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Abstract

disease and distal spinal muscular atrophy.

binding domain.

spectrum of disease associated with GARS dysregulation.

Background: Glycyl-tRNA synthetase (GARS) is an aminoacyl-tRNA synthetase (ARS) that links the amino acid
glycine to its corresponding tRNA prior to protein translation and is one of three bifunctional ARS that are active
within both the cytoplasm and mitochondria. Dominant mutations in GARS cause rare forms of Charcot-Marie-Tooth

Case presentation: We report a 12-year old girl who presented with clinical and biochemical features of a systemic
mitochondrial disease including exercise-induced myalgia, non-compaction cardiomyopathy, persistent elevation of
blood lactate and alanine and MRI evidence of mild periventricular leukomalacia. Using exome sequencing she was
found to harbor compound heterozygous mutations within the glycyl-tRNA synthetase (GARS) gene; ¢.1904C > T,

p.Ser635Leu and ¢.1787G > A; p.Arg596GIn. Each mutation occurred at a highly conserved site within the anticodon

Conclusion: Our findings suggest that recessive mutations in GARS may cause systemic mitochondrial disease. This
phenotype is distinct from patients with previously reported dominant mutations in this gene, thereby expanding the
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Background

Aminoacyl-tRNA synthetases (ARS) are nuclear-encoded,
ubiquitously expressed enzymes that are essential for cyto-
solic and mitochondrial protein translation [1]. Each ARS
links a specific amino acid to its corresponding tRNA, a
process known as aminoacylation or “charging” of tRNA.
Aminoacylation must take place before protein translation
can occur. ARS are being increasingly recognized as having
important secondary functions that include regulation of
transcription, translation, splicing and apoptosis [2]. ARS
mutations have been implicated in a wide range of human
diseases. There are 37 different ARS that are divided into
three groups depending upon the site of tRNA aminoacyla-
tion. Cytoplasm-specific ARS are active within the cell
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nucleus and cytoplasm. The tRNA-amino acid complexes
are transported within the cytoplasm to ribosomes where
they facilitate protein translation. Mitochondria-specific
ARS are a distinct group of nuclear-encoded proteins that
are imported into the mitochondria to carry out tRNA
aminoacylation at that site. Three bifunctional ARS have
been described that are active in both the cytoplasm and
mitochondria.

Glycyl-tRNA synthetase (GARS) is a bifunctional ARS.
Structurally, the functional enzyme exists as a homodi-
mer with three functional domains [3]. GARS mutations
have been linked to autosomal-dominant Charcot-Marie-
Tooth disease type 2D (CMT2D) and distal spinal muscu-
lar atrophy type 5 (ASMAS5) [3,4]. Numerous mechanisms
have been postulated as to how dysregulation of GARS
may give rise to an axonal neuropathy including loss of
function, protein aggregation, loss of a secondary ‘house-
keeping’ function, and/or mitochondrial dysfunction [5].

© 2014 McMillan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:hmcmillan@cheo.on.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

McMillan et al. BMC Medical Genetics 2014, 15:36
http://www.biomedcentral.com/1471-2350/15/36

The latter is particularly appealing in light of the activity
of GARS within mitochondria [1] as well as the know-
ledge that other inherited neuropathies have been linked
to mitochondrial dysfunction: MFN2 mutations causing
CMT2A [6] and GDAPI mutations causing CMT4A or
CMT2K [7].

We report a girl who presented with clinical and bio-
chemical features of a systemic mitochondrial disease and
using exome sequencing we identified compound hetero-
zygous mutations within the GARS gene. We propose that
her phenotype is secondary to recessive mutations in
GARS, thereby expanding the phenotypic spectrum asso-
ciated with mutation of this gene.

Case presentation

Patient description

A 12 year old girl initially presented at 6 years of age with
exercise intolerance. She was born to non-consanguineous
healthy parents. She has two younger, healthy brothers al-
though one has autistic spectrum disorder. She presented
with shortness of breath with low-intensity aerobic exercise
such as jogging or biking. She had no chest pain or palpita-
tions. Cardiac examination at 7 years old noted a normal
clinical examination however her electrocardiogram
revealed biventricular hypertrophy. Subsequent echo-
cardiogram and cardiac MRI identified thickening of the
posterior left ventricle (LV) wall, apex and septum
consistent with a non-compaction cardiomyopathy. Bi-
lateral ventricular systolic and diastolic function was
normal with a LV ejection fraction of 63%. Stress testing
confirmed a normal baseline heart rate, blood pressure
and a normal response to exercise. Pulmonary function
tests were normal. Biochemical testing revealed normal
serum creatine kinase (CK) with a slight elevation of
serum troponin T. Genetic testing included normal
SCN5A sequencing, chromosomal microarray and hy-
pertrophic and dilated cardiomyopathy panel (GeneDx,
Gaithersburg, MD).

