Skip to main content
Log in

Alternating stacking of ferromagnetic nanosheet and nanoparticle films: heteroassembly and magneto-optical Kerr effect

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Heterostructured multilayer films of two different nanocrystals have been successfully fabricated by layer-by-layer stacking of Ti0.8Co0.2O2 nanosheet and Fe3O4 nanoparticle films. UV–Vis spectroscopy and AFM observation confirmed the successful alternating deposition in the multilayer buildup process. The average thickness of both Ti0.8Co0.2O2 nanosheet and Fe3O4 nanoparticle layers was determined to be about 1.4–1.7 and 5 nm, which was in good agreement with TEM results. Magneto-optical Kerr effect measurements demonstrated that the heteroassemblies exhibit gigantic magnetic circular dichroism (MCD) (2 × 104 deg/cm) at 320–360 nm, deriving from strong interlayer [Co2+]t2g–[Fe3+]eg d–d charge transfer which was further confirmed by X-ray photoelectron spectroscopy. Their structure-dependent MCD showed high potential in rational design and construction of high-efficiency magneto-optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ando K (2000) Magneto-optics of diluted magnetic semiconductors: new materials and application. In: Sugano S, Kojima N (eds) Magnetio-Optics. Springer, Berlin

    Google Scholar 

  • Ando K, Saito H, Jin Z, Fukumura T, Kawasaki M, Matsumoto Y, Koinuma H (2001) Large magneto-optical effect in an oxide diluted magnetic semiconductor Zn1−xCoxO. Appl Phys Lett 78:2700–2702

    Article  Google Scholar 

  • Baibich M-N, Broto J-M, Fert A, Nguyen F, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. J Phys Rev Lett 61:2472–2475

    Article  Google Scholar 

  • Boncheva M, Ferrigno R, Bruzewicz D-A, Whitesides G-M (2003) Plasticity in self-assembly: templating generates functionally different circuits from a single precursor. Angew Chem Int Ed 42:3368–3371

    Article  Google Scholar 

  • Dong X, Osada M, Ueda H, Ebina Y, Kotani Y, Ono K, Ueda S, Kobayashi K, Takada K, Sasaki T (2009) Synthesis of Mn-substituted titania nanosheets and ferromagnetic thin films with controlled doping. Chem Mater 21:4366–4373

    Article  Google Scholar 

  • Fukuoka A, Araki H, Kimura J, Sakamoto Y, Higuchi T, Sugimoto N, Inagaki S, Ichikawa M (2004) Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. J Mater Chem 14:752–756

    Article  Google Scholar 

  • Gao G-H, Liu X-H, Shi R, Zhou K, Shi Y, Ma R, Takayama-Muromachi E, Qiu G (2010) Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes. Cryst Growth Des 10:2888–2894

    Article  Google Scholar 

  • Kim K, Lee K, Lee M, Lee S (2002) Comparative magneto-optical investigation of dd charge–transfer transitions in Fe3O4, CoFe2O4, and NiFe2O4. J Appl Phys 91:9974–9977

    Article  Google Scholar 

  • Kumacheva E, Garstecki P, Wu H-K, Whitesides G-M (2003) Two-dimensional colloid crystals obtained by coupling of flow and confinement. Phys Rev Lett 91:128301–128304

    Article  Google Scholar 

  • Lee D, Kang Y, Lee C, Stroeve P (2002) Structure and characterization of nanocomposite Langmuir−Blodgett films of poly(maleic monoester)/Fe3O4 nanoparticle complexes. J Phys Chem B 106:7267–7271

    Article  Google Scholar 

  • Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, Kim S-J, Cho E-J, Yoon H-G, Suh J-S, Cheon J-W (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  Google Scholar 

  • Liu G, Wang L, Yang H-G, Cheng H, Lu G-Q (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mat Chem 20:831–843

    Article  Google Scholar 

  • Lu Y, Xiong H, Jiang C-X, Xia Y-N, Prentiss M, Whitesides G-M (2003) Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J Am Chem Soc 125:12724–12725

    Article  Google Scholar 

  • Motte L, Lacaze E, Maillard M, Pileni M-P (2000) Self-assemblies of silver sulfide nanocrystals on various substrates. Langmuir 16:3803–3812

