Skip to main content

Advertisement

Log in

Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Across five biogeographic areas, DBH-CA allometry was characterized by inter-site homogeneity and intra-site heterogeneity, whereas the reverse was observed for DBH-H allometry.

Abstract

Tree crowns play a central role in stand dynamics. Remotely sensed canopy images have been shown to allow inferring stand structure and biomass which suggests that allometric scaling between stems and crowns may be tight, although insufficiently investigated to date. Here, we report the first broad-scale assessment of stem vs. crown scaling exponents using measurements of bole diameter (DBH), total height (H), and crown area (CA) made on 4148 trees belonging to 538 species in five biogeographic areas across the wet tropics. Allometries were fitted with power functions using ordinary least-squares regressions on log-transformed data. The inter-site variability and intra-site (sub-canopy vs. canopy trees) variability of the allometries were evaluated by comparing the scaling exponents. Our results indicated that, in contrast to both DBH-H and H-CA allometries, DBH-CA allometry shows no significant inter-site variation. This fairly invariant scaling calls for increased effort in documenting crown sizes as part of tree morphology. Stability in DBH-CA allometry, indeed, suggests that some universal constraints are sufficiently pervasive to restrict the exponent variation to a narrow range. In addition, our results point to inverse changes in the scaling exponent of the DBH-CA vs. DBH-H allometries when shifting from sub-canopy to canopy trees, suggesting a change in carbon allocation when a tree reaches direct light. These results pave the way for further advances in our understanding of niche partitioning in tree species, tropical forest dynamics, and to estimate AGB in tropical forests from remotely sensed images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiba SI, Kohyama T (1996) Tree species stratification in relation to allometry and demography in a warm-temperate rain forest. J Ecol 84:207–218. doi:10.2307/2261356

    Article  Google Scholar 

  • Anten NPR, Schieving F (2010) The role of wood mass density and mechanical constraints in the economy of tree architecture. Am Nat 175:250–260. doi:10.1086/649581

    Article  PubMed  Google Scholar 

  • Antin C, Pélissier R, Vincent G, Couteron P (2013) Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees Struct Funct 27:1485–1495

    Article  Google Scholar 

  • Asner GP (2009) Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ Res Lett. doi:10.1088/1748-9326/4/3/034009

    Google Scholar 

  • Attocchi G, Skovsgaard JP (2015) Crown radius of pedunculate oak (Quercus robur L.) depending on stem size, stand density and site productivity. Scand J For Res 30:289–303. doi:10.1080/02827581.2014.1001782

    Google Scholar 

  • Baccini A et al (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change 2:182–185. doi:10.1038/nclimate1354

    Article  CAS  Google Scholar 

  • Banin L et al (2012) What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob Ecol Biogeogr 21:1179–1190. doi:10.1111/j.1466-8238.2012.00778.x

    Article  Google Scholar 

  • Barbier N, Couteron P, Proisy C, Malhi Y, Gastellu-Etchegorry JP (2010) The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests. Glob Ecol Biogeogr 19:72–84

    Article  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot Lond 99:375–407. doi:10.1093/aob/mcl260

    Article  Google Scholar 

  • Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2:49–53. doi:10.1139/x72-009

    Article  Google Scholar 

  • Bastin JF, Barbier N, Couteron P, Adams B, Shapiro A, Bogaert J, De Canniere C (2014) Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecol Appl 24:1984–2001. doi:10.1890/13-1574.1

    Article  Google Scholar 

  • Bastin JF et al (2015) Seeing Central African forests through their largest trees. Sci Rep 5:13156. doi:10.1038/srep13156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley LP et al (2013) An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecol Lett 16:1069–1078. doi:10.1111/ele.12127

    Article  PubMed  Google Scholar 

  • Birnbaum P (2001) Canopy surface topography in a French Guiana forest and the folded forest theory. Plant Ecol 153:293–300. doi:10.1023/a:101756380925

    Article  Google Scholar 

  • Bohlman S, O’Brien S (2006) Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. J Trop Ecol 22:123–136

    Article  Google Scholar 

  • Bohlman S, Pacala S (2012) A forest structure model that determines crown layers and partitions growth and mortality rates for landscape-scale applications of tropical forests. J Ecol 100:508–518. doi:10.1111/j.1365-2745.2011.01935.x

    Article  Google Scholar 

  • Bouvier M, Durrieu S, Fournier RA, Renaud J-P (2015) Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens Environ 156:322–334. doi:10.1016/j.rse.2014.10.004

