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Abstract

Background: Ichthyophthirius muiltifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for
‘white spot’, a disease causing significant economic losses to the global aquaculture industry. Options for disease
control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike
most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members.
Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a
promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism.

Results: We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its
free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density
and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior,
cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface
antigens and cytoskeletal components and regulators. We also mapped by orthology Ich’s metabolic pathways in
comparison with other ciliates and a potential host organism, the zebrafish Danio rerio.

Conclusions: Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for
rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a
catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to
use T. thermophila as a surrogate model offers promise toward controlling ‘white spot” disease and understanding
the adaptation to a parasitic lifestyle.
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Background

The ciliates are an ancient and diverse phylogenetic
group related to the largely parasitic apicomplexans, but
consisting mostly of free-living heterotrophs. Some cili-
ates, however, have adopted a parasitic lifestyle. By far
the most important of these is Ichthyophthirius multifi-
liis (which we will refer to by its common name of Ich),
an endoparasite that causes white spot disease in fresh-
water fish [1,2]. With an extremely broad host-range,
Ich is responsible for large-scale die-offs in natural
populations and poses a significant threat to the growing
worldwide aquaculture industry. Ich has a simple life
cycle with no intermediate hosts (Figure 1). The free-
swimming theront form invades the epidermis of sus-
ceptible fish, feeding on host tissue and growing up to
0.5 mm in diameter. Host-associated trophonts become
visible as individual white spots for which this disease is
named. A severe infection, particularly of the gills,
results in asphyxiation and death. Although fish that
survive infection are resistant to future challenge, pro-
phylactic and therapeutic options remain extremely
limited.

Experimental studies of Ich are limited by its obligate
parasitic lifestyle and lack of genetics, and therefore
genomic approaches have been pursued to identify tar-
gets for therapy and vaccines. EST projects [3,4] have
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Figure 1 Life cycle of Ich. Infective theronts bore through the
surface mucus and take up residence within the epithelium of
susceptible fish. Theronts differentiate into feeding trophonts that
grow and exit the host (as tomonts) within 4 to 7 days. Tomonts
swim for a brief period and then adhere to an inert support where
they secrete a gelatinous capsule. Tomonts divide within the
capsule to form hundreds of tomites that differentiate into infective
theronts within 18 to 24 hours at room temperature. Theronts that
fail to infect fish die within 1 to 2 days.
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provided partial sequences of many protein-coding
genes, but to gain a complete understanding of Ich’s
metabolism and virulence, it is necessary to obtain and
analyze its full genome sequence. Indeed, this approach
has been extremely useful in uncovering potential tar-
gets for therapeutic intervention and/or immunologic
protection for a number of protozoan parasites whose
complete genome sequences have recently been deci-
phered [5-8]. Fortunately, Ich is fairly closely related to
the model organisms Tetrahymena thermophila and
Paramecium tetraurelia, whose macronuclear genomes
have also been sequenced and annotated [9-11]. As
shown here, comparative genomic analysis between
these free-living species and the parasitic Ich reveals
extensive genome reduction and modifications asso-
ciated with the adoption of a parasitic lifestyle. There
are relatively few cases of which we are aware in which
the genome sequences of a parasite and a closely related
free-living species are both available for such compara-
tive analysis (for example, [12]). The ciliates may repre-
sent an excellent model system in which to explore the
genomic consequences of this lifestyle switch, as it
appears to have occurred in multiple independent cases
within the genus Tetrahymena alone [13].

In addition, the genome of zebrafish, a model organ-
ism and representative host species, has been sequenced
and thoroughly annotated [14]. Metabolic reconstruction
of Ich and comparison with its host’s metabolic path-
ways reveal potential targets for combating white spot
disease.

Results and discussion
Genome sequencing
We selected for sequencing an Ich strain of the D sero-
type, the most prevalent in known infections. To mini-
mize locus heterozygosity, the culture was initiated from
a single parasite. Like most ciliate species, Ich is binucle-
ate, having a presumably diploid germline micronucleus
(MIC) and a polyploid somatic macronucleus (MAC).
Because the MAC is the transcriptionally active nucleus,
it was the focus of our sequencing efforts. By several
independent methods (in particular, comparison of
Southern blot hybridization intensities to known
amounts of cloned and genomic DNA with a unique
sequence probe), we estimated the Ich MAC genome
size to be about 50 Mb (TG Clark, unpublished data),
consistent with the 72 Mb and 104 Mb genome sizes of
P. tetraurelia and T. thermophila, respectively.

In all ciliates studied to date, the MAC is derived from
a copy of the MIC during sexual conjugation in a pro-
cess that involves genome-wide DNA rearrangements,
including chromosome fragmentation and the elimina-
tion of most or all repetitive, transposon-related
sequences [15]. Therefore, we anticipated the MAC



Coyne et al. Genome Biology 2011, 12:R100
http://genomebiology.com/2011/12/10/R100

genome to consist of multiple chromosomes (7. thermo-
phila has 181; E Orias and E Hamilton, personal com-
munication) and to have a low level of repetitiveness. In
the Tetrahymena genome project, MACs were physically
separated from MICs, resulting in an assembly largely
free of MIC-specific sequence contamination, but simi-
lar nuclear separation techniques have not been devel-
oped for Ich. Therefore, we relied on natural
enrichment of the MAC genome; during the host-asso-
ciated trophont stage of parasite development (Figure 1),
endoduplication of the MAC genome occurs, leading to
an estimated ploidy of up to 12,000 C, in the absence of
MIC genome duplication [16].

Whole cell DNA was prepared from trophonts, taking
care to minimize contamination from fish tissue or
other associated microbes. Plasmid libraries were pre-
pared with 2 to 4 kb and 4 to 6 kb insert size ranges for
paired end sequencing. However, initial quality control
of these libraries revealed a high proportion of reads
with higher than expected GC content (Figure 2a) and
sequence similarity to bacteria. Further analysis [17]
made it clear that this Ich strain harbors multiple spe-
cies of intracytoplasmic bacteria (which we will refer to
as endosymbionts, although the nature of their relation-
ship to their Ich host is unclear). Efforts to purify or
selectively clone Ich DNA were unsuccessful, and there-
fore we decided to shotgun sequence and assemble the
mixture and separate the genomes bioinformatically.
This task was simplified by a dramatic difference in
average GC content between Ich (approximately 15%)
and the bacteria (approximately 34%). Presumably
because of a bias against stable maintenance of AT-rich
DNA in Escherichia coli, the plasmid libraries, especially
the larger insert library, were heavily contaminated with
bacterial sequence. We therefore focused most sequen-
cing effort on pyrosequencing (454 FLX Titanium) sup-
plemented by 2 to 4 kb paired end Sanger reads. The
even distribution of read numbers on both sides of the
approximately 15% GC Ich peak (Figure 2a) indicates
that the total pool of reads is not significantly biased
against GC-poor sequence content.

Genome assembly and partitioning

All good quality Sanger and 454 reads were assembled
using Celera Assembler Version 5.3 [18], generating
1,803 scaffolds of average length 27,320 bp. As shown
by Figure 2b, these scaffolds can be almost completely
partitioned on the basis of average GC content into two
separate bins, one representing the very AT-rich ciliate
genome and the other representing the genomes of
endosymbiotic bacteria. As a first approximation, we
drew the boundary between these bins at 26% GC and
reran Celera v5.3 on the underlying reads, resulting in a
slight improvement of the assemblies. To correct cases
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Figure 2 GC content of reads and scaffolds. (a) Percentage of
GC content is plotted against percentage of combined quality
Sanger and 454 reads of whole cell Ich DNA, showing a prominent
shoulder of reads more GC-rich than expected for Ich. (b) Following
assembly, mean GC content was plotted against the aggregate
scaffold length within each percent GC bin, showing clean
separation between scaffolds that make up the bacterial genomes

and those that make up the much larger Ich genome.
J

of inappropriate binning (especially near the 26% GC
cutoff) and search for possible fish DNA contamination,
we performed a MEGAN analysis [19] on all scaffolds to
determine their phylogenetic affinities; several that
showed similarity to known ciliate DNA sequences were
moved from the symbiont bin to the Ich bin, but in gen-
eral the partitioning was remarkably clean and little con-
tamination was detected. Assembly and analysis of the
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endosymbiont reads will be described in a separate
paper. We also searched for MIC contamination by
BLAST-searching all contigs against known ciliate trans-
posase sequences, but could detect no clear contamina-
tion. We cannot rule out the possibility of some MIC
contamination, but available evidence suggests any such
contamination would likely be less than that found in
the initial 7. thermophila assembly [11], which has been
estimated at about 1% of the total length [10]. We can
also not entirely rule out the presence of contamination
from other sources, such as bacterial symbionts or fish
host, in the current assembly; further efforts in genome
closure would likely be the most effective means of
eliminating any such contamination. The span of the
final set of scaffolds was 49.0 Mb, in close agreement
with our preliminary genome size estimate of 50 Mb.

Two Ich sequences not found in the initial assemblies
were the ribosomal DNA (rDNA) locus and the mito-
chondrial DNA (mtDNA). Because these sequences
were represented among the reads in much higher num-
bers than the average locus, the Celera Assembler
excluded them as repetitive DNA, but they were
assembled ‘manually” as described in the Materials and
methods section. The Ich rDNA locus encodes the large
and small subunit rRNAs and, as in Tetrahymena, is
located on its own small, highly amplified chromosome
(accession ID GL985055). During T. thermophila MAC
development, the single-copy MIC rDNA locus is
excised and converted by an intramolecular recombina-
tion event into a 20 kb palindromic molecule with a
short (28 bp) non-palindromic center [20]. Palindrome
formation and gene amplification are characteristic of a
number of developmental and disease-associated geno-
mic events [21]. The Ich rDNA is also a palindrome,
but lacks a non-palindromic center. It would be interest-
ing to determine the Ich MIC sequence in the rDNA-
terminal region and compare it with the corresponding
T. thermophila region, which contains a pre-existing 42
bp inverted repeat, separated by a 28 bp non-palindro-
mic center, that nucleates palindrome formation follow-
ing chromosome fragmentation [22].

All sequenced ciliate mtDNA molecules are linear, and
Ich’s is no exception (accession ID JN227086). The non-
telomeric portion of the molecule is 47,620 bp in length.
Its structure and coding potential are described below.
Linear mtDNAs found in ciliates and other species are
capped by telomeres of varying lengths that consist of
tandemly repeated units ranging up to 777 bp in length
[23,24]. It is thought that these telomeres are main-
tained by unequal crossing over, which keeps their
repeat sequences homogeneous but allows the rapid
accumulation of interspecies differences. The mitochon-
drial telomeres of several Tetrahymena species have
been sequenced [25,26]. Each species’ characteristic
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repeat unit is between 31 and 53 bp and shares no iden-
tifiable sequence similarity with the others, except for
the most closely related species. In some species, each
end of the mtDNA is capped by a repeat unit unrelated
to that found at the other end. The Ich mtDNA is ter-
minated by identical repeat units at each end, in an
inverted orientation. The repeat unit is 225 bp in length,
substantially longer than those of known Tetrahymena
species.

Gap closure and optical mapping

Following the initial assembly and partitioning, standard
autoclosure efforts resulted in closing 455 of the 540 Ich
intra-scaffold gaps. Celera Assembler was rerun on the
combined shotgun and finishing reads, resulting in a
final draft assembly of 2,274 contigs in 2,017 scaffolds
(this whole-genome shotgun project has been deposited
at DDBJ/EMBL/GenBank under the accession
AEDNO00000000; the version described in this paper is
the first version, AEDN01000000) with a contig N50
(the size that half the contigs are greater than) of 55,110
bp and average coverage depth of 19X. Additional
assembly statistics are presented in Additional file 1. In
T. thermophila, it appears that the MAC chromosomes,
apart from the rDNA, are maintained at approximately
equal copy number [11]. We plotted the mean depth of
coverage for all Ich scaffolds against their sizes and
found that they do not vary greatly, except for the
expected stochastic variation found among the smallest
scaffolds (Additional file 2). Thus, it appears that Ich
chromosomes are also present in roughly equal copies,
indicating that they are amplified to the same extent
during trophont growth.

