a rarely used measure of snow cover and frozen land. J Clim 19(19):4933–4955. doi:10.1175/JCLI3925.1

    Article  Google Scholar 

  • Guo D, Li H, Mitchell R J, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177(2):443–456. doi:10.1111/j.1469-8137.2007.02242.x

    PubMed  Google Scholar 

  • Guswa AJ (2010) Effect of plant uptake strategy on the water-optimal root depth. Water Resour Res 46(9). doi:10.1029/2010wr009122

  • Hansson K, Helmisaari HS, Sah SP, Lange H (2013) Fine root production and turnover of tree and understorey vegetation in scots pine, silver birch and norway spruce stands in SW sweden. For Ecol Manage 309:58–65. doi:10.1016/j.foreco.2013.01.022

    Article  Google Scholar 

  • Helmisaari HS, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below- and above-ground biomass, production and nitrogen use in scots pine stands in eastern finland. For Ecol Manage 165(1–3):317–326. doi:10.1016/S0378-1127(01)00648-X

    Article  Google Scholar 

  • Helmisaari HS, Derome J, Nojd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in norway spruce and scots pine stands. Tree Physiol 27(10):1493–1504. doi:10.1093/treephys/27.10.1493

    Article  PubMed  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can J For Res 23(12):2507–2520. doi:10.1139/x93-312

    Article  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94(1):40–57. doi:10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Hertel D, Strecker T, Müller-Haubold H, Leuschner C (2013) Fine root biomass and dynamics in beech forests across a precipitation gradient - is optimal resource partitioning theory applicable to water-limited mature trees? J Ecol 101(5):1183–1200. doi:10.1111/1365-2745.12124

    Article  Google Scholar 

  • Imada S, Yamanaka N, Tamai S (2008) Water table depth affects populus alba fine root growth and whole plant biomass. Funct Ecol 22(6):1018–1026. doi:10.1111/j.1365-2435.2008.01454.x

    Article  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014 - International soil classification system for naming soils and creating legends for soil maps. FAO

  • Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric co 2 concentration in forested ecosystems. New Phytol 186(2):346–357. doi:10.1111/j.1469-8137.2009.03122.x

    Article  PubMed  Google Scholar 

  • Iversen CM (2014) 3. New Phytol 203:707–709. doi:10.1111/nph.12902

    Article  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94(14):7362–7366. doi:10.1073/pnas.94.14.7362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jiang Y, Zhuang Q, Schaphoff S, Sitch S, Sokolov A, Kicklighter D, Melillo J (2012) Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model. Ecol Evol 2(3):593–614. doi:10.1002/ece3.85

    Article  PubMed Central  PubMed  Google Scholar 

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33(2):330–346

    Google Scholar 

  • Joslin JD, Wolfe MH, Hanson PJ (2000) Effects of altered water regimes on forest root systems. New Phytol 147(1):117–129. doi:10.1046/j.1469-8137.2000.00692.x

    Article  Google Scholar 

  • Kalyn A, Rees KV (2006) Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in saskatchewan. Agric For Meteorol 140(1–4):236–243. doi:10.1016/j.agrformet.2005.08.019

    Article  Google Scholar 

  • Keel SG, Campbell CD, Högberg MN, Richter A, Wild B, Zhou X, Hurry V, Linder S, Näsholm T, Högberg P (2012) Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season. New Phytol 194(4):972–981. doi:10.1111/j.1469-8137.2012.04120.x

    Article  PubMed  CAS  Google Scholar 

  • Keyes MR, Grier CC (1981) Above- and below-ground net production in 40-year-old douglas-fir stands on low and high productivity sites. Can J For Res 11(3):599–605. doi:10.1139/x81-082

    Article  Google Scholar 

  • King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002) Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol 154(2):389–398. doi:10.1046/j.1469-8137.2002.00393.x

    Article  Google Scholar 

  • Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203(3):863–872. doi:10.1111/nph.12842