Over the next year, she reported exercise-induced
myalgia. She had no muscle weakness, cramping or
pigmenturia. She could perform short bursts of anaer-
obic activity without difficulty however, sustained activity
would elicit muscle pain. Biochemical testing was abnor-
mal on multiple occasions including: plasma lactate (2.3 —
4.6 mmol/L; normal 0.5 - 2.2 mmol/L) and plasma alanine
(603 - 841 umol /L; normal 152 - 547 pmol/L). Her acyl-
carnitine profile and carnitine levels (free and total) were
normal as was urine organic acid analysis. Repeated serum
CK, liver and renal function were normal. Neuromuscular
assessment at 9 years of age showed her cranial nerves,
muscle power, reflexes, sensory testing and coordination
to be within normal limits. Gower manoeuvre was nega-
tive and gait was normal. Electrodiagnostic testing con-
firmed normal right median and sural nerve sensory
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responses and normal right median and tibial nerve motor
responses. Concentric needle electromyography of her
right quadriceps was normal.

Muscle biopsy of the quadriceps performed at 9 years
of age revealed a preponderance of type 1 fibers although
no other microscopic, histochemical or ultrastructural ab-
normalities were apparent. Muscle respiratory chain en-
zyme testing and muscle mitochondrial DNA sequencing
was normal. MRI of the brain at 10 years of age revealed
abnormal T2 and T2FLAIR hyperintensity in the periven-
tricular and trigonal white matter bilaterally. MR spectros-
copy of the basal ganglia and subcortical white matter was
normal. MRI of the proximal leg muscles was unremark-
able. Treatment with ubiquinone, vitamin B50 complex,
levocarnitine and ubiquinol were started at 10 years old
without apparent clinical effect. Creatine monohydrate
was added several months later after which she reported a
sustained, subjective clinical improvement in her exercise
tolerance.

Neuromuscular evaluation at 12 years old was signifi-
cant for bilateral extensor hallucis longus and extensor
digitorum brevis weakness (4/5). Strength testing of all
other muscles was within normal limits. Cranial nerve
testing, deep tendon reflexes, sensory testing and coord-
ination were within normal limits. Repeat neurophysio-
logical testing revealed a reduction in her right common
peroneal nerve motor response due to a slight CMAP
amplitude reduction of 2.1 mV (normal >2.4 mV). Motor
responses at the left peroneal, right tibial, right median
and ulnar nerves were normal. Sensory responses at the
right median, ulnar, superficial peroneal and sural nerves
were normal. Concentric needle EMG of the right tibialis
anterior and medial gastrocnemius was normal. Her most
recent cardiac evaluation at 12 years old identified two
new findings: electrocardiogram identified a new subclin-
ical Wolf-Parkinson-White pre-excitation that was not
noted on prior studies as well as evidence for LV diastolic
dysfunction on echocardiogram.

Her medical history was otherwise unremarkable. She
was born at term with no complications. Early mile-
stones were appropriate; she sat at 6 months old, pulled
to stand by 12 months and walked independently by
18 months of age. Her growth parameters were stable;
height (just <50 percentile) and weight (just < 25™ per-
centile) following along her percentile curves from in-
fancy. She has never had any seizures, headaches or
endocrine dysfunction. She has no oculobulbar symptoms
and no sensory or autonomic dysfunction. Her visual acu-
ity and hearing were normal. She excelled academically,
achieving high grades in a gifted program.