To gain a bigger picture of Ich MAC genome organi-
zation and lay the groundwork for future genome finish-
ing efforts, we contracted with Opgen, Inc. to produce a
whole genome ordered restriction map, or optical map
[27]. This map revealed 69 complete linear chromo-
somes and four partial (single-ended) chromosomes;
these four most likely represent the individual ends of
two complete chromosomes that the mapping algorithm
was unable to join. Thus, it appears that the Ich MAC
genome consists of 71 chromosomes of between 1.5 Mb
and 265 kb, plus an amplified 16.6 kb palindromic
rDNA (which is too small to be optically mapped). The
total length of the optical restriction map was 49.1 Mb,
in close agreement with the complete span of our
assembled scaffolds, 49.0 Mb, which argues that our
genome assembly is largely complete.

We next attempted to map as many of our scaffolds as
possible to the optical restriction map on the basis of
their predicted restriction digest fragmentation patterns
using two independent algorithms, OpGen’s MapSolver
and SOMA [28]. MapSolver placed 319 scaffolds and
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SOMA placed 555. Although the two algorithms gener-
ally agreed on the placement of larger scaffolds, there
was disagreement in the placement of many smaller
contigs (with fewer diagnostic restriction sites).

To evaluate scaffold placement further, we identified
121 scaffolds that ended in multiple copies of the telo-
meric repeat unit GGGGTT, close to the expected total
of 142 (excepting the rDNA). Of these, 46 were found
on scaffolds not placed on the optical map by either
algorithm (Table S2b in Additional file 3). The remain-
ing 75 mapped scaffolds ideally should only be found at
the ends of chromosomes and in their proper orienta-
tion, but we found that almost one in four was either
misplaced internal to the optical chromosome map or in
improper orientation. By extension, we expect that
many of the other placements, especially those with
lower confidence (see Materials and methods) were also
misplaced. We therefore decided to accept a scaffold
placement on the optical map only if at least two lines
of evidence (SOMA, MapSolver, and/or telomere) were
in agreement. Using these stringent criteria, we were
able to cover 53% (26.0 Mb) of the optical map by pla-
cement of 295 scaffolds (Table S2a in Additional file 3).

One scaffold (scaff 1120509250154, G1.983437) that
was placed at a unique optical map position (on partial
chromosome 73) by both MapSolver and SOMA con-
tains telomeric repeats but was not found in a chromo-
some-terminal position on the optical map. We
examined the scaffold and found no indication of misas-
sembly. Because the scaffold is large, contains a number
of diagnostic restriction sites and maps uniquely by both
algorithms, we suspect a misassembly of the optical map
in this region resulted in its misplacement at a chromo-
some-internal position. This was a region of relatively
lower fragment coverage in the map, which may be
related to the failure to assemble a complete
chromosome.

This optical mapping analysis provides substantial
linkage information not discernible from the draft
assembly and suggests multiple targets for future direc-
ted genome closure efforts by inter-scaffold PCR. This
method also proved to be an efficient means of deter-
mining the total number and sizes of Ich MAC chromo-
somes. Optical map coverage appeared to be generally
equal across all chromosomes, consistent with our con-
clusion from sequence coverage data that Ich MAC
chromosome copy number does not vary widely.

General features of protein-coding and non-coding RNA
genes

Mitochondrial genome and ATP synthase

We annotated the Ich mitochondrial genome to identify
41 protein-coding genes, five tRNA genes, one split
gene for small subunit rRNA and two inverted terminal
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copies of the split large subunit rRNA gene. Table 1
presents the full ordered list of predicted genes in the
Ich mitochondrial genome in comparison with that of
T. thermophila. While the nuclear genome of Ich has
undergone significant contraction compared to its free-
living relative (see below), the mitochondrial genome
size, content and gene order are strikingly similar to
those of Tetrahymena spp. [29-31]. Between 38 and 41
(depending on whether three poorly conserved gene
pairs are indeed homologous) of T. thermophila’s 43
putative protein-coding ORFs are present in Ich and are
found in the same order and orientation, except for a
reversal of the first two (ymf66 and ymf57) and the relo-
cation of the ‘b’ portion of the split nadl gene. Ich also
retains five of the eight predicted Tetrahymena tRNA
genes, all in nearly the same locations and orientations,
as well as the same configuration of rRNA genes,
although the tRNA genes found between the split por-
tions of the large subunit rRNA genes of Tetrahymena
spp. and P. tetraurelia were unexpectedly absent. Thus,
parasitic adaptation by Ich has resulted in no significant
minimization of mitochondrial functions compared to
its free-living relatives. This is in contrast to apicom-
plexan parasites, where extensive mtDNA gene losses
and rearrangements have been common [32].

This close correspondence between the Ich and Tetra-
hymena mitochondrial genomes may extend also to the
nuclear genes encoding complexes of the mitochondrial
inner membrane. A recent study examined the structure
and composition of the T. thermophila ATP synthase,
finding a striking number of novel subunits, in addition
to conservation of the core F; subunits and the Fg ¢
subunit that forms the rotational ring in the inner mem-
brane [33]. A comparative search of the Ich nuclear and
mitochondrial genomes indicates that all 22 subunits
identified in the T. thermophila study have an ortholog
or, in the case of the alpha and beta subunits, two
orthologs in Ich (Additional file 4). Because the ciliate
ATP synthase is so dramatically divergent from the cor-
responding vertebrate enzyme complex and is undoubt-
edly essential for Ich survival, it presents a highly
attractive drug target [34].

MAC genome

By a combination of automated and manual genome
annotation, we modeled the protein-coding genes of Ich.
Predictions were tested and refined by alignment to
existing ESTs. In addition, we generated new transcrip-
tome data by paired-end Illumina sequencing (RNA-seq)
of a normalized polyA+ cDNA library prepared from
pooled theront and trophont RNAs. Over 99% of the
RNA-seq assemblies aligned to our genome assembly
(see Materials and methods), arguing again that the
assembly is largely complete. In total, we predicted
8,096 protein-coding genes, about one third as many as
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Table 1 Ordered list of Ich mitochondrial genes
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Start End Accession number Product name Gene symbol T. thermophila®
823 742 IMG5_M206942 tRNA-Tyr-2 tRNA-Tyr-2 v
1217 941 IMG5_M206943 LSU rRNA rl_a_1 \
tRNA-Leu
3687 1410 IMG5_M206944 LSU rRNA ml_b_1 N
5041 3695 IMG5_M206945 Ymf 66 ymfs6° ymfs7°
5301 4999 IMG5_M206946 Ymf57 ymfs7° ymfs6°
6607 5441 IMG5_M206947 Ymf76 ymf76 V
7446 6622 IMG5_M206948 Ribosomal protein S13 rpsi3 \
7903 7424 IMG5_M206949 Ribosomal protein S3 rps3 N
8202 7903 IMG5_M206950 Ribosomal protein S19 rps19 N
8996 8208 IMG5_M206951 Ribosomal protein L2 pl2 V
9471 8977 IMG5_M206952 Hypothetical protein Hypothetical® ymf74
9961 9455 IMG5_M206953 NADH dehydrogenase subunit 10 nadi0 \
10381 9977 IMG5_M206954 Ribosomal protein S12 psi2 V
10914 10393 IMG5_M206955 NADH dehydrogenase subunit 2 nad2 N
10922 12214 IMG5_M206956 NADH dehydrogenase subunit 7 nad7 \V
12220 12522 IMG5_M206957 Ribosomal protein S14 rps14 \
12522 13082 IMG5_M206958 Ymf60 ymf60 V
14068 13079 IMG5_M206959 Ymfe4 ymfe4 \J
14748 14170 IMG5_M206960 Ymf75 ymf75 N
14821 14750 IMG5_M206961 tRNA-Phe-1 tRNA-Phe V
nadi_b°
15055 14828 IMG5_M206962 ATP synthase FO subunit 9 atp9 N
15863 15060 IMG5_M206963 Ymf63 ymf63 V
16966 15881 IMG5_M206964 Ymf65 ymfe5 N
ymf69
17653 17174 IMG5_M206965 Ymf59 ymf59 V
18096 17656 IMG5_M206966 Ribosomal protein L16 pl16 \
19722 18163 IMG5_M206967 Heme maturase yejiR N
20433 19726 IMG5_M206968 Ymf61 ymf61 N
tRNA-His
20829 20464 IMG5_M206969 NADH dehydrogenase subunit 3 nad3 V
ymf72
21193 20852 IMG5_M206970 Ymf58 ymf58 v
21795 21214 IMG5_M206971 NADH dehydrogenase subunit 9 nad9 N
25990 21839 IMG5_M206972 Ymf77 ymf77 N
28327 28148 IMG5_M206973 NADH dehydrogenase subunit 1 nadil_p°
28510 29802 IMG5_M206974 Apocytochrome b cob N
29792 31885 IMG5_M206975 NADH dehydrogenase subunit 5 nad5 J
31902 33521 IMG5_M206976 Cytochrome c oxidase subunit 2 cox2 N
33532 33735 IMG5_M206977 SSU rRNA ms_a N
33783 35202 IMG5_M206978 SSU rRNA rns_b V
35555 36841 IMG5_M206980 Ymf67 ymfe7 V
36862 36932 IMG5_M206981 tRNA-Trp-1 tRNA-Trp V
36961 38583 IMG5_M206982 Ymf68 ymf68 V
38587 38865 IMG5_M206983 Hypothetical protein Hypothetical® ymf71
38942 41014 IMG5_M206984 Cytochrome ¢ oxidase subunit 1 coxl1 N
41015 41923 IMG5_M206985 NADH dehydrogenase subunit 1 nadl_a N
41847 42605 IMG5_M206986 Ymf62 ymf62 V
42627 42986 IMG5_M206987 Ribosomal protein L14 pl14 N

tRNA-GIu®



Coyne et al. Genome Biology 2011, 12:R100 Page 7 of 26

http://genomebiology.com/2011/12/10/R100

Table 1 Ordered list of Ich mitochondrial genes (Continued)

43012 43278 IMG5_M206988 Ymf70 ymf70 \J

43284 44807 IMG5_M206989 NADH dehydrogenase subunit 4 nad4 V

44811 45284 IMG5_M206990 Ymf73 ymf73 V

45323 45393 IMG5_M206991 tRNA-Glu-1 tRNA-GIUP

45404 47681 IMG5_M206992 LSU rRNA ml_b_2 \J
tRNA-Leu

47874 48150 IMG5_M206993 LSU rRNA ml_a_2 V

48267 48348 IMG5_M206994 tRNA-Tyr-1 TRNA-Tyr-1 tRNA-Met

A checkmark indicates that the T. thermophila mtDNA contains a homolog of the same gene in the same relative position and orientation. ®Divergent gene

order. “Hypothetical’ indicates insufficient evidence to assign gene name.

found in the most closely related sequenced ciliate, the
free-living T. thermophila [11]. This result suggests
extensive genome reduction has occurred in the course
of Ich’s adaptation to a parasitic lifestyle. General char-
acteristics of the predicted genes in comparison to T.
thermophila are presented in Table 2. Besides the reduc-
tion in gene number, the predicted genes of Ich are sig-
nificantly shorter than those of T. thermophila in both
coding and non-coding length. In summary, compared
with the genome of its nearest sequenced free-living
relative, the Ich genome is reduced approximately two-
fold in size, three-fold in gene content and two-fold in
gene density. The overall GC content of the Ich macro-
nuclear genome (15.9%) is the lowest yet reported for
any fully sequenced eukaryote [35] and significantly
lower than that of T. thermophila (22.3%), but the dis-
crepancy in exon GC content is not as great (24.1% ver-
sus 27.5%, respectively), suggesting the possibility that
AT mutational bias acting against reduced selection in
the gene-poor Ich genome may be driving GC content
to extremely low levels.

Because of its close association with bacterial endo-
symbionts, we addressed the possibility of horizontal
gene transfer (HGT) into the Ich genome using the
APIS program [11], a pipeline for automatic construc-
tion and interpretation of phylogenetic trees. Each query
predicted protein was compared to a database of pro-
teins from complete genomes using BLASTP. Sequences
of homologs with high BLAST similarity (e-value < 10°)
were retrieved and a multiple sequence alignment con-
structed for the purpose of inferring a neighbor-joining
phylogenetic tree. The trees were parsed to determine
the phylogenetic placement of each query. Only trees
for 10 Ich genes are contained within clades of genes of
entirely bacterial or archaeal origin and only 17 Ich
genes are outgroups of bacterial clades. Even when
initial clading with T. thermophila and P. tetraurelia is
excluded from the analysis (in order to look for bacterial
genes that may have been acquired by the common
ancestor of these organisms), only 160 genes are identi-
fied as candidates for cases of HGT. Because the

principal Ich endosymbiont is a member of the Rickett-
siales, we searched the trees of these 160 candidates for
genes of rickettsial origin and found only seven. Exami-
nation of the tree topologies of these seven genes
revealed no strong evidence suggesting lineage-specific
HGT between Ich and its principal endosymbiont. Sepa-
rate genomic analysis of the principal endosymbiont of
this Ich strain (M. Lynch et al., in preparation) failed to
reveal HGT from host to symbiont, suggesting this does
not account for the genome reduction we observe in
Ich.

