Skip to main content
Log in

Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Building a microscale zero-valent iron (mZVI) reaction zone is a promising in situ remediation technology for restoring groundwater contaminated by trichloroethylene (TCE). In order to determine a suitable modifier that could not only overcome gravity sedimentation of mZVI but also improve its remediation efficiency for TCE, the three biopolymers xanthan gum (XG), guargum (GG), and carboxymethyl cellulose (CMC) were employed to coat mZVI for surface modification. The suspension stability of the modified mZVI and its TCE removal efficiency were systematically investigated. The result indicated that XG as a shear-thinning fluid showed the most remarkable efficiency of preventing mZVI from gravity sedimentation and enhancing the TCE removal efficiency by mZVI. In a 480-h experiment, the presence of XG (3 g L−1) increased the TCE removal efficiency by 31.85 %, whereas GG (3 g L−1) and CMC (3 g L−1) merely increased by 15.61 and 9.69 % respectively. The pH value, Eh value, and concentration of ferrous ion as functions of the reaction time were recorded in all the reaction systems, which indicated that XG worked best in buffering the pH value of the solution and inhibiting surface passivation of mZVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 5

Similar content being viewed by others

References

  • Chen MY, Su YF, Shih YH (2014) Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer. J Environ Manag 144:88–92

    Article  CAS  Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43(15):3717–3726

    Article  CAS  Google Scholar 

  • Comba S, Dalmazzo D, Santagata E, Sethi R (2011) Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater 185(2-3):598–605

    Article  CAS  Google Scholar 

  • Dong H, Lo IMC (2013) Influence of humic acid on the colloidal stability of surface- modified nano zero-valent iron. Water Res 47:419–427

    Article  CAS  Google Scholar 

  • Doong RA, Lai YL (2006) Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere 64(3):371–378

    Article  CAS  Google Scholar 

  • He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221

    Article  CAS  Google Scholar 

  • Hunkeler D, Aravena R, Parker BL, Cherry JA, Diao X (2003) Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: laboratory and field studies. Environ Sci Technol 37(4):798–804

    Article  CAS  Google Scholar 

  • Hwang Y, Shin HS (2013) Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate. Journal of Environ Sci -China 25:2177–2184

    Article  CAS  Google Scholar 

  • Jia X, Jun H, Xilai Z, Olaf K, Haibing S (2015) Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles. J Environ Manag 150:420–426

    Article  Google Scholar 

  • Kaifas D, Malleret L, Kumar N, Fetimi W, Claeys-Bruno M, Sergent M, Doumenq P (2014) Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design. Sci Total Environ 481:335–342

    Article  CAS  Google Scholar 

  • Krol MM, Oleniuk AJ, Kocur CM, Sleep BE, Bennett P, Xiong Z, O’Carroll DM (2013) A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ Sci Technol 47:7332–7340

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zerovalent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933

    Article  CAS  Google Scholar 

  • Li ZH, Willms C, Alley J, Zhang PF, Bowman RS (2006) A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant—A column study. Water Res 40(20):3811–3819

  • Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72:684–692

    Article  CAS  Google Scholar 

  • Liu CC, Liau SF, Tseng DH (2006a) Effects of the electrode arrangements on reductive dechlorination of trichloroethylene in an electro-enhanced iron wall. Environ Technol 27(6):683–693

    Article  CAS  Google Scholar 

  • Liu CC, Tseng DH, Wang CY (2006b) Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. J Hazard Mater 136(3):706–713

    Article  CAS  Google Scholar 

  • Lu X, Li M, Tang C, Feng C, Liu X (2012) Electrochemical depassivation for recovering Fe0 reactivity by Cr(VI) removal with a permeable reactive barrier system. J Hazard Mater 213–214:355–360

    Article  Google Scholar 

  • Luo HP, Jin S, Fallgren PH, Colberg Patricia JS, Johnson PA (2010) Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation. Chem Eng J 160(1):185–189

    Article  CAS  Google Scholar 

  • Richard L, Leen B, Brigitte B (2004) Batch-test study on the dechlorination of 1,1,1- trichloroethane in contaminated aquifer material by zero valent iron. Contam Hydrol 74(2):133–144

    Google Scholar 

  • Shin MC, Choi HD, Kim DH, Baek K (2008) Effect of surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Desalination 223:299–307

    Article  CAS  Google Scholar 

  • Shpaisman N, Margel S (2007) Air-stable Fe and Co crystalline nanocomposite particles prepared by a single-step swelling of metal precursors within polystyrene microspheres of narrow size distribution. New J Chem 31:1507–1513

    Article  CAS  Google Scholar 

  • Sohn K, Kang SW, Ahn S, Woo M, Yang SK (2006) Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 40:5514–5519

    Article  CAS  Google Scholar 

  • Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11:635–645

  • Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interf Sci 324(1–2):71–79

    Article  CAS  Google Scholar 

  • Tsai TT, Kao CM, Surampalli Rao Y, Weng CH, Liang SH (2010) Treatment of TCE-contaminated groundwater using Fenton-like oxidation activated with basic oxygen furnace slag. J Environ Eng ASCE 136(2):288–294

    Article  CAS  Google Scholar 

  • Tsai TT, Kao CM, Wang JY (2011) Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere 83(3):687–692

    Article  CAS  Google Scholar 

  • Truex MJ, Vermeul VR, Mendoza DP, Fritz BG, Mackley RD, Oostrom M, Wietsma TW, Macbeth TW (2011) Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monit Rem 31(1):50–58

  • Vecchia ED, Luna M, Sethi R (2009) Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43:8942–8947

    Article  Google Scholar 

  • Velimirovic M, Chen H, Simons Q, Bastiaens L (2012) Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. J Contam Hydrol 142:1–10

    Article  Google Scholar 

  • Velimirovic M, Larsson PO, Simons Q, Bastiaens L (2013) Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions. J Hazard Mater 252:204–212

    Article  Google Scholar 

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41(3):1010–1015

    Article  CAS  Google Scholar 

  • Wang XY, Yang JC, Zhu MP (2014) Effects of PMMA/anisole hybrid coatings on discoloration performance of nano zerovalent iron toward organic dyes. J Taiwan Inst Chem Eng 45(3):937–946

    Article  CAS  Google Scholar 

  • Xue DQ, Sethi R (2012) Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanoparticle Res 14:1239

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (51408571), the China Postdoctoral Science Foundation (2014M551964), and the National Natural Science Foundation of China (41172209) for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilai Zheng.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Xin, J., Zheng, X. et al. Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron. Environ Sci Pollut Res 23, 14442–14450 (2016). https://doi.org/10.1007/s11356-016-6368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6368-z

Keywords

Navigation