Skip to main content

Advertisement

Log in

Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Despite a contemporary interest in biochar application to agricultural fields to improve soil quality and long-term carbon sequestration, a number of potential side effects of biochar incorporation in field soils remain poorly understood, e.g., in relation to interactions with agrochemicals such as pesticides. In a field-based study at two experimental sites in Denmark (sandy loam soils at Risoe and Kalundborg), we investigated the influence of birch wood biochar with respect to application rate, aging (7–19 months), and physicochemical soil properties on the sorption coefficient, K d (L kg−1), of the herbicide glyphosate. We measured K d in equilibrium batch sorption experiments with triplicate soil samples from 20 field plots that received biochar at different application rates (0 to 100 Mg ha−1). The results showed that pure biochar had a lower glyphosate K d value as compared to soils. Yet, at the Kalundborg soils, the application of biochar enhanced the sorption of glyphosate when tested after 7–19 months of soil–biochar interaction. The relative enhancement effect on glyphosate sorption diminished with increasing biochar application rate, presumably due to increased mineral–biochar interactions. In the Risoe soils, potential biochar effects on glyphosate sorption were affected by a distinct gradient in soil pH (7.4 to 8.3) and electrical conductivity (0.40–0.90 mS cm−1) resulting from a natural CaCO3 gradient. Thus, glyphosate K d showed strong linear correlation with pH and EC. In conclusion, the results show that biochar, despite initially being a poor sorbent for glyphosate, can increase glyphosate sorption in soil. However, the effect of biochar on glyphosate sorption is depends on prevailing soil physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SSA:

Specific surface area

EC:

Electrical conductivity

CEC:

Cation exchange capacity

OC:

Organic carbon

References

  • Alloway, B. J. (2013). Bioavailability of elements in soil. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology: impacts of the natural environment on public health (pp. 347–372). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Beaton, J. D., Peterson, H. B., & Bauer, N. (1960). Some aspects of phosphate adsorption by charcoal. Soil Science Society of America Proceedings, 24, 340–345.

    Article  CAS  Google Scholar 

  • Borggaard, O. K. (2011). Does phosphate affect soil sorption and degradation of glyphosate? A review. Trends in Soil Science & Plant Nutrition, 2, 16–27.

    Google Scholar 

  • Brodowski, S., John, B., Flessa, H., & Amelung, W. (2006). Aggregate occluded black carbon in soil. European Journal of Soil Science, 57, 539–546.

    Article  Google Scholar 

  • Cáceres-Jensen, L., Gan, J., Báez, M., Fuentes, R., Escudey, M. (2009). Adsorption of glyphosate on variable-charge, volcanic ash-derived soils. Journal of Environmental Quality. doi:10.2134/jeq2008.0146.

  • Calvet, R. (1989). Adsorption of organic chemicals in soils. Environmental Health Perspectives, 83, 145–177.

    Article  CAS  Google Scholar 

  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research, 45, 629–634.

    Article  CAS  Google Scholar 

  • Cheah, U. B., Kirkwood, R. C., & Lum, K. Y. (1997). Adsorption, desorption, and mobility of four commonly used pesticides in Malaysian agricultural soils. Pesticide Science, 50, 53–63.

    Article  CAS  Google Scholar 

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperature. Environmental Science & Technology, 42, 5137–5143.

    Article  CAS  Google Scholar 

  • Cheng, C. H., & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75, 1021–1027.

    Article  CAS  Google Scholar 

  • Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37, 1477–1488.

    Article  CAS  Google Scholar 

  • Cheng, C. H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils, changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72, 1598–1610.

    Article  CAS  Google Scholar 

  • Cihacek, L. J., & Bremner, J. M. (1979). Simplified ethylene-glycol monoethyl ether procedure for assessment of soil surface-area. Soil Science Society of America Journal, 43(4), 821–822.