There is extensive, clear-cut evidence for multiple
whole genome duplications (WGDs) in the evolutionary
history of P. tetraurelia, a more distant relative of T.
thermophila and Ich [9]. Phylogenetic analysis suggested
that the earliest detectable such WGD occurred prior to
the split between the lineages leading to Paramecium
and Tetrahymena. However, independent analysis failed
to detect evidence of WGD in T. thermophila [11].
With the sequencing of another ciliate along the Tetra-
hymena lineage, we reconsidered the timing of WGD
events, using algorithms designed to detect the rem-
nants of such events in the form of short blocks of
intra-genomic synteny [36]. As expected, there is strong
evidence for such blocks in the P. tetraurelia genome,
but their numbers in the T. thermophila and Ich gen-
omes are not above those expected by chance. Thus, we
have failed to detect evidence for WGD on the Ich/Tez-
rahymena branch, although it is possible that the gen-
ome reduction experienced by Ich may have obscured
the evidence in this species.

Non-coding RNAs

The Ich genome contains the expected complement of
non-coding RNA (ncRNA) genes (Additional file 5), but
in reduced numbers compared with its free-living rela-
tive T. thermophila. There are 144 predicted tRNA
genes in the MAC genome and 5 in the mitochondrial
genome, compared with 710 and 8, respectively, in T.
thermophila. As expected, several tRNAs (6 and 2,
respectively) have anticodons for translation of the alter-
native glutamine codons UAA and UAG [37]. We also
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Table 2 Important genome statistics

Ich T. thermophila
Genome
Total predicted genes 8,096 24,725
Percentage coding 210 478
Total annotated sequence length® 47,869,613 103,002,206
Percentage GC 159 223
Genes
Longest gene 21,958 47,333
Shortest gene 152 119
Total gene length 13,277,109 62,628,433
Average gene length® 1,639 2,533
Average gene coding sequence 1,243 1,989
Gene density (per 10,000 bp) 16.92 416
Percentage genes with introns 79.0 714
Exons
Total exon length 10,666,748 49,184,519
Total number of exons 29,479 114,215
Longest exon 11,206 14,389
Shortest exon 2 2
Average exon length 3618 4306
Percentage GC 24.1 275
Introns
Total number of introns 21,380 89,490
Longest intron 11,437 13,045
Shortest intron 16 18
Average intron length 152.8 162.7
Average introns per gene 26 36
Percentage GC 12.3 16.1
Intergenic regions
Total intergenic regions 33,985,751 39,886,399
Shortest intergenic region 2 2
Longest intergenic region 42,323 46,152
Average intergenic length 3,650 1,562
Percentage GC 139 18.1

2Scaffolds < 2 kb in length were not annotated. ®Not including 5’ and 3’
untranslated regions.

detected a tRNA predicted to translate UGA as seleno-
cysteine, strongly suggesting that Ich, like T. thermo-
phila [11], has the potential to translate all 64 codons
into amino acids.

The Ich genome contains only 13 predicted 5S rRNA
genes, compared with about 155 predicted functional
genes in 1. thermophila. There is also an approximately
three-fold reduction in the number of various ncRNAs
that function in mRNA processing and protein traffick-
ing. Ich does not appear to contain a variant U2 small
nuclear ribonucleic acid (snRNA) similar to that found
in the T. thermophila genome [11].

Codon usage

It is common for organisms to display bias in the fre-
quency with which synonymous codons are employed.
In some organisms, including 7. thermophila [11], a
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subset of highly expressed genes displays additional bias,
thought to result from selection for high translational
efficiency and/or accuracy [38]. Such selection is weak
and its effect on codon usage bias can be overwhelmed
by random genetic drift in a species with a low effective
population size [39], as appears to have occurred in the
apicomplexan parasite Plasmodium falciparum [11]. We
analyzed codon usage patterns in Ich using principal
component analysis and found that, as in P. falciparum,
there does not appear to be a subset of genes that uses
a preferred codon set substantially different than that
used by the average gene (Figure S2a in Additional file
6). In general, codon usage follows the pattern predicted
by variation in GC3 content (the fraction of codons that
are synonymous at the third codon position that have
either a guanine or a cytosine at that position) alone
(Figure S2b in Additional file 6). These observations
may reflect a low effective population size of Ich, as a
result of its obligate parasitic lifestyle. Mating of Ich has
not been observed, and its frequency in the wild is
unknown.

Ich ortholog grouping

A useful approach for surveying the protein-coding gene
landscape of a newly sequenced genome is to group
genes by orthology, which can provide guidance for
functional annotation and, in the case of parasites such
as Ich, facilitate the identification of candidates for drug
and/or vaccine development [40]. For this study, we
grouped the Ich proteome with the 138 other species
contained in the OrthoMCL database (OrthoMCL DB
version 4) [41] using a one-way Blast search against all
proteins contained therein; 7,382 Ich genes had ortho-
logs in at least one other species and could be grouped
into 3,183 ortholog groups, with an overwhelming
majority sharing orthology with ciliates and other eukar-
yotic organisms (Figure 3a; Additional file 7). The
remaining Ich genes did not satisfy the pairing cutoff
criteria (e-value < 10” and matching at least 50% of the
query protein). Nearly all the 3,183 groups include
representatives from other eukaryotes (Figure 3a; Addi-
tional file 7), consistent with our failure to detect signifi-
cant bacterial HGT. Additional file 7 gives a list of all
Ich genes mapped to their ortholog hits.

Not surprisingly, most of the best matches to Ich pre-
dicted proteins (6,991 of 7,382) were T. thermophila
predicted proteins, including 971 that mapped to 393
groups containing only Tetrahymena proteins (685 of
these Ich proteins paired with previously ungrouped
Tetrahymena proteins). A large fraction of the Ich genes
that grouped with only Tetrahymena genes also grouped
with P. tetraurelia genes and hence constitute ciliate-
specific genes (Additional file 8; note that P. tetraurelia
is not included in the current version of OrthoMCL DB
and hence its ortholog grouping was carried out in
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Figure 3 Ortholog grouping. (a) Phyletic grouping of Ich genes with previously grouped orthologs from other species. Numbers in
parentheses indicate the total number of ortholog groups to which the respective genes belong. (b) Shared orthology between the three ciliate
genomes. The numbers depict the total number of ortholog groups in each category. The numbers within the brackets indicate ortholog groups
specific for Tetrahymena only and accordingly there are 341 ciliate specific ortholog groups shared with all 3 ciliates compared here. See

(a) .
Eukaryotes Bacteria
4735 833
2 (2
(2174) (395) @
758
309 (423) 0
(189)
0
Archaea
Additional file 6 for more details regarding shared orthology between the three ciliates.

(b) Ich T. thermophila

(total 3183 groups) (total 5505 groups)

204 1213
142
(59) (687)
0757
80 (341) 4331
(326)
1091

P, tetraurelia
(total 5259 groups)

similar fashion to Ich). Figure 3b displays shared orthol-
ogy between the three sequenced ciliates. Of the 3,183
Ich-containing ortholog groups, 87% (2,758 groups
mapped to 5,996 Ich genes) include both Tetrahymena
and Paramecium genes and an additional 9% include
genes from one or the other free-living ciliate. Only 142
ortholog groups (mapped to 204 Ich genes) excluded
other ciliate genes while mapping to genes from other
species. Among these, there are 30 ortholog groups
(mapped to 35 Ich genes) specific to apicomplexan spe-
cies, containing mostly proteins of unknown function.
The remaining 112 ortholog groups have no obvious
phylogenetic bias, and while a large fraction of these
contain proteins of unknown function, a substantial
number are enriched in proteins with enzymatic activity
(Additional file 7).

Among the three ciliates, Ich has the fewest protein-
coding genes, but ortholog grouping shows this is not
entirely due to higher redundancy in Tetrahymena and
Paramecium within a similar set of functional cate-
gories. Ich possesses the core ciliate proteome, mostly
shared with Tetrahymena and Paramecium, but lacks
orthologs for a significant number of genes shared by
these ciliates and other forms of life. Figure 3b shows
that 3,635 Tetrahymena and/or Paramecium ortholog
groups exclude Ich (a number greater than the total
number of Ich-containing ortholog groups). The genes
contained in these Ich-excluded ortholog groups are

significantly enriched in functional categories such as
transcription factors, nucleic acid binding/metabolism
and signaling pathways (including protein kinases; see
below), suggesting that Ich may have limited redun-
dancy in its ability to regulate cellular processes using
intracellular signaling and transcriptional pathways com-
pared with free-living ciliates. Ich has only 26 genes that
group into 12 Ich-specific in-paralog groups (Additional
file 8), dramatically fewer than Tetrahymena (2,805
genes in 687 groups; numbers after removing orthologs
of Ich and Paramecium, which are not yet included in
OrthoMCL DB) and Paramecium (3,758 genes in 1,163
groups; in comparison to Tetrahymena only), suggesting
again that Ich has lost many of the ciliate-specific gene
families and expansions seen in free-living ciliates.
Clearly, Ich contains a streamlined ciliate genome suited
to a parasitic life style.

Based on orthology, the largest group of functionally
related proteins in the Ich genome are the kinases with
145 ortholog groups containing 602 potential kinases.
An additional 69 potential kinases (see below) have
ortholog best hits with previously ungrouped genes.
Other large, functionally related gene families include
the proteases and ion channels (see below). A signifi-
cantly large portion of the Ich genome is devoted to
enzymes (1,854 genes with four digit EC numbers in
763 ortholog groups; this set also includes kinases and
other non-metabolic pathway enzymes having four digit
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EC numbers; Additional file 7). Enzyme assignments
were used to reconstruct Ich metabolism and suggest
potential candidates for drug development (see below).

Analysis of selected gene families

Protein kinases

Throughout the tree of life, numerous sensory and regu-
latory functions are carried out by diverse protein
kinases. Ich’s closest sequenced relative, T. thermophila,
devotes an unusually large portion of its proteome
(3.8%) to kinases, including notable gene expansions of
kinases associated with mitotic and cytoskeletal func-
tions, as well as sensory histidine protein kinases [11].
By a combination of two methods (see Materials and
methods), we identified 671 putative Ich kinase genes.
Thus, remarkably, Ich devotes over 8% of its proteome
to kinases (Table 3). Phylogenetic profiling of these 671
genes shows that 536 have only eukaryotic orthologs, 54
have shared orthology with bacteria and eukaryotes, 5
with archaea and eukaryotes and 7 with all three king-
doms. None shared orthology exclusively with bacteria
or archaea or both. There are 103 Ich kinase genes that
grouped only with T. thermophila or with T. thermo-
phila plus P. tetraurelia and therefore may represent
ciliate-specific kinases (Additional file 9).

Table 3 provides a summary of the Ich kinome show-
ing the number of genes that can be grouped into var-
ious kinase families in comparison to free-living ciliates
and other organisms. It is clear that members of phylum
Ciliata devote a larger fraction of their proteome to
kinases than most other species; however, ciliate kinases
tend to map to fewer unique families (see numbers
within parentheses in Table 3). While a large proportion
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of the ciliate kinases map into ciliate-specific familes
(Additional file 9), others more or less follow a similar
distribution to other unicellular eukaryotes and differ
from metazoan kinomes in lacking membership in var-
ious tyrosine kinase families. In addition, Ich possesses
38 genes that contain the protein kinase Pfam domain
but cannot be reliably grouped with previously known
kinase families despite having orthologs in other species.
These are likely to be pseudokinases with partial and/or
inactive kinase domains (see Additional file 9 for a
detailed list of all kinase families mapped to Ich and
comparison to other species and Additional file 7 for a
complete list of all Ich kinases and their phyletic asso-
ciations). Overall, the Ich kinome is similar to those of
free-living ciliates, except somewhat reduced in both
genes and kinase families.