    Article  Google Scholar 

  • Murray C-B, Kagan C-R, Bawendi M-G (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  Google Scholar 

  • Onoda M, Liu Z, Takada K, Sasaki T (2009) Simulation of powder diffraction patterns of mixed-layer compounds in the restacked binary nanosheet system Ti0.91O2–MnO2. J Appl Cryst 42:22–29

    Article  Google Scholar 

  • Osada M, Ebina Y, Takada K, Sasaki T (2006a) Gigantic magneto–optical effects in multilayer assemblies of two-dimensional titania nanosheets. Adv Mater 18:295–299

    Article  Google Scholar 

  • Osada M, Ebina Y, Fukuda K, Ono K, Takada K, Yamaura K, Takayama-Muromachi E, Sasaki T (2006b) Ferromagnetism in two-dimensional Ti0.8Co0.2O2 nanosheets. Phys Rev B 73:153301–153304

    Article  Google Scholar 

  • Osada M, Itose M, Ebina Y, Ono K, Ueda S, Kobayashi K, Sasaki T (2008) One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Appl Phys Lett 92:253110–253113

    Article  Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Hon H, Kim J, Park J-H, Hwang N, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  • Pileni M-P (2001) Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B 105:3358–3371

    Article  Google Scholar 

  • Puntes V-F, Gorostiza P, Aruguete D-M, Bastus N-G, Alivisatos A-P (2004) Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat Mater 3:263–268

    Article  Google Scholar 

  • Rabani E, Reichman D-R, Geissler P-L, Brus L-E (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274

    Article  Google Scholar 

  • Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H (1996) Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. pairwise association of nanosheets and dynamic reassembling process initiated from it. J Am Chem Soc 118:8329–8335

    Article  Google Scholar 

  • Seo W-S, Lee J-H, Sun X-M, Suzuki Y, Mann D, Liu Z, Terashima M, Yang P-C, Mcconnell M-V, Nishimura D-G, Dai H-J (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5:971–976

    Article  Google Scholar 

  • Son S-J, Reichel J, He B, Schuchman M, Lee S-B (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316–7317

    Article  Google Scholar 

  • Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403

    Article  Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:204–8205

    Google Scholar 

  • Tian Z-R, Liu J, Xu H-F, Voigt J-A, Mckenzie B, Matzke C-M (2003) Shape-selective growth, patterning, and alignment of cubic nanostructured crystals via self-assembly. Nano Lett 3:179–182

    Article  Google Scholar 

  • Tripp SL, Pusztay SV, Ribbe AE, Wei A (2002) Self-assembly of cobalt nanoparticle rings. J Am Chem Soc 124:7914–7915

    Article  Google Scholar 

  • Wang Z, Sasaki T, Muramatsu M, Ebina Y, Tanaka T, Wang L, Watanabe M (2003) Self-assembled multilayers of titania nanoparticles and nanosheets with polyelectrolytes. Chem Mater 15:807–812

    Article  Google Scholar 

  • Wang Y, Angelatos A-S, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858

    Article  Google Scholar 

  • Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev In press

  • Zeng H, Li J, Liu J-P, Wang Z-L, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398

    Article  Google Scholar 

  • Zhou Y, Wang L, Ma R, Ebina Y, Takada K, Sasaki T (2007) Fabrication and electrochemical characterization of molecularly alternating self-assembled films and capsules of titania nanosheets and gold nanoparticles. Curr Nanosci 3:155–160

    Article  Google Scholar 

  • Zhukov A-A, Ghanem M-A, Goncharov A, Groot de P-A-J, El-Hallag I-S, Bartlett P-N, Boardman R, Fangohr H (2004) Coercivity of 3D nanoscale magnetic arrays from self-assembly template methods. J Magn Magn Mater 272:1621–1622

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (21301021), Natural Science Foundation of Jiangsu Province (BK20130254) and Jiangsu Province Science and Technology Support Project (BC2015071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoping Jia or Wei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1699 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Zhang, W., Liu, H. et al. Alternating stacking of ferromagnetic nanosheet and nanoparticle films: heteroassembly and magneto-optical Kerr effect. J Nanopart Res 18, 271 (2016). https://doi.org/10.1007/s11051-016-3571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3571-2

Keywords

Navigation