    Article  CAS  Google Scholar 

  • Clay, S.A., & Malo, D.D. (2012). The influence of biochar production on herbicide sorption characteristics. In: M.N.A.E.G. Hasaneen (Ed.), Properties, Synthesis and Control of Weeds, InTech, pp. 59–74.

  • Clay, S. A., Allamaras, R. R., Koskinen, W. C., & Wisw, D. L. (1988). Desorption of atrazine and cyanazine from soil. Journal of Environmental Quality, 17, 719–23.

    Article  CAS  Google Scholar 

  • de Jonge, H., & de Jonge, L. W. (1999). Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere, 39, 753–763.

    Article  Google Scholar 

  • de Jonge, H., de Jonge, L. W., & Mittelmeijer-Hazeleger, M. C. (2000). The microporous structure of organic and mineral soil materials. Soil Science, 165(2), 99–108.

    Article  Google Scholar 

  • de Jonge, H., de Jonge, L. W., Jacobsen, O. H., Yamaguchi, T., & Moldrup, P. (2001). Glyphosate sorption in soils of different pH and phosphorus content. Soil Science, 166, 230–238.

    Article  Google Scholar 

  • Gee, G. W., & Or, D. (2002). Particle size analysis. In J. H. Dane & G. C. Topp (Eds.), Methods of soil analysis. Part 4. Physical methods. SSSA Book Ser. 5 (pp. 255–293). Madison, WI: ASA & SSSA.

    Google Scholar 

  • Gerritse, R. G., Beltran, J., & Hernandez, F. (1996). Adsorption of atrazine, simazine and glyphosate in soils of the Gnangara Mound, Western Australia. Australian Journal of Soil Research, 34, 599–607.

    Article  CAS  Google Scholar 

  • Ghafoor, A., Jarvis, N. J., & Stenstrom, J. (2013). Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment. Pest Management Science, 69, 919–929.

    Article  CAS  Google Scholar 

  • Gimsing, A. L., & Borggaard, O. K. (2007). Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals. Clays & Clay Minerals, 55, 110–116.

    Article  Google Scholar 

  • Glass, R. L. (1987). Adsorption of Glyphosate by Soils and Clay-Minerals. Journal of Agricultural and Food Chemistry, 35, 497–500.

  • Graber, E. R., Tsechansky, L., Khanukov, J., & Oka, Y. (2011). Sorption, volatilization, and efficacy of the fumigant 1,3-dichloropropene in a biochar-amended soil. Soil Science Society of America Journal, 75, 1365–1373.

    Article  CAS  Google Scholar 

  • Graber, E. R., Tsechansky, L., Gerstl, Z., & Lew, B. (2012). High surface area biochar negatively impacts herbicide efficacy. Plant & Soil, 353, 96–106.

    Article  Google Scholar 

  • Graber, E. R., Tsechansky, L., Lew, B., & Cohen, E. (2014). Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. European Journal of Soil Science, 65, 162–172.

    Article  CAS  Google Scholar 

  • Kalra, Y. P., & Maynard, D. G. (1991). Methods manual for forest soil and plant analysis. Information report NOR-X-319. Edmonton, Alberta, Canada: Forestry Canada, Northwest Region, Northern Forestry Centre.

    Google Scholar 

  • Kookana, R. S. (2010). The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Australian Journal of Soil Research, 48, 627–637.

    Article  CAS  Google Scholar 

  • Kookana, R. S., A.L, Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112, 103–143.

    Article  CAS  Google Scholar 

  • Koskinen, W., & Clay, S. (1997). Factors affecting atrazine fate in North Central US soils. Reviews in Environmental Contaminant Toxicology, 151, 117–165.

    CAS  Google Scholar 

  • Kumari, K. G. I. D., Moldrup, P., Paradelo, M., & de Jonge, L. W. (2014a). Phenanthrene sorption on biochar-amended soils: application rate, aging and physicochemical properties of soil. Water Air & Soil Pollution, 225, 2105. doi:10.1007/s11270-014-2105-8.