Ciliates, including Ich, display dramatic expansion of
certain kinase families as well as containing many that
are ciliate specific. The most prominent expansions are:
Akt, AktR and nuclear Dbf2-related (NDR) families
from the AGC group; the atypical histidine kinase
family; the Ca2+/calmodulin-dependent protein kinase
(CAMK)1, CAMKL and calcium-dependent protein
kinase (CDPK) families of the CAMK group; the casein
kinase 1 (CK1) family of the CK1 group; and Aur, NEK,
polo-like kinase 1 (PLK1) and Unc-51-like kinase (ULK)
families from the Other group of kinases (Additional file
9). These kinases affect a wide variety of cellular func-
tions ranging from mitotic cell division (Aur/PLK), to
cytoskeletal dynamics (ULK, NEK), two-component sig-
naling (histidine kinases) and calcium and calmodulin
regulated processes (the CAMK group). It is interesting
to note that the CDPK kinases (also expanded in

Table 3 Major kinase groups of Ich compared with other species

Kinase group Ich T. the P. tet P. fal* T. gon* S. cer C. ele D. rer H. sap
AGC 78 (8) 51 (8) 219 (8) 6 (4) 11 (4) 17 (6) 29 (16) 75 (13) 63 (15)
Atypical 37 (5) 103 (6) 270 (6) 5@3) 5@ 14 (6) 18 (7) 47 (12) 38 (12)
CAMK 68 (5) 62 (6) 442 (6) 13 (4) 23 (3) 22 (4) 40 (14) 95 (17) 74 (18)
CK1 24 (1) 19 (1) 125 (1) 3(M) 3(1) 4(1) 83 (12) 14 (3) 12 (3)
CMGC 68 (9) 61 (10) 199 (9) 16 (8) 21 (6) 23 (8) 48 (10) 65 (9) 63 (9)
Other 330 (24) 747 (45) 1,449 (40) 28 (6) 71.(11) 37 (20) 67 (27) 80 (30) 81 (34)
RSK 2 T 5() 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
RGC 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 27 (1) 8 (1) 5
STE 13 (4) 19 (4) 39 (4) 1(1) (1) 14 (3) 24 (3) 51 (4) 47 (4)
TK 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 84 (18) 107 (28) 90 (29)
TKL 13(3) 503) 15(3) 4 (1) 7 (1) 0(0) 15 (5) 15 (7) 45 (8)
Unclassified (PFO0069) 38 (1) 0 (0) 0(0) 36 (1) 23 (1) 0(0) 0(0) 0(0) 0(0)
Total 671 (61) 1,068 (84) 2,763 (78) 112 (29) 165 (30) 131 (48) 435 (113) 557 (124) 518 (133)
Percentage of proteome 8.29 3.89 847 2.04 1.83 1.96 2.15 2.31 2.19

Total number of genes mapped to each kinase group; in parentheses, number

of different families. An expanded list of all families under each kinase group is

shown in Additional file 7. T. the, T. thermophila; P. tet, P. tetraurelia; P. fal, Plasmodium falciparum; T. gon, Toxoplasma gondii; S. cer, Saccharomyces cerevisiae; C.
ele, Caenorhabditis elegans; D. rer, Danio rerio; H. sap, Homo sapiens. *Data for these two species was obtained from published reports [117,118] rather than from

kinbase [116] or by orthology to the kinbase data, as for the other species.
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apicomplexan parasites) and histidine kinases are com-
pletely absent in higher vertebrates and thus obvious
potential anti-parasitic drug targets [42]. Certainly,
understanding the function and regulation of the Ich
and other ciliate kinomes will play a large part in
furthering our understanding of the biology of the Ich
parasite as a whole.

Immobilization antigens

Immobilization antigens are abundant glycosylphospha-
tidylinositol (GPI)-anchored proteins that coat the sur-
faces of holotrichous ciliates [43]. While their precise
function is unknown, i-antigens are the principal targets
of the host immune response to infection and therefore
attractive candidates for vaccine development against
Ich. Despite this promise, the existence of serotype var-
iation resulting from the expression of different i-anti-
gens in natural parasite populations represents a
potential bottleneck to their development as vaccines
[43,44]. The underlying basis of serotype variation in Ich
is poorly understood but could arise through differential
expression of large numbers of i-antigen genes that are
shared among isolates (antigenic shift), or the stable
expression of a limited number of paralogous genes that
undergo antigenic drift, or perhaps both. The free-living
ciliates 7. thermophila and P. tetraurelia contain
families of related i-antigen alleles that are expressed in
a mutually exclusive fashion in response to environmen-
tal stimuli. By contrast, only three i-antigen genes have
been characterized in Ich to date [43,45]. One of these,
IAG52A[/GS5] (AF324424) has been identified in multiple
serotypes but is only weakly expressed [45] (DM Cas-
sidy-Hanley, TG Clark, et al., unpublished). The other
two are highly expressed and encode the serotype A and
D antigens, respectively. The serotype A gene (desig-
nated JAG48; AF40273) was identified in parasite isolate
G1, while the serotype D gene (designated IAGS52B;
AF405431) was identified several years ago in the G5
isolate described here [40]. Since the total number of i-
antigen genes was unknown, sequencing of the MAC
genome offered an unparalleled opportunity to analyze
the potential for antigenic variation within any given
strain.

At the primary amino acid sequence level, the pre-
viously characterized Ich i-antigens are 40 to 57% identi-
cal, and share the same overall structure, consisting of
conserved hydrophobic stretches at their amino and car-
boxyl termini (acting as signal peptides for membrane
translocation and GPI-anchor addition, respectively) and
5 to 6 tandem repeats (60 to 100 amino acids in length)
containing periodic cysteines. A search of the Ich MAC
genome based on these features (see Materials and
methods for details) yielded 17 candidate i-antigen
genes (Figure 4; Additional file 10), and four
(IMG5_069210, IMG5_069220, IMG5_069250,
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IMG5_106800) apparent pseudogenes. This is roughly
proportional to the number of i-antigen genes in 7.
thermophila (34) when compared with the total num-
bers of genes in each species (approximately 1:3). At the
nucleotide sequence level, two genes, IMG5_069270 and
IMG5_002150, closely matched the previously character-
ized IAG52A and IAG52B genes, respectively. However,
several differences were apparent, including six nonsy-
nonymous base pair changes in the IMG5_069270 gene,
and nine nonsynonymous base pair changes along with
a 6 bp deletion in the IMG5_002150 gene. Because the
G5 isolate was propagated from a single cell and was
maintained in continuous culture since the genes were
first sequenced in 2002, these variations are due either
to cloning artifacts associated with the originally pub-
lished sequences or rapid genetic drift over a period of
about 7 years.

The newly identified gene most closely related to the
previously characterized IAG48 serotype A gene is
IMG5_203550 (63% identity, 85% similarity). It will be
interesting to determine whether IMG5_203550 in fact
encodes a serotype A antigen. If so, then the G5 isolate
(which became senescent in 2009) had the potential to
undergo antigenic shift to serotype A. By analogy it will
be interesting to determine whether any of the other i-
antigen genes described here are expressed in geogra-
phically distinct Ich isolates and whether they determine
variant serotypes in these strains. In this regard, Ich i-
antigens can be readily expressed as recombinant pro-
teins in T. thermophila [46], which can act as a surro-
gate platform for immobilization assays with reference
antisera to determine the serotype specificity of the
genes in question.

Figure 4a displays a phylogenetic tree of all 17 pre-
dicted i-antigens, showing that most of the newly identi-
fied genes cluster separately from the three discussed
above. Indeed, some were nearly identical to one
another and likely arose through gene duplication (for
example, IMG5 190870 and IMG5_190880,
IMG5_069230 and IMG5_069240). Most of the genes
were shown to be adjacent to at least one other i-anti-
gen gene (Figure 4b), usually in tandem arrays, and
indeed, because they were found on relatively short scaf-
folds that were not placed on the optical map, it is pos-
sible that most or all are arranged in even larger
clusters or perhaps only a single one. A group of 12
genes encodes predicted proteins of similar size (303 to
340 amino acids) that share common sequence motifs
throughout their length. They also lack stretches of
amino acids that were present within the second and
third repeats of the previously characterized serotype A
and D i-antigens (Additional file 10). This pattern of
conserved stretches of amino acids within a framework
of higher order repeats, along with the genomic
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Figure 4 Immobilization antigens. (a) Unrooted neighbor-joining phylogenetic tree [123] of the 17 Ich immobilization antigen genes. The
three described in the text as being related to previously identified genes are in blue. (b) Scaffolds containing arrays or tandem duplications of
putative immobilization antigen genes (blue arrows) and pseudogenes (red outlined arrows). Locus accessions identify the individual genes.
GenBank accession numbers for scaffolds 1 to 4 are as follows: 1, GL983567; 2, GL983846; 3, GL984331; 4, GL984394.

arrangement of genes, suggests that the i-antigen genes
have evolved through a series of tandem duplications,
with intermittent recombination and point mutation giv-
ing rise to new variants. Finally, while the predicted pro-
ducts of all 17 genes share common sequence elements,
available evidence would suggest that the antigenic
determinants associated with protective immunity are
conformational and synonymous with those that define
serotype [43]. Once these determinants are character-
ized, it may be possible to design polyvalent or universal
vaccines that react across serotypes.

Membrane transporters

The free-living ciliates Tetrahymena and Paramecium
depend heavily on membrane transport systems to regu-
late their complex behaviors and exchange materials
with the environment. Indeed, their genomes contain
more predicted membrane transporter genes than those
of most other sequenced eukaryotes, including animals
and plants [9,11]. Recent studies on some of the
expanded families of ciliate transporters have begun to
shed light on their functional diversification [47,48]. We

were interested to see how Ich’s adaptation to a parasitic
lifestyle has affected its complement of transporter
genes.

We detected a total of 483 predicted transporter genes
in the Ich genome, 56% fewer than the 1,086 found in
T. thermophila (a substantially less significant reduction
than the 67% in overall predicted proteome size). Trans-
port protein analyses are summarized in Table 4 and
fully presented in Additional files 11 and 12, according
to the transporter classification (TC) schema of the
Transporter Classification Database (TCDB) [49,50], a
functional/phylogenetic system of classification. Table 4
shows the breakdown of transport proteins according to
TCDB functional class. In Tetrahymena, the greatest
number fall into class 1, channels, which facilitate trans-
port of molecules down a gradient (in a gated or non-
gated manner). In contrast, the largest category of Ich
transporters are secondary carriers (class 2), the
mechanism of which involves coupling to chemiosmotic
energy. Class 3, primary active transporters, which use a
primary source of energy such as diphosphate bond
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Table 4 Comparison of Ich and Tetrahymena membrane transporters according to TC class, superfamily and substrate

type
Number of transporters in Ich (percentage of Number of transporters in Tetrahymena (percentage of
total transporters) total transporters)
TC class
1. Channels 155 (32) 418 (38)
2. Secondary carriers 191 (40) 386 (36)
3. Primary active 131 (27) 269 (25)
transporters
9. Poorly characterized 6 (1) 13 (1)
transporters
Total 483 1086
TC superfamily
VIC 116 (24) 396 (36)
APC 7.(1) 64 (6)
MFS 75 (16) 146 (13)
MC 38 (8) 43 (4)
CPA 16 (3) 20 (2)
ABC 40 (8) 159 (15)
P-ATPase 65 (13) 91 (8)
Substrate type
Inorganic molecules 249 (51) 500 (53)
Carbon sources 54 (11) 77 (8)
Drugs, toxins, 77 (16) 155 (17)
macromolecules
Vitamins, co-factors 15 (3) 23 (2)
Nucleotide bases and 21 4) 26 (3
derivatives
Amino acids and 34 (7) 49 (5)
derivatives
Unknown 38 (8) 110 (12)

MFS, major facilitator superfamily; VIC, voltage-gated ion channel; MC, mitochondrial carrier; CPA, cation:proton antiporter.

hydrolysis to drive active transport, constitute approxi-
mately a quarter of both Ich and Tetrahymena transport
proteins.