    Article  PubMed  Google Scholar 

  • Kreyling J, Persoh D, Werner S, Benzenberg M, Wöllecke J (2012) Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of holcus lanatus and calluna vulgaris. Plant Soil 353:19–31. doi:10.1007/s11104-011-0970-0

    Article  CAS  Google Scholar 

  • Kulmatiski A, Beard K (2013) Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia 171(1):25–37. doi:10.1007/s00442-012-2390-0

    Article  PubMed  Google Scholar 

  • Leppälammi-Kujansuu J, Aro L, Salemaa M, Hansson K, Kleja DB, Helmisaari HS (2014) Fine root longevity and carbon input into soil from below- and aboveground litter in climatically contrasting forests. For Ecol Manage 326:79–90. doi:10.1016/j.foreco.2014.03.039

    Article  Google Scholar 

  • Leuschner C, Hertel D (2003) Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. In: Progress in botany. Springer Science + Business Media, pp 405–438, DOI 10.1007/978-3-642-55819-1_16, (to appear in print)

  • Majdi H, Öhrvik J (2004) Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a norway spruce stand in northern sweden. Glob Chang Biol 10(2):182–188. doi:10.1111/j.1365-2486.2004.00733.x

    Article  Google Scholar 

  • Maurice J, Laclau JP, Re DS, de Moraes Gonċalves JL, Nouvellon Y, Bouillet JP, Stape JL, Ranger J, Behling M, Chopart JL (2010) Fine root isotropy in eucalyptus grandis plantations. towards the prediction of root length densities from root counts on trench walls. Plant Soil 334(1–2):261–275. doi:10.1007/s11104-010-0380-8

    Article  CAS  Google Scholar 

  • McCormack ML, Guo D (2014) Impacts of environmental factors on fine root lifespan. Front Plant Sci 5. doi:10.3389/fpls.2014.00205

  • McCormack M L, Eissenstat D M, Prasad A M, Smithwick E A H (2013) Regional scale patterns of fine root lifespan and turnover under current and future climate. Glob Chang Biol 19(6):1697–1708. doi:10.1111/gcb.12163

    Article  PubMed  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2014) Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95(8):2224–2235. doi:10.1890/13-1942.1

    Article  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207(3):505–518. doi:10.1111/nph.13363

    Article  PubMed  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of european beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Chang Biol 14(9):2081–2095. doi:10.1111/j.1365-2486.2008.01634.x

    Article  Google Scholar 

  • Moore PT, Miegroet HV, Nicholas NS (2007) Relative role of understory and overstory in carbon and nitrogen cycling in a southern appalachian spruce-fir forestAES publication 7863. Utah agricultural experiment station, Utah State University, Logan, Utah. Can J For Res 37(12):2689–2700. doi:10.1139/x07-115

    Article  CAS  Google Scholar 

  • Nisbet TR, Mullins CE (1986) A comparison of live and dead fine root weights in stands of sitka spruce in contrasting soil water regimes. Can J For Res 16(2):394–397. doi:10.1139/x86-068

    Article  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated co 2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18,052–18,056. doi:10.1073/pnas.0509478102

    Article  CAS  Google Scholar 

  • Ostonen I, Lȯhmus K, Lasn R (1999) The role of soil conditions in fine root ecomorphology in norway spruce (picea abies (l.) karst.) Plant Soil 208(2):283–292. doi:10.1023/A:1004552907597

    Article  CAS  Google Scholar 

  • Ostonen I, Lohmus K, Helmisaari HS, Truu J, Meel S (2007) Fine root morphological adaptations in scots pine, norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27(11):1627–1634. doi:10.1093/treephys/27.11.1627

    Article  PubMed  Google Scholar 

  • Pierret A, Moran CJ, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166(3):967–980. doi:10.1111/j.1469-8137.2005.01389.x

