ORAL PRESENTATION

Open Access

Equilibrium contrast CMR for the detection of amyloidosis in mice

Adrienne E Campbell^{1*}, Anthony N Price², Stephan Ellmerich³, Paul Simons³, Raya Al-Shawi³, Philip N Hawkins³, Roger J Ordidge⁴, Mark B Pepys³, James C Moon⁵, Mark F Lythgoe¹

From 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France. 3-6 February 2011

Objective

In this study, we optimise equilibrium contrast CMR (EQ-CMR) protocols in mice and apply EQ-CMR to detect AA amyloidosis in the heart and liver of mice with inducible transgenic overexpression of serum amyloid A protein.

Background

Systematic amyloidosis is a severe, diagnostically challenging, disorder characterised by the extracellular deposition of insoluble abnormal protein fibrils [1]. Recently, Flett et al [2] showed that the volume of distribution of gadolinium (Gd) contrast agents, calculated by EQ-CMR, can be used to measure fibrosis. This technique uses the extracellular nature of Gd to relate the volume of distribution of the agent (V_d) to extracellular pathology.

Methods

A bolus followed by steady infusion of Magnevist was used to generate a blood - tissue equilibrium of [Gd]. The optimal dose and timing protocol, determined empirically, is displayed in Figure 1. An ECG-gated Look-Locker technique [3] was used to measure the T_1 and the V_d can be calculated: V_d = $\Delta R_{1,tissue}/\Delta R_{1,blood}$

Nine control and 11 amyloidotic mice [4] (confirmed by histology to have major amyloid deposits in the liver and minor deposits in the heart) were imaged using a standard cine stack and EQ-CMR. A mid-ventricle short-axis slice through the heart, which included a section of liver was used. The hematocrit (Hct) was measured using a blood sample from the tail vein.

¹Centre for Advanced Biomedical Imaging, University College London, London, UK

Full list of author information is available at the end of the article

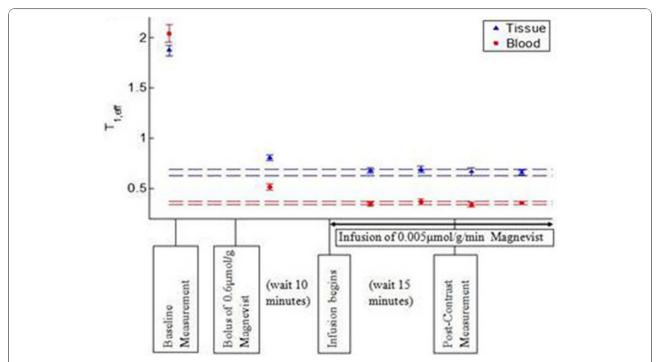
Results

Analysis of cardiac functional parameters calculated from cine images showed no significant difference between the groups. Figure 2 presents box-and-whisker plots comparing V_d between groups for the (a) myocardium and (b) liver. The amyloidotic group shows a significantly increased V_d of Gd compared to the control group in both organs. The V_d of the control group was 15.4% \pm 0.2% (myocardium) and 15.4 \pm 0.3% (liver) and of the amyloidotic group 19.8 \pm 0.4% (myocardium) and 23.6 \pm 0.4% (liver) (mean \pm s.e.m).

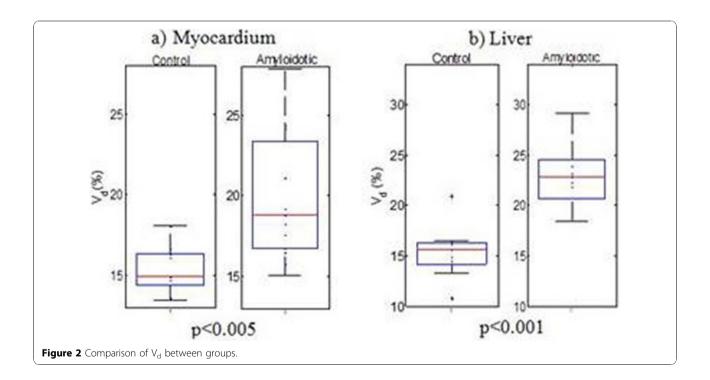
Conclusion

An EQ-CMR procedure has been optimised in the mouse. The results of this study show that EQ-CMR techniques can detect minor amyloid deposits with good sensitivity. This approach has the potential to become a sensitive diagnostic tool with considerable utility in serial quantitative monitoring of response to novel therapy aimed at elimination of amyloid deposits [5,6].

Author details


¹Centre for Advanced Biomedical Imaging, University College London, London, UK. ²Robert Steiner MRI Unit, Imperial College London, London, UK. ³Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK. ⁴Department of Medical Physics and Biomedical Engineering, University College London, London, UK. ⁵Heart Hospital and Division of Medicine, University College London, London, UK.

Published: 2 February 2011


References

- 1. Pepys MB: Annu Rev Med 2006, **57**:223-224.
- 2. Flett AS, et al: Circulation 2010, 122:138-144.
- 3. Kober F, et al: MRM 2004, **51**:62-67.
- 4. Simons P, et al: Amyloid 2010, 17(sl):45-46.
- 5. Pepys MB: Clin. Med. 2007, **7**:562-578.
- 6. Bodin K, et al: Nature 2010.

Figure 1 T1,_{eff} plotted to demonstrate the optimized equilibrium protocol in mice. Dotted lines represent values within 5% of final T1 measurement (defined as equilibrium).

doi:10.1186/1532-429X-13-S1-O60

Cite this article as: Campbell *et al.*: Equilibrium contrast CMR for the detection of amyloidosis in mice. *Journal of Cardiovascular Magnetic Resonance* 2011 **13**(Suppl 1):O60.