Table 4 also summarizes selected phylogenetic super-
family representation. Among the channels, the domi-
nant superfamily is the voltage-gated ion channels
(VICs), which exhibit specificity for potassium, sodium
or calcium or are cation non-specific. Representatives of
these channels in ciliates are involved in ciliary beating,
mechanotaxis and other functions [51,52]. The T. ther-
mophila genome contains 396 predicted VIC superfam-
ily genes, but Ich has only 116, perhaps reflective of a
reduction in its behavioral complexity in adapting to a
parasitic life style. However, when examined in greater
detail, we found that the extent of this difference
between species varied sharply by cation substrate. Ich
contains only 22% as many VICs family K* channels as
Tetrahymena and 71% as many Na" channels. Predicted
Ca*" channel genes (1.A.1.11) of both Ich and Tetrahy-
mena required manual re-inspection (see Materials and
methods), but we conclude that the Ich genome con-
tains between 13 and 19 whereas Tetrahymena has no

more than 7. Thus, Ca®* regulation is likely to be of
great importance in Ich, although the need for K* chan-
nels is minimal compared to Tetrahymena.

Several other genomic lines of evidence suggest a criti-
cal role for Ca** in Ich. More P-type Ca®*-ATPases (TC
number 3.A.3.2) were identified in Ich than in Tetrahy-
mena (13 versus 11), but fewer K'-transporting
ATPases. In addition, calcium channels of the ryano-
dine-inositol 1,4,5-triphosphate receptor Ca®* channel
(RIR-CaC) family (1.A.3) were increased in number in
Ich compared to Tetrahymena (32 versus 25). Of these,
eight and three, respectively, appeared to be incomplete
with less than six peaks of hydrophobicity. Thus, maxi-
mally 24 and 22 potentially full-length sequences were
identified for these two organisms, respectively, but by
this calculation, Ich still has more members of family 1.
A.3 than does Tetrahymena. As described above, Ich
and other ciliates also contain a large number of cal-
cium- and calmodulin-regulated protein kinases, includ-
ing members of the CDPK family, which is absent in
vertebrates. Calcium-regulated pathways have come
under study as promising therapeutic targets against
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apicomplexan parasites [42,53] and we propose they also
be considered as targets against Ich.

Ich apparently uses primarily secondary carriers (TC
class 2) for uptake of nutrients (twice as many as pri-
mary active transporters; 114 versus 58) but uses
approximately equal numbers of primary and secondary
transport systems for drug export. The Ich genome con-
tains only one-quarter as many ABC transporters as that
of Tetrahymena, but 71% as many P-type ATPases. Of
the former, MDR pumps (ABC families 201, 204, and
208) are preferentially reduced in Ich compared to Tet-
rahymena (only 14 to 23% as many; Additional file 12),
compared with an equal number (two) of peroxisomal
long chain fatty acid transporters (family 203) and 40%
as many cholesterol/phospholipid flippases. We also
note that P-type ATPase phospholipid flippases are
increased in numbers compared to Tetrahymena (35
compared to 32; family 3.A.3.8) and that this family is
the largest of these enzyme transporters in Ich. Seventy-
five transporters of the major facilitator superfamily
(MFS) [54] were identified. Compared with Tetrahy-
mena, MFS transporters specific for organic cations and
sugars were better represented than those specific for
organic anions.

Mitochondrial carriers transport all types of small
molecules concerned with aerobic metabolism and per-
mit communication between the cytosol and the mito-
chondrial matrix. There are 88% as many mitochondrial
carriers in Ich as in Tetrahymena (compared with 44%
as many transporters of all types). Such a high represen-
tation of these carriers suggests a strong dependence of
Ich’s energy generation on mitochondrial aerobic
respiration. This is potentially significant because, as
noted above, Ich mitochondrial ATP synthase is highly
divergent from its vertebrate form and thus an attractive
drug target.

Most families in the APC superfamily were lacking in
both ciliates. Only two of these families, AAAP (2.A.18)
and NSS (2.A.22) were represented in Ich. Members of
the SSS family (2.A.21; 27 in Tetrahymena) were com-
pletely absent in Ich. Ich representation was largely
restricted to the AAAP (APC) and the OCT (MFS)
families, a most unusual representation compared to
other characterized organisms.

By percentage of total transport proteins specific to a
general substrate type (Table 4), there are no dramatic
differences between Ich and the free-living Tetrahy-
mena. By far the largest percentage (51%) are devoted to
inorganic molecules, particularly small ions. The major-
ity of these proteins are channels and secondary active
transporters, but they also include 30 P-type ATPases
[55]. Predicted cation transporters greatly outnumber
predicted anion transporters (236 to 13), an imbalance
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observed to an even greater extent in T. thermophila
(485 to 15) [11].

Transporters specific for lipids comprise nearly 9% of
the total. Of these, 35 identified in Ich belong to the
inwardly flipping lipid translocating P-type ATPase (TC
number 3.A.3.8) family; only 32 of these flippases were
identified in Tetrahymena. However, only 4 transporters
similar to the ABC-porter, 3.A.1.211.5, involved in lipid
secretion, were identified in Ich, while 20 were identified
in Tetrahymena. The transporters involved in protein
secretion in Ich are found in the 3.A.5 (general secretory
pathway) and 3.A.8 (mitochondrial protein import sys-
tem) families. The proteins we identified were the inte-
gral membrane transporters that form the
transmembrane pores. These observations suggest that
both of the systems are intact in Ich. The general secre-
tory pathway may be involved in pathogenesis by secret-
ing proteins required for parasite attachment, host
tissue digestion and/or immune evasion and thus repre-
sent a potential therapeutic target.

A fairly high number (34; 7% of total) of transporters
appear to be specific for amino acids and their deriva-
tives, suggesting that these substrates are also of impor-
tance for the physiology of Ich; indeed, metabolic
reconstruction (see below) shows that Ich is auxotrophic
for many amino acids. We were unable to predict a sub-
strate for 8% of Ich transporters.

Proteins in the various families of the TCDB system
have been found to have characteristic topological fea-
tures [56]. Additional file 13 illustrates the distribution
of Ich transporter topological types based on numbers
of transmembrane segments (TMSs), suggesting that Ich
has an unusual distribution of topological types relative
to other types of eukaryotes and prokaryotes. The signif-
icance of this finding is unclear.

Proteases

Proteases in parasitic protozoa have long been consid-
ered potential drug targets due to their crucial roles in
parasite development and infection, and the feasibility of
designing specific inhibitors [57-60]. For example, carp
infected with Ich produce elevated levels of a2M3, an
isoform of A2M, a non-specific protease inhibitor of
endogenous and exogenous proteases [61]. This natu-
rally occurring strategy strongly suggests that anti-pro-
teases could be viable anti-infectives. However, our
knowledge of the protease complement in Ich is very
limited. To date, only two cathepsin L cysteine proteases
(Icpl and Icp2) belonging to the C1 papain peptidase
family have been characterized [62]. Here, comparative
genomic analysis reveals that the Ich proteolytic reper-
toire (degradome) consists of 254 protease homologs,
approximately 3.1% of the proteome (Table 5; Addi-
tional file 14). This significantly expands the range of
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Table 5 Protease complements in Ich and other model organisms

Catalytic class

Percentage of the

Organism Aspartic Cysteine Metallo Serine Threonine Total proteome?®
Ichthyophthirius muiltifiliis 14 (5.5%) 81 (31.9%) 119 (46.9) 25 (9.9%) 15 (5.9%) 254 3.1
Paramecium tetraurelia 48 (8.3%) 225 (38.9%) 168 (29.1%) 5 (16.4%) 42 (7.3%) 578 15
Tetrahymena thermophila® 43 (9.0%) 1 (44.0%) 139 (28.9%) 3 (15.2%) 14 (2.9%) 480 1.7
Plasmodium falciparum 7 (10.5%) 33 (34.7%) 21 (22.1%) 6 (16.9%) 15 (15.8%) 95 1.8
Neurospora crassa 19 (8.1%) 41 (17.4%) 81 (34.5%) 5 (31.9%) 19 (8.1%) 235 24
Saccharomyces cerevisiae 19 (11.1%) 41 (24.0%) 57 (33.3%) 8 (22.2%) 6 (9.4%) 171 24
Caenorhabditis elegans 27 (5.6%) 125 (25.9%) 190 (39.4%) 115 (23.9%) 5 (5.2%) 482 24
Drosophila melanogaster 6 (6.2%) 86 (11.5%) 207 (27.7%) 373 (49.9%) 5 (4.7%) 747 54
Homo sapiens 320 (29.3%) 190 (17.4%) 252 (23.0%) 291 (26.6%) 1 (3.7%) 1,094 45
Arabidopsis thaliana 233 (27.6%) 162 (19.2%) 112 (13.3%) 306 (36.2%) 3W(3,7%) 849 3.1

Values in parentheses are the percentage of the individual catalytic class in the protease complement. *The percentage of the whole genome that encodes
putative proteases. PThe distributions of T. thermophila and P. falciparum are based on Eisen et al. [11] and Wu et al. [60], respectively. The distributions of the

other model organisms are based on the results published in Merops database.

protease targets. The fraction of proteases in the Ich
genome is close to the average observed in the 1,569
organisms with completed genomes (2.6%) but higher
than in the annotated protozoan genomes of T. thermo-
phila, P. tetraurelia, and P. falciparum.

Using the Merops protease nomenclature, which is
based on intrinsic evolutionary and structural relation-
ships [63], the Ich proteases were divided into five cata-
lytic classes and 37 families. These are: 14 aspartic
proteases belonging to two families, 81 cysteine pro-
teases belonging to 10 families, 119 metalloproteases
belonging to 14 families, 25 serine proteases belonging
to 10 families, and 15 threonine proteases belonging to
the T1 family (Table 5; Additional file 14).

Comparison with T. thermophila (see Table S11 in
[11]), and P. tetraurelia (data not shown) reveals that
Ich possesses a core degradome structure similar to
these ciliates (Additional file 15). Thirty-five out of 37
protease families found in Ich are present in all three
genomes. Only one protease family, the Xaa-Pro dipepti-
dyl-peptidase family (S15), is unique to Ich. The S15
homolog is also present in other protozoan parasites,
including Leishmania major and Trypanosoma cruzi,
but is not found in P. falciparum. A homolog of D-ala-
nyl-glycyl peptidase (C51) is found in Ich and P. tetraur-
elia, but is missing in T. thermophila, P. falciparum and
other completed protozoan genomes. This family of
peptidases was found in a bacteriophage that is capable
of degrading bacterial cell-wall cross-linking peptides to
release phage particles from the bacterial cytoplasm
[64]. Its role in protozoa has not been characterized.
Seven families of proteases (C15, C48, C50, C56, M15,
S9, S33) that are present in the two free-living ciliate
genomes are not found in Ich.

Ich possesses a number of protease families that may
play important roles in the parasitic life cycle. For exam-
ple, 14 members of the calpain family (C2) are present

in Ich, constituting 5.5% of the degradome, implying a
strong calcium-dependent regulatory mechanism that
may be involved in signal processing, cell cycle progres-
sion or ion channel activities [65]; Signal peptidase I
family (S26) may play a role in the secretion system by
removing the hydrophobic signal peptides when the pre-
cursors are moving across the membrane.

The two largest protease families in Ich are the leish-
manolysin (M8) and the ubiquitin carboxyl-terminal
hydrolase (C19) families, which contain 54 and 39 mem-
bers, respectively, representing substantial percentages of
the degradome (21.3% and 15.4%; Additional file 15). As
discussed in Eisen et al. [11], leishmanolysin (M8) was
originally identified in the kinetoplastid parasite L.
major and thought to be involved in processing surface
proteins [66,67], but to date the functions of leishmano-
lysin in nonkinetoplastid eukaryotes remain unclear.
The 39 members of the C19 family and 15 members of
the threonine proteases (T1) likely arose from large-
scale gene duplication events. Such a massive retention
of duplicates reflects the crucial role of the ATP-depen-
dent ubiquitin-proteasome system, which has been
implicated in cell-cycle control and stress responses
[68].

Cytoskeletal proteins

Ciliates are characterized by complex cytoskeletal archi-
tectures. Microtubule-based structures are highly
diverse, with at least 18 types of microtubular organelles
having been described in T. thermophila [69]. This
diversity is reflected at the genome level; in comparison
to humans, 7. thermophila encodes a greater number
and/or variety of several classes of cytoskeletal protein,
including tubulins, microtubule motors and microtubule
regulatory enzymes [11].