    Article  Google Scholar 

  • Broadbent EN, Asner GP, Pena-Claros M, Palace M, Soriano M (2008) Spatial partitioning of biomass and diversity in a lowland Bolivian forest: linking field and remote sensing measurements. For Ecol Manag 255:2602–2616. doi:10.1016/j.foreco.2008.01.044

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Chave J et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x

    Article  CAS  PubMed  Google Scholar 

  • Chave J et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. doi:10.1111/gcb.12629

    Article  Google Scholar 

  • Clark ML, Clark DB, Roberts DA (2004) Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environ 91:68–89. doi:10.1016/j.rse.2004.02.008

    Article  Google Scholar 

  • Clark DB, Hurtado J, Saatchi SS (2015) Tropical rain forest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica. PLoS One 10:e0122905. doi:10.1371/journal.pone.0122905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coomes DA, Allen RB (2009) Testing the metabolic scaling theory of tree growth. J Ecol 97:1369–1373. doi:10.1111/j.1365-2745.2009.01571.x

    Article  Google Scholar 

  • Coomes DA, Duncan RP, Allen RB, Truscott J (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol Lett 6:980–989. doi:10.1046/j.1461-0248.2003.00520.x

    Article  Google Scholar 

  • Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB (2012) A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. J Ecol 100:42–64. doi:10.1111/j.1365-2745.2011.01920.x

    Article  CAS  Google Scholar 

  • Couteron P, Pélissier R, Nicolini EA, Dominique P (2005) Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J Appl Ecol 42:1121–1128. doi:10.1111/j.1365-2664.2005.01097.x

    Article  Google Scholar 

  • Cusset G (1980) Les paramètres intervenant dans la croissance des arbres: la relation hauteur-diamètre de l’axe primaire aérien. Candollea 35:231–255

    Google Scholar 

  • Davies RB (1987) Hypothesis testing when a nuisance parameter is present only under the alternative—linear model case. Biometrika 74:33–43

    Google Scholar 

  • Dawkins HC (1963) The productivity of tropical highforest trees and their reaction to controllable environment. Commonwealth Forestry Institute, Oxford

    Google Scholar 

  • Enquist BJ (2002) Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol 22:1045–1064

    Article  PubMed  Google Scholar 

  • Farrior CE, Bohlman SA, Hubbell S, Pacala SW (2016) Dominance of the suppressed: power-law size structure in tropical forests. Science 351:155–157. doi:10.1126/science.aad0592

    Article  CAS  PubMed  Google Scholar 

  • Fauset S et al (2015) Hyperdominance in Amazonian forest carbon cycling. Nat Commun. doi:10.1038/ncomms7857

    PubMed  PubMed Central  Google Scholar 

  • Feldpausch TR et al (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106. doi:10.5194/bg-8-1081-2011

    Article  Google Scholar 

  • Feldpausch TR et al (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403. doi:10.5194/bg-9-3381-2012

    Article  Google Scholar 

  • Goodman RC, Phillips OL, Baker TR (2014) The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl 24:680–698

    Article  PubMed  Google Scholar 

  • Gourlet-Fleury S, Blanc L, Picard N, Sist P, Dick J, Nasi R, Swaine MD, Forni E (2005) Grouping species for predicting mixed tropical forest dynamics: looking for a strategy. Ann For Sci 62:785–796. doi:10.1051/forest:2005084

    Article  Google Scholar 

  • Hajek P, Seidel D, Leuschner C (2015) Mechanical abrasion, and not competition for light, is the dominant canopy interaction in a temperate mixed forest. For Ecol Manag 348:108–116. doi:10.1016/j.foreco.2015.03.019

    Article  Google Scholar 

  • Hallé F, Ng FSP (1981) Crown construction in mature Dipterocarp trees. Malays For 44:222–223

    Google Scholar 

  • Hallé F, Oldeman R, Tomlinson P (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Harja D, Vincent G, Mulia R, van Noordwijk M (2012) Tree shape plasticity in relation to crown exposure. Trees Struct Funct 26:1275–1285

    Article  Google Scholar 

  • Heineman KD, Jensen E, Shapland A, Bogenrief B, Tan S, Rebarber R, Russo SE (2011) The effects of belowground resources on aboveground allometric growth in Bornean tree species. For Ecol Manag 261:1820–1832. doi:10.1016/j.foreco.2011.02.005

    Article  Google Scholar 

  • Henry H, Aarssen L (1999) The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecol Lett 2:89–97