    Article  PubMed  Google Scholar 

  • Pregitzer KS (2002) Fine roots of trees - a new perspective. New Phytol 154(2):267–270. doi:10.1046/j.1469-8137.2002.00413_1.x

    Article  Google Scholar 

  • Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997) Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia 111(3):302–308. doi:10.1007/s004420050239

    Article  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18(10):665–670. doi:10.1093/treephys/18.10.665

    Article  PubMed  Google Scholar 

  • Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147(1):105–115. doi:10.1046/j.1469-8137.2000.00689.x

    Article  CAS  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine north american trees. Ecol Monogr 72(2):293. doi:10.2307/3100029

    Article  Google Scholar 

  • Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL (2011) Observed soil temperature trends associated with climate change in canada. J Geophys Res 116(D2). doi:10.1029/2010jd015012

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Repo T, Sirkiä S, Heinonen J, Lavigné A, Roitto M, Koljonen E, Sutinen S, Finér L (2014) Effects of frozen soil on growth and longevity of fine roots of norway spruce. For Ecol Manage 313:112–122. doi:10.1016/j.foreco.2013.11.002

    Article  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400(6739):56–58. doi:10.1038/21867

    Article  CAS  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior alaska. Ecol Monogr 73(4):643–662. doi:10.1890/02-4032

    Article  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94 (4):725–739. doi:10.1111/j.1365-2745.2006.01124.x

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002a) The global biogeography of roots. Ecol Monogr 72(3):311. doi:10.2307/3100092

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002b) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90(3):480–494. doi:10.1046/j.1365-2745.2002.00682.x

    Article  Google Scholar 

  • Shepashenko D, Shvidenko A, Nilsson S (1998) Phytomass (live biomass) and carbon of siberian forests. Biomass Bioenergy 14(1):21–31. doi:10.1016/s0961-9534(97)10006-x

    Article  CAS  Google Scholar 

  • Shiklomanov AI, Lammers RB (2009) Record russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4(4):045,015. doi:10.1088/1748-9326/4/4/045015

    Article  Google Scholar 

  • Shkolnik IM, Nadyozhina ED, Pavlova TV, Molkentin EK, Semioshina AA (2010) Snow cover and permafrost evolution in siberia as simulated by the mgo regional climate model in the 20th and 21st centuries. Environ Res Lett 5(1):015,005. doi:10.1088/1748-9326/5/1/015005

    Article  Google Scholar 

  • Smith SW, Woodin SJ, Pakeman RJ, Johnson D, van der Wal R (2014) Root traits predict decomposition across a landscape-scale grazing experiment. New Phytol 203(3):851–862. doi:10.1111/nph.12845

    Article  PubMed Central  PubMed  Google Scholar 

  • Smithwick EA, Lucash MS, McCormack ML, Sivandran G (2014) Improving the representation of roots in terrestrial models. Ecol Model 291:193–204. doi:10.1016/j.ecolmodel.2014.07.023

    Article  CAS  Google Scholar 

  • Snegur J (2006) Sibérie russe, sibérie chinoise? Outre-Terre 15:279–286. doi:10.3917/oute.015.0279

    Article  Google Scholar 

  • Soja AJ, Tchebakova NM, French NH, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova E, III FSC, Jr PWS (2007) Climate-induced boreal forest change: Predictions versus current observations. Glob Planet Chang 56(3–4):274–296. doi:10.1016/j.gloplacha.2006.07.028, northern Eurasia Regional Climate and Environmental Change

    Article  Google Scholar 

  • Steinaker D F (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Chang Biol 16(8):2241–2251. doi:10.1111/j.1365-2486.2009.02065.x

    Article  Google Scholar 

  • Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8(5):1261–1283. doi:10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2

    Article  Google Scholar 

  • Sturm M, Holmgreen J, König M, Morris K (1997) The thermal conductivity of seasonal snow. J Glaciol 43(143):26–41