Although Ich has a reduced genome size compared to
T. thermophila, it also has an elaborate cytoskeleton and
undergoes dramatic changes in cell morphology during
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its life cycle. We found that although the number and/
or diversity of certain cytoskeletal protein genes was
reduced relative to T. thermophila, others, such as kine-
sins and tubulin tyrosine ligases, remained expanded,
even in comparison to humans (Table 6).

Several tubulin isoforms found in 7. thermophila and
P. tetraurelia were absent from Ich. T. thermophila
encodes three alpha tubulin-like and six beta tubulin-
like proteins. The functions of these isoforms, which
lack motifs for post-translational modifications that are
essential to the function of their canonical counterparts,
are not clear, but none of them is detectable in the Ich
genome. In addition, although Ich encodes the variant
gamma, epsilon and eta tubulins, the functions of which
are thought to include basal body duplication [70], it
lacks delta and iota. Delta tubulin is involved in assem-
bly of the triplet microtubule structure found in most
centrioles and basal bodies [70,71], suggesting that the
molecular mechanisms of centriole assembly may be
divergent between Ich and Tetrahymena.

A highly conserved class of microtubule organizing
center-associated proteins are the centrins [72], com-
posed of four EF-hand motifs that are regulated by cal-
cium. The centrin families of Ich and Tetrahymena are
generally comparable (Table 6), with the exception that
two Cen2 genes are present in Ich compared to one in
Tetrahymena. A collection of 14 (grouping Cen2 and
Cen3; Table 6) highly conserved core proteins involved
in centriole and basal body biogenesis and function was
recently described [73,74]. Of these, the Tetrahymena
genome contains twelve but Ich only nine. Three of the
proteins contained in both Ich and Tetrahymena
(Cep135/Bld10, SAS6, and SAS4/CPAP) are members of
an ancestral module (UNIMOD) correlated with the
presence of basal bodies and centrioles [73,74]. How-
ever, the Ich basal body appears to be simplified com-
pared to Tetrahymena, with no centriolin, Cep164,
Dip13 or d8-tubulin, and single Vflla/CLERC, WDR16
and SAS6 genes compared to two each in the Tetrahy-
mena genome.

Ciliopathies are a class of human disease associated
with defects in basal bodies and cilia. Many of the pro-
teins defective in ciliopathies are broadly conserved [74].
We found many of the ciliopathy genes in the genomes
of both Tetrahymena and Ich (Table 6). MKS3, asso-
ciated with Meckel-Gruber syndrome, is expanded in
both genomes with two versions of this gene. In con-
trast, MKS4/Cep290 and NPHP3 are not present in
either ciliate. Finally, BBS3/ARL6 and BBS4 are found in
Tetrahymena but not Ich. Because BBS3/ARL6 is a
member of the large Ras GTPase family, it may have
escaped detection. Alternatively, a different Ras family
member may function in its place. Unlike BBS3, BBS4 is
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Table 6 Cytoskeletal proteins in Ich, T.thermophila and H.
sapiens

Protein type Ich T. thermophila H. sapiens

Tubulins and modifying enzymes

a-Tubulin 1 1 9
a-Tubulin-like 0 3 0
B-Tubulin 3 2 9
B-Tubulin-like 0 6 0
y-Tubulin 1 1 2
e-Tubulin 1 1 1
8-Tubulin 0 1 1
n-Tubulin 1 1 0
-Tubulin 0 3 0
Tubulin tyrosine ligase-like 31 50 14
Motor proteins

Kinesin motor domain 41 78 48
Dynein heavy chain 19 25 16
Dynein intermediate chain 6 6

Dynein light intermediate chain 1 2 3
Dynein light chain 16 14 9
Myosin motor domain 3 13 22

Centrins

Centrin 1 1 1 1
Centrin 2 2 1 1
Centrin 3 1 1 1
Centrin 4 1 1 0

Core basal body proteins (also includes centrins 2, 3; §-, -
tubulins)

BId10/Cep135

Centriolin

Cep76

Cepl64

Dip13

Poc1

Poc5

Sas4/CPAP

Sasé

VFL1a/CLERC

WDR16
Ciliopathy associated proteins

MKS1

MKS3

MKS4/Cep290

MKS5/RPGRIPTL

MKS6/CCD2A

AHIN

NPHP1

NPHP3

NPHP4

BBS1

BBS2,5,7,8 0r9

BBS3/ARL6

BBS4
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a member of the BBSome, a conserved complex
involved in ciliary membrane transport. Because
BBSome members tend to evolve together as a module
[74], we were surprised that BBS4 was not identified in
the Ich genome. BBS4 interacts with the centrosome
component, PCM1, and is implicated in both centro-
some organization and transport of the BBSome to cilia
[75,76]. Perhaps these functions are not necessary in
Ich, or the gene may be found in an unassembled region
of the genome.

Dyneins are microtubule-based motors that perform a
variety of essential functions in eukaryotic cells [77].
Multiple dyneins are present in cells with cilia or fla-
gella, each specialized in its location and function [78].
There are seven classes of dyneins: (i) conventional cyto-
plasmic dynein-1, important for karyokinesis and intra-
cellular membrane organization and trafficking; (ii)
cytoplasmic dynein-2, which participates in retrograde
intraflagellar transport; (iii) axonemal inner arm dynein
I1 (IAD-I1), which generates shear between the ciliary
outer doublet microtubules; (iv) axonemal outer arm
dynein (OAD), which accelerates outer doublet sliding;
and (v to vii) axonemal single-headed inner arm dynein
(sh-IAD) groups 3, 4, and 5, which contribute to outer
doublet sliding [79]. Each dynein is composed of one or
more heavy chains and a set of intermediate, light inter-
mediate, and light chains. The heavy chains contain the
motor activity [80-82]. The smaller components are
important for the regulation and location of dynein
activity [83].

In the Ich genome, we identified genes encoding 19
heavy chains, six intermediate chains, one light inter-
mediate chain, and 16 light chains (Table 6). The dynein
genes of Ich are most similar to those of T. thermophila
[11,79,84]. Neither T. thermophila nor Ich has genes
encoding light chains LC3, LC5, or LC6, or intermediate
chain IC1, which are found in other organisms. The Ich
dynein genes differ from those found in Tetrahymena in
several respects. Firstly, we did not find a dynein-2 light
intermediate chain (D2LIC), suggesting that the retro-
grade intraflagellar transport motor dynein-2 may be
inefficient. A pseudogene of D2LIC is present in the Ich
genome, suggesting that expression of this gene has
been lost. In Tetrahymena, deletion of D2LIC affects
regulation of ciliary length [85]. Secondly, the Ich ciliary
outer arm dynein complex may be different from the
OADs found in other protozoa. Metazoans have a two-
headed OAD composed of the heavy chains o and B
[86]. In addition, all protozoa examined express a third
heavy chain related to the 3 gene; we refer to these two
related genes as /y. However, Ich appears to lack a sec-
ond PB/y gene. Additionally, we did not find the highly
conserved OAD light chain LC10. Loss of LC10 in Chla-
mydomonas results in only a subtle reduction in flagellar
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beat frequency, but lack of both LC10 and LC2 has a
more severe effect on beat frequency than the lack of
either individually [87]. Finally, the Ich single-headed
inner arm dyneins are relatively less diverse than in 7Tet-
rahymena. For example, while nearly every sh-IAD of
Ich has a clear Tetrahymena ortholog, there are several
additional Tetrahymena sh-IADs not paired with Ich
genes (for example, Tetrahymena DYH10, DYH19,
DYH20, and DYH25), suggesting expansion of the Tet-
rahymena sh-IAD gene family or loss of Ich genes after
the two species diverged.

Analysis of metabolic pathways

Many antibiotics target metabolic pathways present in
infectious agents but not their hosts [88]. To identify
candidate drug targets in Ich, we mapped Ich enzymes
onto Kyoto Encyclopedia of Genes and Genomes
(KEGG) metabolic pathways [89] and compared them
with a well-annotated fish genome, that of the zebrafish
Danio rerio, as well as those of the free-living ciliates 7.
thermophila and P. tetraurelia (Additional file 16). The
overall metabolism of Ich is very similar to that of the
free-living ciliates, but with some minor interesting dif-
ferences. In contrast, significant differences were found
between Ich and fish.

All pathways constituting central carbon metabolism,
such as glycolysis, the citric acid cycle and the pentose
phosphate pathway, are present in all three ciliates.
However, all three appear to be missing the first two
enzymes of the pentose phosphate pathway - glucose-6-
phosphate dehydrogenase and 6-phosphogluconolacto-
nase - which convert glucose-6-P to 6-P-gluconate and
in the process generate NADPH, H". These enzymes are
important contributors to the maintainance of cytosolic
NADP+/NADPH, H+ balance. It is unclear what other
mechanism is in place to maintain this balance in
ciliates.

It appears from metabolic reconstruction that another
major difference between fish and ciliates is that, while
fish store carbohydrates as glycogen, ciliates cannot
make glycogen but instead make starch or amylopectin.
However, in light of reports on glycogen metabolism in
Tetrahymena in the biochemical literature [90], the
basis of carbon storage in ciliates requires further
confirmation.

Mitochondrial metabolism in Ich and other ciliates is
comparable to other eukaryotes. Ich possesses the
enzymes of various oxidative pathways, including pyru-
vate dehydrogenase, the citric acid cycle and [3-oxida-
tion. Ich can also channel reducing equivalents (NADH,
FADH,) generated by these oxidative pathways for ATP
synthesis via oxidative phosphorylation. All alveolate
organisms sequenced to date, including Ich, harbor an
atypical eukaryotic mitochondrial F;-Fy-ATP synthase
(see above under discussion of mitochondrial genome).
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The ciliates also possess all the enzymes that participate
in the glyoxalate cycle (isocitrate lyase, malate synthase)
and 2-methylcitric acid cyle (2-methylcitrate synthase, 2-
methylcitrate dehydratase, methylisocitrate lyase), which
are absent in fish. The glyoxalate pathway breaks down
isocitrate (a citric acid cycle intermediate) directly into
succinate and malate. This bypass pathway helps con-
serve carbon by avoiding its release as CO,, which
would occur during a full progression of the citric acid
cycle. Similarly, the 2-methylcitric acid cycle is required
to detoxify propionyl Co-A (obtained from f-oxidation
and branched chain amino acid oxidation), a task that is
achieved in fish by the methyl malonyl-CoA pathway.
Both these pathways allow the ciliates to convert fatty
acid oxidation products into carbohydrates, a process
that is known to happen in many bacteria and plants
but not in animals.

Fatty acid metabolism is very reduced in all three cili-
tates as they lack almost all enzymes that participate in
traditional FAS-I and FAS-II fatty acid synthesis. How-
ever, they seem to have the complete set of enzymes
required for fatty acid elongation and metabolism via f3-
oxidation. Also, Ich cannot synthesize steroids such as
cholesterol but seems to be capable of modifying them -
for example, cholesterol can be converted into choles-
teryl esters. One very striking metabolic feature of Ich
and other ciliates is that they are deficient in the de
novo biosynthesis of both purines and pyrimidines and
thus appear to be solely reliant on salvage pathways for
sustaining nucleotide metabolism. These pathways are
attractive candidates for drug intervention [88]. The cili-
ates have a battery of purine and pyrimidine salvage
enzymes but are also missing some - for example, they
cannot interconvert IMP and GMP as they lack both
GMP synthase and GMP reductase, requiring them to
salvage precursors for both GMP and AMP, as they can-
not get one from the other. In similar fashion, Ich and
other ciliates depend on pyrimidine salvage enzymes
such as uridine kinase and cytosine deaminase. Cytosine
deaminase is absent in fish.

Amino acid metabolism in Ich is minimal and it
appears to be auxotrophic for many varieties. However,
unlike fish and other ciliates, Ich encodes the enzyme
cysteine synthase, which can use H,S as a sulfur donor
to synthesize cysteine. The metabolism of glutamine,
glutamate, aspartate and alanine is very similar to that
in fish and other ciliates. Although Ich and other ciliates
cannot synthesize phenylalanine or tyrosine de novo,
they still harbor the shikimic acid pathway and have the
pentafunctional AROM polypeptide. This pathway is
required for chorismate/folate biosynthesis. It is absent
from fish and has been studied as a drug target in other
systems. The enzyme used by Ich and other ciliates to
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make selenocysteine (cysteine synthase A) is different
from that used by fish (selenocysteine lyase).