    Article  Google Scholar 

  • Iida Y, Kohyama TS, Kubo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011) Tree architecture and life-history strategies across 200 co-occurring tropical tree species. Funct Ecol 25:1260–1268. doi:10.1111/j.1365-2435.2011.01884.x

    Article  Google Scholar 

  • Iida Y, Poorter L, Sterck FJ, Kassim AR, Kubo T, Potts MD, Kohyama TS (2012) Wood density explains architectural differentiation across 145 co-occurring tropical tree species. Funct Ecol 26:274–282. doi:10.1111/j.1365-2435.2011.01921.x

    Article  Google Scholar 

  • Iwasa Y, Cohen D, Leon JA (1985) Tree height and crown shape, as results of competitive games. J Theor Biol 112:279–297. doi:10.1016/s0022-5193(85)80288-5

    Article  Google Scholar 

  • Jacobs MR (1955) Growth habits of the eucalyptus. Forestry and timber Bureau, Canberra

    Google Scholar 

  • Kennel P, Tramon M, Barbier N, Vincent G (2013) Canopy height model characteristics derived from airbone laser scanning and its effectiveness in discriminating various tropical moist forest types. Int J Remote Sens 34:8917–8935. doi:10.1080/01431161.2013.858846

    Article  Google Scholar 

  • King DA (1990) Allometry of samplings and understorey trees of Panamanian forest. Funct Ecol 4:27–32. doi:10.2307/2389648

    Article  Google Scholar 

  • King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • King DA (2005) Linking tree form, allocation and growth with an allometrically explicit model. Ecol Model 185:77–91. doi:10.1016/j.ecolmodel.2004.11.017

    Article  Google Scholar 

  • King DA, Clark DA (2011) Allometry of emergent tree species from saplings to above-canopy adults in a Costa Rican rain forest. J Trop Ecol 27:573–579. doi:10.1017/s0266467411000319

    Article  Google Scholar 

  • King DA, Maindonald JH (1999) Tree architecture in relation to leaf dimensions and tree stature in temperate and tropical rain forests. J Ecol 87:1012–1024. doi:10.1046/j.1365-2745.1999.00417.x

    Article  Google Scholar 

  • King D, Davies S, Supardi MN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453

    Article  Google Scholar 

  • King DA, Davies SJ, Tan S, Noor NSM (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680. doi:10.1111/j.1365-2745.2006.01112.x

    Article  Google Scholar 

  • Kitajima K, Mulkey SS, Wright SJ (2005) Variation in crown light utilization characteristics among tropical canopy trees. Ann Bot Lond 95:535–547. doi:10.1093/aob/mci051

    Article  Google Scholar 

  • Kohyama T, Hotta M (1990) Significance of allometry in tropical saplings. Funct Ecol 4:515–521. doi:10.2307/2389319

    Article  Google Scholar 

  • Kohyama T, Suzuki E, Partomihardjo T, Yamada T, Kubo T (2003) Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. J Ecol 91:797–806. doi:10.1046/j.1365-2745.2003.00810.x

    Article  Google Scholar 

  • Lang AC et al (2010) Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. For Ecol Manag 260:1708–1715

    Article  Google Scholar 

  • Lindenmayer DB et al (2012) Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One 7:e41864. doi:10.1371/journal.pone.0041864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–1028. doi:10.1111/j.1466-8238.2011.00746.x

    Article  Google Scholar 

  • Lutz JA, Larson AJ, Freund JA, Swanson ME, Bible KJ (2013) The importance of large-diameter trees to forest structural heterogeneity. PLoS One 8:e82784. doi:10.1371/journal.pone.0082784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mäkelä A, Valentine HT (2006) Crown ratio influences allometric scaling in trees. Ecology 87:2967–2972. doi:10.1890/0012-9658(2006)87[2967:criasi]2.0.co;2

  • Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA (2014) Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol J Linn Soc 111:230–233. doi:10.1111/bij.12177

    Article  Google Scholar 

  • Molto Q, Herault B, Boreux JJ, Daullet M, Rousteau A, Rossi V (2014) Predicting tree heights for biomass estimates in tropical forests—a test from French Guiana. Biogeosciences 11:3121–3130. doi:10.5194/bg-11-3121-2014

    Article  Google Scholar 

  • Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718

    Article  Google Scholar 

  • Moravie MA, Durand M, Houllier F (1999) Ecological meaning and predictive ability of social status, vigour and competition indices in a tropical rain forest (India). For Ecol Manag 117:221–240. doi:10.1016/s0378-1127(98)00480-0