    Google Scholar 

  • Taylor BN, Beidler KV, Cooper ER, Strand AE, Pritchard SG (2013) Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves. Ecol Lett 16(7):862–869. doi:10.1111/ele.12119

    Article  PubMed  Google Scholar 

  • Tchebakova NM, Parfenova E, Soja AJ (2009) The effects of climate, permafrost and fire on vegetation change in siberia in a changing climate. Environ Res Lett 4(4):045,013. doi:10.1088/1748-9326/4/4/045013

    Article  Google Scholar 

  • Tchebakova NM, Rehfeldt GE, Parfenova EI (2010) From vegetation zones to climatypes: effects of climate warming on siberian ecosystems, chap. 22. Springer, pp 427–447

  • Tchebakova NM, Parfenova EI, Lysanova GI, Soja A J (2011) Agroclimatic potential across central siberia in an altered twenty-first century. Environ Res Lett 6(4):045,207. doi:10.1088/1748-9326/6/4/045207

    Article  Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63 (3):995–1001. doi:10.2307/2258617

    Article  Google Scholar 

  • Tierney G, Fahey T, Groffman P, Hardy J, Fitzhugh R, Driscoll C (2001) Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry 56(2):175–190. doi:10.1023/A:1013072519889

    Article  CAS  Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008) Root anatomy, morphology, and longevity among root orders in vaccinium corymbosum (ericaceae). Am J Bot 95(12):1506–1514. doi:10.3732/ajb.0800092

    Article  PubMed  Google Scholar 

  • Vogt K, Vogt D, Palmiotto P, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219. doi:10.1007/BF00017088

    Article  CAS  Google Scholar 

  • Vogt K, Vogt D, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89. doi:10.1023/A:1004313515294

    Article  CAS  Google Scholar 

  • Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2015) Root structural and functional dynamics in terrestrial biosphere models evaluation and recommendations. New Phytol 205(1):59–78. doi:10.1111/nph.13034

    Article  PubMed  Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82(3):882. doi:10.2307/2680206

    Article  Google Scholar 

  • Whigham DF (2004) Ecology of woodland herbs in temperate deciduous forests. Annu Rev Ecol Evol Syst 35(1):583–621. doi:10.1146/annurev.ecolsys.35.021103.105708

    Article  Google Scholar 

  • Yarie J (1980) The role of understory vegetation in the nutrient cycle of forested ecosystems in the mountain hemlock biogeoclimatic zone. Ecology 61(6):1498. doi:10.2307/1939057

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Crit Rev Plant Sci 29(4):204–221. doi:10.1080/07352689.2010.483579

    Article  CAS  Google Scholar 

  • Yuan ZY, Chen HYH (2012a) Fine root dynamics with stand development in the boreal forest. Funct Ecol 26(4):991–998. doi:10.1111/j.1365-2435.2012.02007.x

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2012b) A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc R Soc B Biol Sci 279(1743):3796–3802. doi:10.1098/rspb.2012.0955

    Article  CAS  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43(4). doi:10.1029/2004rg000157

Download references

Acknowledgments

We thank D. L. Achat, the editor and three anonymous reviewers for carefully reading and commenting earlier versions of this manuscript. We are grateful to all the people who helped on the field in July 2013, notably to A. Bashuk and J. Petrashova. Botanical descriptions were performed by N. Gaberman, N. Kolosov and A. Stupak. J.-L. Dupouey and F. Gérémia provided support for tree cores analysis. Climate data were provided by RIHMI-WDC, we particularly thank O. Bulygina for the preparation of relevant datasets. The project was funded by INRA Métaprogramme ACCAF and ERA.Net RUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Brédoire.

Additional information

Responsible Editor: Eric J.W. Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 440 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brédoire, F., Nikitich, P., Barsukov, P.A. et al. Distributions of fine root length and mass with soil depth in natural ecosystems of southwestern Siberia. Plant Soil 400, 315–335 (2016). https://doi.org/10.1007/s11104-015-2717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2717-9

Keywords

Navigation