While glutathione formation and it roles in oxidation/
reduction metabolism is the same between Ich and fish,
Ich seems to also possess enzymes necessary for trypa-
nothione synthesis and its use in oxidation/reduction
metabolism. If verified, this pathway could be an excel-
lent candidate for drug development.

Conclusions

Because of its evolutionary proximity to the well-stu-
died, free-living 7. thermophila and P. tetraurelia, Ich’s
genome sequence provides an interesting comparative
viewpoint on the consequences of adaptation to a para-
sitic lifestyle. Ich has experienced a dramatic reduction
in macronuclear gene content, but at the same time
retains remarkable diversity of many gene families, such
as kinases and membrane transporters, even in compari-
son to complex metazoan organisms. Ich’s basic meta-
bolic and cellular functions appear largely intact relative
to its free-living relatives, but unlike Tetrahymena and
Paramecium, Ich contains far fewer lineage-specific
ortholog groups, in particular those presumed to be
involved in signaling pathways and gene regulation. This
suggests a genomic consequence of Ich’s dependence on
a host has been a reduction in the capacity for beha-
vioral and regulatory complexity characteristic of preda-
tory ciliates.

The full catalog of immobilization antigens for this
strain, as well as candidates for other surface proteins,
will facilitate elucidation of the mechanisms of antigenic
variation and the development of more effective vac-
cines to prevent white spot disease. Likewise, the com-
parative genomics and comprehensive metabolic
reconstruction made possible by the genome sequence
provide numerous candidates for effective therapeutic
intervention. Strikingly, several of these candidates are
also being investigated as potential drug targets against
other parasites, such as apicomplexans. These include
the highly divergent ATP synthase, purine and pyrimi-
dine salvage enzymes and calcium-based regulatory
pathways. Thus, the fight against white spot disease may
well benefit from research directed against malaria and
other human diseases. To facilitate their use by the
research community, the Ich genome sequence and
annotation have been loaded into the genome browser
of the Tetrahymena Genome Database [91].

Materials and methods

Animal care

Because I multifiliis is an obligate parasite, the collec-
tion of sufficient biological material to allow genomic
and transcriptomic sequencing required cultivation of
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the parasite on live fish. All experiments were carried
out in strict accordance with the recommendations of
the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health so as to minimize
pain and suffering. The protocol was approved by the
Institutional Animal Care and Use Committee of Cor-
nell University (protocol number 1996-0083). Fish were
anesthetized with tricaine methane sulfonate (MS-222)
when handled for parasite collection in order to reduce
stress.

Strain origin and propagation

L multifiliis (isolate G5; serotype D) was isolated from
an albino channel catfish (Ictalurus punctatus) in 1995
and propagated by passage on juvenile channel catfish
as previously described [92]. In 2004, a cloned line of
the G5 isolate was derived from a single tomont by
hand-pipetting individual tomonts into wells of a 96-
well microtiter plate. Tomonts hatched overnight at
room temperature. Theronts from a single well were
then used to infect a channel catfish and progeny from
that infection were subsequently maintained by serial
passage on fish [92]. Strain G5 became senescent and
was lost in 2009.

Genomic DNA isolation

Tomonts were isolated from infected channel catfish as
previously described and individually collected by hand-
pipetting [17]. DNA was isolated from batches of 200 to
500 cells, either directly from tomonts, or from MAC
fragments obtained from cell lysates. To lyse cells,
tomonts were homogenized using a pestle for a 1.5 ml
microcentrifuge tube in 0.2 ml of lysis buffer (10 mM
Tris, 3 mM CaCl,, 1 mM MgCl,, 0.25 M sucrose, 0.5%
NP40, 0.5% Tween-20, pH 7.9). An additional 1 ml of
lysis buffer was added to the lysate and MAC fragments
collected by centrifugation in a microcentrifuge tube at
1,000 x g for 10 minutes at 4°C. DNA was prepared
from tomonts or the MAC pellet, as previously
described [17], treated with 40 pug/ml RNAse A/T1 (Fer-
mentas; Glen Burnie MD, USA) for 2 hours at 37°C,
precipitated with ethanol and resuspended in 10 mM
Tris, 1 mM EDTA, pH 8.0.

Genome sequencing and assembly

Plasmid libraries were constructed and end-sequenced at
the J Craig Venter Institute, as previously described [11],
producing a total of 297,031 high quality reads [93]. In
addition, four and a half 454 FLX Titanium runs were
performed, resulting in 3,167,209 good reads
(SRX036996, SRX036983, SRX036682, SRX036681,
SRX036678). All reads were assembled using Celera
Assembler version 5.3 [94], setting error rate to 8% and
the utgGenomeSize to 200 Mb. Following initial
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assembly, the reads that comprised scaffolds having a
GC content of less than 26% were reassembled with
Celera v 5.3. A total of 216,200 Sanger reads and
2,008,917 454 reads contributed to the Ich assembly,
yielding 2,342 contigs in 1,803 scaffolds with a contig
N50 of 51,903 bp. Unfortunately, because of the pre-
sence of symbiont reads, the number of unassembled
Ich reads cannot be accurately determined. Of the 540
intra-scaffold gaps, 455 were successfully targeted by an
automated primer design program [95] modified from
the original version to iteratively expand the target
amplicon size, instead of a fixed tiling. Sanger clones
spanning gaps were selected for primer walks, which
produced 1,406 good reads. Celera Assembler was run
on the combined Sanger shotgun, 454 shotgun, and San-
ger finishing reads dataset. The final assembly produced
2,274 contigs (accession numbers AEDN01000001 to
AEDNO01002274) in 2,015 scaffolds (accession numbers
GL983039 to GL985055) with a contig N50 of 55,110
bp and average depth of 19X.

The ribosomal RNA locus, found on an amplified
palindromic chromosome, was present as a truncated 7
kb contig in the initial assembly, based on alignment to
published 18S and 28S sequences. The complete rDNA
chromosome was assembled by recruiting additional
Sanger mates to the existing contig using the ] Craig
Venter Institute sequence editor Cloe, up to the palin-
dromic center of the chromosome (accession ID
GL985055).

The Ich mitochondrial genome was not present in the
initial assembly, likely due to high coverage. To detect
it, degenerate and singleton reads were assembled with
Celera Assembler, and contigs over 2 kb were BLASTed
against the NCBI non-redundant nucleotide database,
resulting in the identification of one 12 kb contig with
similarity to the mitochondrial genome of Tetrahymena
malaccensis. All Sanger reads were aligned to this seed
12 kb contig with Nucmer. Reads aligning with over
97.5% identity were combined with their mates and
assembled using TigrAssembler [96], producing an
extended contig. This process was iterated until a telo-
meric tandem repeat was reached on one side and a gap
on the other. Overlapping 454 reads were used to
extend through the gap, and the alignment of Sanger
reads and reassembly was again repeated until the other
telomere was reached. The final edited contig qualifies
as finished with two small areas of quality exception
that contain 454 reads and low quality Sanger reads
(accession ID JN227086).

Optical map generation and analysis

High molecular weight Ich DNA was prepared directly
from isolated trophont stage cells by a modified pulsed-
field gel electrophoresis method [97]. Optical maps were
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prepared by OpGen, Inc. (Gaithersburg MD, USA) as
previously described [98]. In brief, single DNA mole-
cules were captured onto a microfluidics optical chip,
subjected to in situ digestion with Spel restriction endo-
nuclease (New England Biolabs; Ipswich MA, USA) and
analyzed by automated fluorescence microscopy to gen-
erate single molecule maps. Spel was selected because it
cuts on average about every 10 kb in the Ich genome.
Collections of single molecule maps were then
assembled by the Gentig program by their overlapping
restriction fragment patterns to produce whole-genome
ordered restriction maps, or optical maps, of 69 com-
plete chromosomes, four partial chromosomes and a
single 1.6 Mb bacterial symbiont chromosome. Electro-
nic Spel digests were produced for all eukaryotic scaf-
folds, resulting in 732 scaffolds with more than one cut
each. SOMA [28] was used to align the scaffolds to the
optical map, using a three-tiered algorithm. The highest
confidence alignment algorithm, MATCH, uniquely
mapped 337 scaffolds. This was followed by the FILTER
algorithm, which uses heuristic filtering to exclude the
scaffolds already placed, resulting in 30 additional
mapped scaffolds. The final (less reliable) algorithm,
SCHEDULE, mapped 188 additional scaffolds, a total of
555 scaffolds containing 36.1 Mbp. MapSolver placed
319 scaffolds containing 27.2 Mbp. Telomere-containing
scaffolds were found by searching for three tandem
copies of the sequence GGGGTT, identifying 121 scaf-
folds, all of which ended in the repeats in their proper
orientation. Applying the criteria described in the
Results and discussion section, we considered 295 scaf-
folds to be reliably placed, including 56 that contain
telomeric repeats.

EST sequencing and alignment to the genome

Packed cell pellets (10 to 200 pl) were resuspended in
approximately 0.5 ml sterile carbon-filtered H,O and 8
volumes of Trizol reagent (Invitrogen, Carlsbad, CA,
USA) were added. Total RNA was extracted following
the manufacturer’s instructions. Equal amounts of total
RNA from theront and trophont stages were pooled.
PolyA+ RNA was selected and normalized by Evrogen,
Inc. (Moscow, Russia). The normalized cDNA popula-
tion was sequenced using the Illumina platform, gener-
ating 100 bp paired-end reads. A total of 1.65 x 10’
good reads were obtained, for a total of 1.67 Gb of raw
RNA-seq data (SRX048641). These reads were aligned
to the genome sequence and assembled using the
TopHat suite (TopHat, Bowtie and Cufflinks) [99,100].
Alignments were further refined using PASA [101]. Of
24,264 assemblies input into PASA, 24,078 (99.2%) pro-
duced valid alignments (95% identity to genome
sequence over 90% of length) and 23,585 subclusters. In
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addition, 32,606 Sanger ESTs identified as being derived
from Ich were downloaded from NCBI and aligned to
the genome using PASA. Of these, 22,483 produced
valid alignments. Many of the non-aligned ESTs
matched genes of fish or bacterial origin, suggesting that
they are contaminants (see [4] for discussion). Assembly
of the valid ESTs produced 4,751 subclusters.

Protein-coding gene finding

To train gene finding algorithms, a set of 1,044 gene
structures was modeled manually using the Sanger and
Illumina EST alignments and homology to predicted
genes of other species, especially other ciliates. This set
was used to train three ab initio gene prediction pro-
grams: Augustus [102], GeneZilla and GlimmerHMM
[103]. An initial full set of gene predictions was gener-
ated based on the three ab initio algorithms, Ich ESTs,
and protein homologies to T. thermophila, P. tetraure-
lia, Oxytricha trifallax [104] and a ] Craig Venter Insti-
tute non-redundant protein database, aligned using the
AAT [105] and GeneWise [106] programs. Pfam [107]
domains were also searched against the genomic
sequence. Evidence from the gene finders, protein and
domain homology searches and ESTs were used to
refine gene models using EvidenceModeler [108]. High
quality EST alignments were used to automatically
update gene structure annotations using PASA (strin-
gent condition). After extensive manual annotation of
selected genes, a total of 8,096 gene models were
generated.

Automated functional annotation

Gene names were computationally assigned by searching
protein databases, including the J Craig Venter Institute
Panda comparative database, Panther [109], Pfam and
Uniprot [110], using BlastP [111]. A subset of the results
was manually reviewed to determine cutoffs that pro-
duced reasonable names from each of the databases. A
subset of gene models was analyzed for correctness and
sensitivity to functional assignments. Paralogous families
were computed based upon shared domain composition
[101]. A minimum of three paralogs were required to
designate a ‘family’. Multivariate analysis of codon usage
was performed using the codonW package [112] as pre-
viously described [11].

Non-coding RNAs

Transfer RNAs were detected using tRNAscan-SE with
default parameters [113]. Mitochondrial tRNAs were
detected with the same program, set to general (not
organellar) mode. 5S rRNAs and other ncRNAs were
identified by BlastN search of the Ich genome with T.
thermophila genes as query sequences.
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Manual curation of selected families

Immobilization antigens

The i-antigens were predicted, analyzed and curated
manually. The sequences of 12 i-antigens from the
genus Ichthyophthirius were aligned (ClustalW) [114]
and the alignment manually adjusted. The aligned
regions were used to build two hidden Markov models
using the HMMer programs hmmbuild and hmmcali-
brate [115]. These hidden Markov models were searched
against the proteome to identify one known G5 input
sequence and nine novel i-antigen sequences, some of
which were not full length. These additional sequences
were added to the set described above and used to
rebuild HMMs for a final search.