    Article  Google Scholar 

  • Muggeo VM (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071

    Article  PubMed  Google Scholar 

  • Muggeo VM (2008) Segmented: an R package to fit regression models with broken-line relationships. R news 8:20–25

    Google Scholar 

  • Muller-Landau HC et al (2006) Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett 9:575–588. doi:10.1111/j.1461-0248.2006.00904.x

    Article  PubMed  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press, Chicago

    Google Scholar 

  • Nogueira EM, Fearnside PM, Nelson BW, Barbosa RI, Hermanus Keizer EW (2008) Estimates of forest biomass in the Brazilian Amazon: new allometric equations and adjustments to biomass from wood-volume inventories. For Ecol Manag 256:1853–1867. doi:10.1016/j.foreco.2008.07.022

    Article  Google Scholar 

  • Oldeman RAA (1974) L’architecture de la forêt guyanaise. ORSTOM, Paris

    Google Scholar 

  • Oldeman RAA (1990) Forests: elements of silvology. Springer, Berlin

    Book  Google Scholar 

  • Olson ME, Aguirre-Hernández R, Rosell JA (2009) Universal foliage-stem scaling across environments and species in dicot trees: plasticity, biomechanics and Corner’s rules. Ecol Lett 12:210–219

    Article  PubMed  Google Scholar 

  • Osada N, Tateno R, Hyodo F, Takeda H (2004) Changes in crown architecture with tree height in two deciduous tree species: developmental constraints or plastic response to the competition for light? For Ecol Manag 188:337–347. doi:10.1016/j.foreco.2003.08.003

    Article  Google Scholar 

  • Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height-crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94:1951–1962. doi:10.3732/ajb.94.12.1951

    Article  PubMed  Google Scholar 

  • Palace MW, Sullivan FB, Ducey MJ, Treuhaft RN, Herrick C, Shimbo JZ, Mota-E-Silva J (2015) Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data. Remote Sens Environ 161:1–11. doi:10.1016/j.rse.2015.01.020

    Article  Google Scholar 

  • Picard N, Rutishauser E, Ploton P, Ngomanda A, Henry M (2015) Should tree biomass allometry be restricted to power models? For Ecol Manag 353:156–163. doi:10.1016/j.foreco.2015.05.035

    Article  Google Scholar 

  • Ploton P, Pélissier R, Proisy C, Flavenot T, Barbier N, Rai S, Couteron P (2013) Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol Appl 22:993–1003

    Article  Google Scholar 

  • Ploton P et al (2016) Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences 13:1571–1585. doi:10.5194/bg-13-1571-2016

    Article  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Woll H (2003) Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 84:602–608. doi:10.1890/0012-9658(2003)084[0602:aorfts]2.0.co;2

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301. doi:10.1890/0012-9658(2006)87[1289:aomtst]2.0.co;2

  • Poorter L et al (2008) Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89:1908–1920. doi:10.1890/07-0207.1

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Dieler J (2012) Evidence of variant intra-and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169:637–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Proisy C, Couteron P, Fromard F (2007) Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens Environ 109:379–392. doi:10.1016/j.rse.2007.01.009

    Article  Google Scholar 

  • Purves DW, Lichstein JW, Pacala SW (2007) Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species. PLoS One 2:e870. doi:10.1371/journal.pone.0000870

    Article  PubMed  PubMed Central  Google Scholar 

  • Putz FE, Parker GG, Archibald RM (1984) Mechanical abrasion and intercrown spacing. Am Midl Nat 112:24–28. doi:10.2307/2425452

    Article  Google Scholar 

  • Quesada CA et al (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246. doi:10.5194/bg-9-2203-2012

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 17 June 2016

  • Read JM, Clark DB, Venticinque EM, Moreira MP (2003) Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. J Appl Ecol 40:592–600. doi:10.1046/j.1365-2664.2003.00814.x

    Article  Google Scholar 

  • Richards PW (1996) The tropical rain forest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Russo SE, Wiser SK, Coomes DA (2007) Growth-size scaling relationships of woody plant species differ from predictions of the metabolic ecology model. Ecol Lett 10:889–901. doi:10.1111/j.1461-0248.2007.01079.x

    Article  PubMed  Google Scholar 

  • Rutishauser E, Barthelemy D, Blanc L, Nicolini E-A (2011) Crown fragmentation assessment in tropical trees: method, insights and perspectives. For Ecol Manag 261:400–407. doi:10.1016/j.foreco.2010.10.025