    Article  Google Scholar 

  • Kumari, K. G. I. D., Moldrup, P., Paradelo, M., Elsgaard, L., Hauggaard- Nielsen, H., & de Jonge, L. W. (2014b). Effects of biochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient. Journal of Environmental Quality, 43, 647–657.

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., Luizão, F. J., Engelhard, M. H., Neves, E. G. & Wirick, S. (2008). Stability of biomass-derived black carbon in soils. Geochimica Et Cosmochimica Acta, 72, 6069–6078.

  • Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods. SSSA Book Ser. 5 (pp. 437–474). Madison, WI: ASA & SSSA.

    Google Scholar 

  • Maqueda, C., Morillo, E., Undabeytia, T., & Martin, F. (1998). Sorption of glyphosate and Cu(II) on a natural fulvic acid complex: mutual influence. Chemosphere, 37, 1063–1072.

    Article  CAS  Google Scholar 

  • Martin, S. M., Kookana, R. S., Van Zwieten, L., & Krull, E. (2012). Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 231–232, 70–78.

    Article  Google Scholar 

  • McBride, M. (1994) Environmental chemistry of soils. Oxford University Press, New York.

  • McConnell, J. S., & Hossner, L. R. (1985). pH-dependent adsorption isotherms of glyphosate. Journal of Agricultural & Food Chemistry, 33, 1075–1078.

    Article  CAS  Google Scholar 

  • Mckeague, J. A., & Day, D. H. (1966). Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13–22.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2013). Design and analysis of experiments (8th ed.). Singapore: John Wiley & Sons.

    Google Scholar 

  • Morillo, E., Undabeytia, T. & Maqueda, C. (1997) Adsorption of glyphosate on the clay mineral montmorillonite: Effect of Cu(II) in solution and adsorbed on the mineral. Environmental Science and Technology, 31, 3588–3592.

  • Morillo, E., Undabeytia, T., Maqueda, C., & Ramos, A. (2000). Glyphosate adsorption on soils of different characteristics: influence of copper addition. Chemosphere, 40, 103–107.

    Article  CAS  Google Scholar 

  • Oliveira, R.S., Costa, A.C.S., & Tormena, C.A. (2004). Fate and properties of herbicides in tropical soils. In: Inderjit (Ed.), Weed Biology and Management, Dordrecht, Springer Netherlands, pp. 227–249.

  • Olsen, S. R., Cole, C. V., Watanbe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extracion with sodium bicarbonate. Circ. 939. Washington, DC: USDA.

    Google Scholar 

  • Paradelo, M., Norgaard, T., Ferré, T.P.A., Moldrup, P., Kumari, K.G.I.D., Arthur, E., de Jonge, L. W. (2015) Prediction of the glyphosate sorption coefficient in soils from two loamy agricultural fields. Geoderma, (submitted).

  • Parks, G.A. (1967). Aqueous surface chemistry of oxides and complex oxide minerals. Isoelectric point and zero point of charge. In: Equilibrium concepts in natural water systems. R.F Gould (Eds.), Adv. Chem. Ser. 67:121-160

  • Pennell, K. D. (2002) Specific surface area. In J. H. Dane, & G. C. Topp (Ed.), Methods of Soil Analysis. Part 4. Physical Methods, SSSA Book Ser., (vol. 5, pp. 295–315) Madison: Soil Science Society of America.

  • Piccolo, A., Celano, G., Arienzo, M., & Mirabella, A. (1994). Adsorption and desorption of glyphosate in some European soils. Journal of Environmental Science & Health B, 29, 1105–1115.

    Article  Google Scholar 

  • Piccolo, A., Gatta, L., & Campanella, L. (1995). Interactions of glyphosate herbicide with a humic acid and its iron complex. Annali di Chimica (Rome), 85, 31–40.

    CAS  Google Scholar 

  • Prata, F., Lavorenti, A., Regitano, J. & Tornisielo, V. (2000). Influência da matéria orgânica na sorção e dessorção do glifosato em solos com diferentes atributos mineralógicos. Revista Brasileira De Ciencia Do Solo, 24, 947–951.

  • Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impact of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77, 574–581.

    Article  CAS  Google Scholar 

  • Sposito, G. (1984). The surface chemistry of soils. New York, NY: Oxford Univ. Press.

    Google Scholar 

  • Sprankle, P. W., Meggitt, F., & Penner, D. (1975). Adsorption, mobility, and microbial degradation of glyphosate in soil. Weed Science, 23, 229–234.

    CAS  Google Scholar 

  • Stalikas, C., & Konidari, C. (2001). Analytical methods to determine phosphonic and amino acid group containing pesticides. Journal of Chromatography A, 907, 1–19.

    Article  CAS  Google Scholar 

  • Sumner, M. E. (1963). Effect of iron oxides on positive and negative charges in clays and soils. Clay Minerals Bulletin, 5, 218–226.

    Article  CAS  Google Scholar 

  • Sun Z., Bruun, E.W., Arthur, E., de Jonge, L.W., Moldrup, P., Hauggaard-Nielsen, H., & Elsgaard, L. (2014). Effects of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology & Fertility of Soils, doi: 10.1007/s00374-014- 0928-5

  • Trigo, C., Spokas, K. A., Cox, L. & Koskinen, W. C. (2014). Influence of Soil Biochar Aging on Sorption of the Herbicides MCPA, Nicosulfuron, Terbuthylazine, Indaziflam, and Fluoroethyldiaminotriazine. Journal of Agricultural and Food Chemistry, 62, 10855–10860.

  • Wauchope, R. D., Yeh, S., Linders, J. B. H. J., Kloskowski, R., Tanaka, K., Rubin, B., Katayama, A., Kordel, W., Gerstl, Z., Lane, M. & Unsworth, J. B. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science, 58, 419–445.

  • Winter B. (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499. http://arxiv.org/pdf/1308.5499.pdf. Accessed 17 December 2013

  • Xu, C., Liu, W., & Sheng, G. D. (2008). Burned rice straw reduces the availability of clomazone to barnyard grass. Science of the Total Environment, 392, 284–289.

  • Yang, Y., Sheng, G., & Huang, M. (2006). Bioavailability of diuron in soil containing wheat-straw-derived char. Science of the Total Environment, 354, 170–178.

  • Yaron, B., Dror, I., & Berkowitz, B. (2012). Soil-subsurface change: chemical pollutant impacts (p. 142). Berlin: Springer-Verlag.

  • Yu, X. Y., Ying, G. G., & Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural & Food Chemistry, 54, 8545–8550.

  • Yu, X. Y., Ying, G. G., & Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 76, 665–671.

  • Zhang, A., Cui, L., Pa, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139, 469–475.

  • Zheng, W., Guo, M., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010). Sorption properties of greenwaste biochar from two trizaine pesticides. Journal of Hazardous Materials, 181, 121–126.

Download references

Acknowledgements

We thank K. Dyrberg, P. Jørgensen, M. Koppelgaard, J.M. Nielsen, S.T. Rasmussen, and L. Skovmose for the technical assistance in sampling and laboratory measurements. We also thank Esben W. Bruun and Henrik Hauggaard-Nielsen for establishing the field trial and Michael Meyer for access to the Kalundborg field site. The study was partly funded by the international project Soil Infrastructure, Interfaces, and Translocation Processes in Inner Space (Soil-it-is), which is funded by the Danish Research Council for Technology and Production Sciences (http://www.agrsci.dk/soil-it-is/). The field trial was funded by the Interreg IVB North Sea Region Programme through the project “Biochar: climate saving soils.” M. Paradelo was funded by a grant from the Pedro Barrié de la Maza Fundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lis W. de Jonge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K.G.I.D., Moldrup, P., Paradelo, M. et al. Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar. Water Air Soil Pollut 227, 174 (2016). https://doi.org/10.1007/s11270-016-2867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2867-2

Keywords

Navigation