Protein kinases

Two methods were used to identify protein kinase
genes. First, 440 genes were annotated with the protein
kinase-specific Pfam domain PF00069, all of which
grouped with orthologs from other species; 402 mapped
to 105 existing ortholog groups and the remaining 36 to
previously ungrouped genes (35 from T. thermophila
and one from Entamoeba invadens). Secondly, the Ich
kinome was annotated and grouped into kinase families
based on orthology to highly curated kinase genes from
T. thermophila, Saccharomyces cerevisiae, Caenorhabdi-
tis elegans and Homo sapiens. The data for these organ-
isms were obtained from the kinbase database [116]. A
total of 633 Ich genes were annotated as members of
various kinase families in this manner; of these, 402
were already qualified as protein kinases based on Pfam
domain annotation while the remaining 231 had orthol-
ogy assignments only (most of these were either atypical
histidine kinases or the ciliate specific kinase families;
Additional file 9). Thirty-eight Ich kinases were anno-
tated by Pfam domain information but did not have
detectable orthology to any previously known kinase
families from either ciliates or other organisms. After
combining the results obtained from these two methods
a total of 671 Ich genes were annotated as kinases, 602
of which can be grouped into 145 ortholog groups. For
comparative purposes, we also retrieved the previously
published kinomes of P. falciparum [117] and T. gondii
[118] and constructed preliminary kinomes for P. tetra-
urelia and D. rerio based on orthology to the T. thermo-
phila and human kinomes, respectively, obtained from
kinbase.

Transporters

An in-house program called Gblast was used to blast the
Ich and T. thermophila proteomes against the entire
TCDB [119]. Results were tabulated into an excel file
that showed each query protein from the Ich proteome
with the top hit from TCDB. Careful examination of the
25 putative Ich Ca®* channels revealed that three of
these contain only two TMSs plus the P-loop, four
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possess one full six TMS repeat unit, seven have two
such repeat units, four exhibit three repeat units and
four have all four expected repeat units. In addition,
three of these sequences were clearly partial sequences
with one, two or three repeat units plus a fragmented
repeat unit. Further, three sequences were identified
that consisted of partial voltage sensors while one more
consisted of a partial channel. It seems clear that several
incomplete sequences are present within this group of
proteins. Thus, the number of Ca®* channels in family
1.A.1.11 was overestimated by the Gblast program,
probably because of inaccurate exon identification in the
proteome. We estimate that there are between 13 and
19 Ich Ca®* channels of family 1.A.1.11. A correspond-
ing examination of the 12 putative Tetrahymena Ca**
channels of family 1.A.1.11 revealed a similar situation
where several of these sequences are incomplete. Query
TMSs were obtained using the WHAT program [56],
which predicts hydrophobicity and amphipathicity along
the length of the protein using a window of 19 residues.
All information regarding the TC hit proteins was
obtained from TCDB. Information relevant to the Ich
proteins was extrapolated from TCDB.

Proteases

Over 177,390 sequences of characterized and predicted
proteases were obtained from the Merops database
[120] (release 9.2) [63] and searched against the Ich pre-
dicted protein sequences using BLASTP with default
settings and an e-value cutoff of less than e™° for defin-
ing protease homologs. Partial sequences (less than 80%
of full length) and redundant sequences were excluded.
The domain/motif organization of predicted Ich pro-
teases was revealed by a pfam search. For each putative
protease, the known protease sequence or domain with
the highest similarity was used as a reference for anno-
tation; the catalytic type and protease family were pre-
dicted in accordance with the classification in Merops,
and the enzyme was named in accordance with SWISS-
PROT enzyme nomenclature [121] and the literature.
Cytoskeletal proteins

T. thermophila homologs were identified previously [11]
or by using reciprocal best-hit BLAST strategies. For
those components that were found in the T. thermo-
phila genome, a reciprocal best-hit BLAST strategy was
then used to identify the Ich homologs. Genes were
defined as not present in the Ich genome if either a
gene family member was identified with a better reci-
procal BLAST score to a different family member or a
reciprocal BLAST score of better than e was not
identified.

Dyneins

BLASTP [111] was used to search the predicted Ich pro-
teome. For some genes, TBLASTN was used to search
the assembly. Dynein light, light intermediate, and
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intermediate chain sequences from Chlamydomonas
reinhardtii or other species as appropriate were used as
queries. T. thermophila dynein heavy chain 4 (OADp)
was used as query for the heavy chains. Authenticity of
candidate sequences was verified by reciprocal best hit
blast analysis. Ich sequences were compared to several
known dyneins of each type by ClustalW alignment
[122]. Evolutionary analyses were performed using
MEGA version 4 [19]. Trees were constructed by neigh-
bor-joining [123] and maximum parsimony [124] with
500 bootstraps; both types of tree yielded similar results.
ATP synthase

The Ich MAC and mtDNA gene product sequences
were searched for sequences closely similar to those
reported for the T. thermophila ATP synthase [33], and
the resulting candidates were compared using BLASTP.
In some cases, the Ich gene models were manually cor-
rected using existing EST data and homology
considerations.

Analysis of metabolic pathways

To map metabolic pathways in Ich, EC numbers were
assigned using two different approaches. First, the Ich
proteome was submitted to KEGG for automated
assignment, identifying 1,789 enzymes but with only 440
unique EC numbers (403 with 4 digits). Second, the Ich
proteome was submitted to the OrthoMCL database.
We had previously mapped EC numbers obtained for 23
different species from KEGG into orthoMCL groupings,
allowing transitive assignment of EC numbers to Ich
genes based on their grouping with these enzymes. This
method identified 2,307 enzymes with 725 unique EC
numbers (649 with 4 digits). We found nearly complete
overlap between the results obtained from the two
approaches, and after combining had a total of 728
unique EC numbers (651 with 4 digits; Additional file
7). These 651 EC numbers were used to ‘paint’ the
KEGG metabolic pathway maps using KEGG online
tools [125]. The Ich enzymes were also painted on exist-
ing metabolic pathway maps for T. thermophila, P. tet-
raurelia and D. rerio for comparative analyses.

Additional material

Additional file 1: Table S1 - additional assembly statistics.

Additional file 2: Figure S1 - mean scaffold coverage depth. Mean
coverage depth is plotted against scaffold length, showing that, for
larger scaffolds, coverage does not diverge greatly from the mean.

Additional file 3: Table S2. (a) Optical map results. Column B lists the
scaffold IDs for the 295 scaffolds mapped to the 69 complete and four
partial optical chromosome maps (listed in column A from largest to
smallest, with the four partial chromosomes at the end). No scaffolds
aligned reliably to chromosomes 53, 55, 65 and 66. Column C indicates
the orientation of the scaffold sequence relative to the optical map,
either end to beginning (EB) or vice versa. ‘Chromosome Start’ and
‘Chromosome End" are calculated from the optical map data and
correspond to the positions where each scaffold reliably aligns. ‘Scaffold
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Start” and ‘Scaffold End" indicate the portion of the predicted Spel digest
of each scaffold that aligns to the map. All lengths are in base pairs.
Among the telomere-containing scaffolds, it is evident that the
chromosome and scaffold values are not always in exact agreement with
their chromosome-terminal positions due to experimental uncertainty in
the optical mapping protocol. In the 18 cases (highlighted in yellow)
where SOMA but not MapSolver placed a telomere-containing scaffold,
the ‘Chromosome Start’ and ‘Chromosome End’ values are simply
calculated from the total chromosome length and the length of the
scaffold. In total, 242 scaffolds were placed by agreement between
MapSolver and SOMA with no input from telomere data; 231 of these
were placed by SOMA using the highest confidence MATCH algorithm, 9
using the FILTER algorithm and 2 using the SCHEDULE algorithm (see
Materials and methods). Thirty-four scaffolds were placed by agreement
between MapSolver, SOMA (33 MATCH, 1 SCHEDULE) and telomere
position. Eighteen were placed by agreement between SOMA (9 MATCH,
7 SCHEDULE, 2 FILTER) and telomere position. One was placed on partial
chromosome 73 by agreement between MapSolver, SOMA and telomere
position, although the optical map position is non-terminal, presumably
due to a misassembly (see Results and discussion). (b) Unmapped
telomeric scaffolds. IDs of the 65 telomere-containing scaffolds that did
not reliably align to a unique position on the optical map.

Additional file 4: Table S3 - correspondence of predicted genes for
ATP synthase subunits of T. thermophila and Ich.

Additional file 5: Table S4 - non-coding RNAs in the Ich genome.

Additional file 6: Figure S2 - codon usage. (a) Principal component
analysis of relative synonymous codon usage in Ich. (b) Effective number
of codons (ENc; a measure of overall codon bias) for each predicted ORF
is plotted versus GC3 (the fraction of codons that are synonymous at the
third codon position that have either a guanine or a cytosine at that
position). The upper limit of expected bias based on GC3 alone is
represented by the red curve.

Additional file 7: Table S5 - mapping of Ich predicted proteins to
ortholog groups, phylogeny, kinome annotation and enzyme
annotation.

Additional file 8: Table S6 - ortholog grouping of the predicted
proteomes of ciliates. A listing of all unique ortholog groups mapped
to Ich, T. thermophila and P. tetraurelia protein coding genes. The total
number of genes mapped to each ortholog group for each species is
indicated, allowing expansions to be identified. The phyletic profile of
the mapped ortholog groups is given in the last column.

Additional file 9: Table S7 - comparison of kinase families in Ich
and selected other species. Comparison of all identifiable kinase
families from Ich with other species. The numbers indicate the total
number of kinase genes from each species for individual families of
kinases. Colors are used to highlight kinase families that are present in all
three ciliates (yellow), missing in Ich but present in other two ciliates
(light blue), and shared between ciliates and apicomplexa only (green).
The atypical histidine kinase family, which is greatly expanded in ciliates,
is highlighted in pink. The kinase families that are expanded and have at
least ten genes in Ich are indicated with red fonts.

Additional file 10: Figure S3 - multiple sequence alignment of Ich
immobilization antigen peptide sequences. Alignment was generated
using MUSCLE [126] and edited by hand. Conserved cysteine residues
are enclosed in red rectangles. Hydrophobic regions at the amino and
hydroxyl termini are shown with yellow highlighting.

Additional file 11: Table S8 - membrane transporter analysis.
Proteins are tabulated according to TC number within the Transporter
Classification Database (TCDB) [49,50]. Columns G and H present the
query and hit topologies expressed in number of TMSs.

Additional file 12: Table S9 - membrane transporter family
distribution.

Additional file 13: Figure S4 - membrane transporter topological
distribution. The number of proteins exhibiting a specific topological
type - that is, of a putative number of TMSs - is plotted versus the

number of predicted proteins of that topology, showing that proteins
with one, two or three putative TMSs are substantially less numerous



http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S1.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S2.pdf
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S3.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S4.DOCX
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S5.XLSX
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S6.PDF
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S7.XLSX
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S8.XLSX
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S9.XLSX
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S10.PDF
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S11.XLS
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S12.XLS
http://www.biomedcentral.com/content/supplementary/gb-2011-12-10-r100-S13.DOCX

Coyne et al. Genome Biology 2011, 12:R100
http://genomebiology.com/2011/12/10/R100

than those with four or six putative TMSs. Proteins with 9 or 10
predicted TMSs are present in much lower numbers, but there are
increased numbers with 11 and 12 TMSs. Larger proteins are present in
relatively small numbers. In general, transport proteins often have 6 or 12
TMSs, although programs that predict topology are often in error by 1 or
2 TMSs [127].

Additional file 14: Table S10 - complete listing of all predicted Ich
protease-encoding genes.

Additional file 15: Table S11 - comparative listing of protease-
encoding gene classes in ciliates.

Additional file 16: Figure S5 - comparison of Ich metabolic enzymes
painted on KEGG pathways with those of T. thermophila, P.
tetraurelia and D. rerio. For each pathway, hyperlinks are provided to
view the relevant KEGG map painted in red foreground to indicate
enzymes present in Ich and green background to indicate enzymes
present in other organisms.
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