    Article  Google Scholar 

  • Saatchi SS et al (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904. doi:10.1073/pnas.1019576108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatier D, Grimaldi M, Prevost MF, Guillaume J, Godron M, Dosso M, Curmi P (1997) The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecol 131:81–108. doi:10.1023/a:1009775025850

    Article  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form—the pipe model theory: I. basic analyses. Jpn J Ecol 14:97–105

    Google Scholar 

  • Singh M, Evans D, Friess DA, Tan BS, Nin CS (2015) Mapping above-ground biomass in a tropical forest in Cambodia using canopy textures derived from Google Earth. Remote Sens 7:5057–5076. doi:10.3390/rs70505057

    Article  Google Scholar 

  • Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31. doi:10.1093/forestry/cpm041

    Google Scholar 

  • Slik JWF et al (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22:1261–1271. doi:10.1111/geb.12092

    Article  Google Scholar 

  • Smith AR, Lukac M, Hood R, Healey JR, Miglietta F, Godbold DL (2013) Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytol 198:156–168. doi:10.1111/nph.12136

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research, 2nd edn. W. H. Freeman, San Francisco

    Google Scholar 

  • Sokal RR, Rohlf FJ (2012) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Co, New York

    Google Scholar 

  • Sterck FJ, Bongers F (2001) Crown development in tropical rain forest trees: patterns with tree height and light availability. J Ecol 89:1–13

    Article  Google Scholar 

  • Strigul N, Pristinski D, Purves D, Dushoff J, Pacala S (2008) Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecol Monogr 78:523–545. doi:10.1890/08-0082.1

    Article  Google Scholar 

  • Taubert F, Jahn MW, Dobner H-J, Wiegand T, Huth A (2015) The structure of tropical forests and sphere packings. Proc Natl Acad Sci USA 112:15125–15129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SC (1996) Asymptotic height as a predictor of growth and allometric characteristics Malaysian rain forest trees. Am J Bot 83:556–566. doi:10.2307/2445913

    Article  Google Scholar 

  • Thomas SC, Martin AR, Mycroft EE (2015) Tropical trees in a wind-exposed island ecosystem: height-diameter allometry and size at onset of maturity. J Ecol 103:594–605. doi:10.1111/1365-2745.12378

    Article  Google Scholar 

  • Umeki K (1995) Modeling the relationship between the asymmetry in crown display and local environment. Ecol Model 82:11–20. doi:10.1016/0304-3800(94)00081-r

    Article  Google Scholar 

  • Vanclay JK (1992) Assessing site productivity in tropical moist forests—a review. For Ecol Manag 54:257–287. doi:10.1016/0378-1127(92)90017-4

    Article  Google Scholar 

  • Vincent G, Caron F, Sabatier D, Blanc L (2012) LiDAR shows that higher forests have more slender trees. Bois et Forêts des Trop 314:51–56

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Nat Acad Sci USA 106:7040–7045. doi:10.1073/pnas.0812294106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westoby M, Wright IJ (2003) The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135:621–628. doi:10.1007/s00442-003-1231-6

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

  • Wyckoff PH, Clark JS (2005) Tree growth prediction using size and exposed crown area. Can J For Res 35:13–20. doi:10.1139/x04-142

    Article  Google Scholar 

  • Yamada T, Ngakan OP, Suzuki E (2005) Differences in growth trajectory and strategy of two sympatric congeneric species in an Indonesian floodplain forest. Am J Bot 92:45–52. doi:10.3732/ajb.92.1.45

    Article  PubMed  Google Scholar 

  • Zolkos SG, Goetz SJ, Dubayah R (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128:289–298. doi:10.1016/j.rse.2012.10.017

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Direction for Economic and Environmental Development (DDEE) of the North Province of New Caledonia. Data acquisition for IRD plots (data from Africa) was supported by Eramet, IRD-PPR FTH-AC, the World Bank, WWF, EIT-Climate KIC, the African Development Bank, and COMIFAC. We thank the Institut Agronomique néo-Calédonien (IAC) for co-funding E. Blanchard’s Ph.D. We are grateful to the many field workers, technicians, engineers, and researchers who contributed to the long-term monitoring of the plots used in the analyses. We also thank Santiago Trueba-Sanchez (IRD) and two anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Blanchard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Beck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchard, E., Birnbaum, P., Ibanez, T. et al. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees 30, 1953–1968 (2016). https://doi.org/10.1007/s00468-016-1424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1424-3

Keywords

Navigation