Exome sequencing and analysis
We followed standard manufacturer protocols to per-
form target capture with the Agilent SureSelect All Exon
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50 MB (V3) exome enrichment kit and sequencing of
100 bp paired end reads on Illumina Hiseq 2000, which
generated over 12.4 Gb of data for the proband. We re-
moved adaptor sequences and quality trimmed reads using
the Fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/)
and then used a custom script to ensure that only read
pairs with both mates present were subsequently used.
Reads were aligned to hgl9 with BWA 0.5.9 [8] and
indel realignment was done using the GATK [9]. Dupli-
cate reads were then marked using Picard (http://picard.
sourceforge.net/) and excluded from downstream ana-
lyses. We assessed coverage of consensus coding se-
quence (CCDS) bases using the GATK, which showed
that all samples had >91% of CCDS bases covered by at
least 10 reads, and >85% of CCDS bases covered by at
least 20 reads. Single nucleotide variants (SNVs) and
short insertions and deletions (indels) were called using
samtools mpileup [10] with the extended base align-
ment quality (BAQ) adjustment (-E), and were then
quality filtered to require at least 20% of reads support-
ing the variant call. Variants were annotated using both
Annovar [11] and custom scripts to identify whether
they affected protein coding sequence, and whether they
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had previously been seen in dbSNP132, the 1000 genomes
dataset (Nov 2011), the NHLBI GO exomes, or in approxi-
mately 500 exomes previously sequenced at our center.

Given the suspicion of a mitochondrial disorder based on
the patient’s clinical phenotype, we first filtered the list of
non-synonymous variants to retain only those present in
genes in the MitoCarta Inventory of Mammalian Mito-
chondrial Genes and which were seen in 7 or fewer internal
control exomes (of ~500) and at less than 1% frequency in
the 1000 genomes and NHLBI GO exome databases. There
were 13 genes with single heterozygous variants, and a sin-
gle gene, GARS, with two rare heterozygous variants. The
two GARS variants, NM_002047.2: ¢.1904C > T (p.Ser635-
Leu) and ¢.1787G > A (p.Arg596Gln) occur at highly con-
served positions (Figure 1) and are predicted to be
deleterious by both SIFT [12] (scores 0.01 and 0.00, re-
spectively) and PolyPhen2 [13] (scores 0.94 and 1.00, re-
spectively). We then analyzed the remaining exome data
and no convincing disease-causing variants were identi-
fied in any other genes relevant to previously reported
neuromuscular disorders.

We identified our patient to have a sequence variant
in the MIBI (mindbomb E3 ubiquitin protein ligase 1)
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Figure 1 Sanger sequencing and segregation. (A) Pedigree of family with GARS mutations showing segregation of the two mutations found:
c.1904C > T, p.Ser635Leu and ¢.1787G > A; p.Arg596GIn (NM_002047.2). The proband (solid circle) is a compound heterozygous with clinical
features of a systemic mitochondrial disease. Her father (half shaded) shows mild sensorimotor polyneuropathy with axonal features. Her mother
(small circle) is a carrier. (B) Sanger sequencing validation of GARS mutations identified by exome sequencing. (C) Conservation of the Arginine
residue at position 596, and Serine residue at position 635 in the GARS protein.
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gene which has been linked to non-compaction cardio-
myopathy. Our patient’s MIBI sequence variant has not
been previously reported but did occur in a highly con-
served region of this gene. We confirmed that the pro-
band’s father carries the same MIBI sequence variant
although he shows no evidence of cardiomyopathy on
clinical examination or echocardiogram.

Variant validation

Sanger sequencing was used to validate the variants in
GARS and to evaluate segregation in the family. Blood
samples were obtained and DNA was extracted from the
patient as well as her parents and two unaffected sib-
lings. PCR amplification and sequencing was performed
with primers 5’CAGATGATCCACCTACCTCAG3" and
5'ATAACACAGGAAACTGGTTTGTC-3" to test the
¢.1787G > A variant. PCR amplification was performed
using 5’ AGTGAAGATTTGGATTCCCG-3" and 5'GGA
CTTGAGAATCTGGGCTC3" primers and Sanger se-
quencing was done using 5'AAGAAGCAGTACACAT
TTCTAAG-3 and 5'GTAAGACAGTAGTTAGATAAC-3
primers, to test the ¢.1904C > T variant.

Sanger sequencing confirmed the presence of these
variants in the proband. The parents were each hetero-
zygous for one of the mutations; ¢.1787G>A was
inherited from her mother and ¢.1904C > T was inher-
ited from her father (Figure 1). The ¢.1904C > T muta-
tion has previously been reported to be disease-causing
[4,14], the reported patient exhibited a clinical pheno-
type characterized by adolescent-onset foot deformity
necessitating an orthopedic referral at the age 27 years old.

Examination of family members

Given the findings of recessive mutations in GARS and
the knowledge that heterozygous mutations in this gene
can cause disease, the family was evaluated in detail. The
proband’s father reported no weakness or sensory deficits
when examined at 55 years old. His clinical examination
was entirely within normal limits. His electrodiagnostic
testing, however, revealed evidence of a mild sensorimotor
polyneuropathy with axonal features. Bilateral sural and
superficial peroneal nerve sensory amplitudes were low.
His common peroneal and tibial motor amplitudes were
within normal limits. Concentric needle EMG of his
right extensor digitorum brevis and abductor hallucis
revealed fibrillation potentials and positive sharp waves
in addition to chronic neurogenic changes. Needle EMG
of his right tibialis anterior also revealed chronic neu-
rogenic changes. The probands mother reported no
functional difficulty. Her clinical examination, echocardio-
gram and nerve conduction studies at age 47 years old were
within normal limits. Needle EMG was not performed. The
proband’s two younger brothers had no significant findings
on clinical examination or nerve conduction testing.
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Discussion

Aminoacyl tRNA synthetase mutations are emerging as
an important cause of rare childhood and adult diseases.
Autosomal dominant mutations within several ARS are
known to cause distal motor neuropathy or polyneuro-
pathies, including cytoplasmic ARS such as alanyl-tRNA
synthetase (AARS) [15], tyrosyl-tRNA (YARS) [16] and
lysyl-tRNA synthetase (KARS) [17] as well as the bifunc-
tional GARS [3]. Additionally, an increasing number of
autosomal recessive ARS mutations have been linked to
severe clinical phenotypes affecting the central nervous
system and other highly metabolically active tissues. Mu-
tations within the mitochondrial aspartyl-tRNAsynthetase
(DARS2) have been linked to a syndrome of progressive
spastic ataxia with MRI evidence of diffuse subcortical
leukoencephalopathy with brainstem and spinal cord in-
volvement [18,19]. Mutations within another mitochon-
drial ARS, tyrosyl-tRNA synthetase (YARS2) have been
identified in a patient presenting with lactic acidosis,
sideroblastic anemia and myopathy associated with a se-
vere deficiency in respiratory chain enzyme function
[20]. Our patient demonstrated similar, albeit milder,
features of periventricular leukoencephalopathy, lactic
acidosis and myalgia suggesting evidence of mitochon-
drial dysfunction. Each of the two GARS mutations oc-
curred at a highly conserved site within the anticodon
binding domain; mutations within the anticodon do-
main have been previously linked to more severe, earlier
onset forms of disease [4].

Dominant mutations in GARS are a recognized cause
of both CMT2D and dSMA5 and our findings suggest
that recessive mutations in this gene are associated with
mitochondrial disease. Mouse modeling supports our
clinical observation that there are fundamental differ-
ences in disease phenotype and mechanism in autosomal
dominant versus autosomal recessive GARS-associated
disease [21]. While mice that were heterozygous for a mis-
sense mutation in GARS show a dominant-negative or
toxic gain-of-function effect, mice that are homozygous
for GARS mutations appear to show some additional loss-
of-function effect that is not observed in the heterozygous
state [21]. Finally, we cannot exclude the possibility that
elements of our proband’s phenotype could secondary to
more than GARS dysregulation and that a second con-
comitant disease is also present. The sequence variant in
the MIB1 gene for example raises suspicion that the non-
compaction cardiomyopathy could be related to dysfunc-
tion in this gene and may or may not be related to the
GARS gene dysfunction. However, even if the cardiomy-
opathy is due to this second gene, there is still substantial
evidence for mitochondrial dysfunction in this girl given
her persistent lactic acidosis, elevated serum alanine,
exercise-induced myalgia and white matter changes on
MRI brain.
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Conclusions

Our findings suggest that recessive mutations in GARS
cause systemic mitochondrial disease. Given our patient’s
clinical phenotype, the location of each of the two muta-
tions in GARS and data from the mouse models, we pos-
tulate that the clinical phenotype of the patient reported
may be explained by a loss-of-function mechanism due to
impaired glycyl-tRNA aminoacylation. This phenotype re-
ported here and associated with recessive mutations is
distinct from patients with previously reported dominant
mutations in this gene, thereby expanding the spectrum of
disease associated with GARS dysregulation.

Consent

Members of the study family consisted of the proband,
mother, father, and siblings. Parents provided informed
consent for themselves and their children to be enrolled
in the Finding of Rare Disease Genes (FORGE) Canada
study. The Research Ethics Board of the Children’s Hos-
pital of Eastern Ontario approved this study in accord-
ance with the Declaration of Helsinki. A copy of the
written consent is available for review by the Editor of
this journal.
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