Skip to main content
Log in

Novel highly ordered core–shell nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Core–shell nanoparticles have potential for a wide range of applications due to the tunability of their magnetic, catalytic, electronic, optical, and other physicochemical properties. A frequent drawback in the design of core–shell nanoparticles and nanocrystals is the lack of control over an extensive, disordered, and compositionally distinct interface that occurs due to the dissimilarity of structural and compositional phases of the core and shell. In this work, we demonstrate a new hydrothermal nanophase epitaxy (HNE) technique to synthesize highly structurally ordered α-Cr2O3@α-Co0.38Cr1.62O2.92 inverted core–shell nanoparticles (CSNs) with evidence for the nanoscale growth of corundum structure beginning from the core and extending completely into the shell of the CSNs with minimal defects at the interface. The high-resolution TEM results show a sharp interface exhibiting epitaxial atomic registry of shell atoms over highly ordered core atoms. The XPS and Co K-edge XANES analyses indicate the +2 oxidation state of cobalt is incorporated in the shell of the CSNs. Our XPS and EXAFS results are consistent with oxygen vacancy formation in order to maintain charge neutrality upon substitution of the Co2+ ion for the Cr3+ ion in the α-Co0.38Cr1.62O2.92 shell. Furthermore, the CSNs exhibit the magnetic exchange bias effect, which is attributed to the exchange anisotropy at the interface made possible by the nanophase epitaxial growth of the α-Co0.38Cr1.62O2.92 shell on the α-Cr2O3 core of the nanoparticles. The combination of a well-structured, sharp interface and novel nanophase characteristics is highly desirable for nanostructures having enhanced magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Borys NJ, Walter MJ, Huang J et al (2010) The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science 330:1371–1374. doi:10.1126/science.1198070

    Article  Google Scholar 

  2. Byers CP, Zhang H, Swearer DF et al (2015) From tunable core–shell nanoparticles to plasmonic drawbridges: active control of nanoparticle optical properties. Sci Adv 1:e1500988. doi:10.1126/sciadv.1500988

    Article  Google Scholar 

  3. Gawande MB, Goswami A, Asefa T et al (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44:7540–7590. doi:10.1039/C5CS00343A

    Article  Google Scholar 

  4. Song S, Wang X, Zhang H (2015) CeO2-encapsulated noble metal nanocatalysts: enhanced activity and stability for catalytic application. NPG Asia Mater 7:e179. doi:10.1038/am.2015.27

    Article  Google Scholar 

  5. Xu C, Yuan Y, Cui A, Yuan R (2012) In situ controllable synthesis of Ag@AgCl core–shell nanoparticles on graphene oxide sheets. J Mater Sci 48:967–973. doi:10.1007/s10853-012-6823-2

    Article  Google Scholar 

  6. Si PZ, Zhang M, Zhang ZD et al (2005) Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J Mater Sci 40:4287–4291. doi:10.1007/s10853-005-2797-7

    Article  Google Scholar 

  7. Wang J, Zeng XC (2009) Core–shell magnetic nanoclusters. In: Liu JP, Fullerton E, Gutfleisch O, Sellmyer DJ (eds) Nanoscale Magn Mater Appl. Springer, Berlin, pp 35–65

    Google Scholar 

  8. Silva A, Silva-Freitas É, Carvalho J et al (2012) Magnetic particles in biotechnology: from drug targeting to tissue engineering. In: Petre M (ed) Advances in applied biotechnology. http://www.intechopen.com/books/advances-in-applied-biotechnology/magnetic-particles-in-biotechnology-from-drug-targeting-to-tissue-engineering

  9. López-Ortega A, Estrader M, Salazar-Alvarez G et al (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32. doi:10.1016/j.physrep.2014.09.007

    Article  Google Scholar 

  10. Juhin A, López-Ortega A, Sikora M et al (2014) Direct evidence for an interdiffused intermediate layer in bi-magnetic core–shell nanoparticles. Nanoscale 6:11911–11920. doi:10.1039/C4NR02886D

    Article  Google Scholar 

  11. Nogués J, Skumryev V, Sort J et al (2006) Shell-driven magnetic stability in core–shell nanoparticles. Phys Rev Lett 97:157203. doi:10.1103/PhysRevLett.97.157203

    Article  Google Scholar 

  12. Fontaíña Troitiño N, Rivas-Murias B, Rodríguez-González B, Salgueiriño V (2014) Exchange bias effect in CoO@Fe 3 O 4 core–shell octahedron-shaped nanoparticles. Chem Mater 26:5566–5575. doi:10.1021/cm501951u

    Article  Google Scholar 

  13. Margaris G, Trohidou KN, Nogués J (2012) Mesoscopic model for the simulation of large arrays of bi-magnetic core/shell nanoparticles. Adv Mater 24:4331–4336. doi:10.1002/adma.201200615

    Article  Google Scholar 

  14. Mao Z, Zhan X, Chen X (2012) Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study. J Phys Condens Matter 24:276002. doi:10.1088/0953-8984/24/27/276002

    Article  Google Scholar 

  15. Dimitriadis V, Kechrakos D, Chubykalo-Fesenko O, Tsiantos V (2015) Shape-dependent exchange bias effect in magnetic nanoparticles with core–shell morphology. Phys Rev B 92:64420. doi:10.1103/PhysRevB.92.064420

    Article  Google Scholar 

  16. Evans RFL, Bate D, Chantrell RW et al (2011) Influence of interfacial roughness on exchange bias in core–shell nanoparticles. Phys Rev B 84:92404. doi:10.1103/PhysRevB.84.092404

    Article  Google Scholar 

  17. Shore M, Fowler AD (1996) Oscillatory zoning in minerals; a common phenomenon. Can Mineral 34:1111–1126

    Google Scholar 

  18. Jamtveit B (1999) Crystal growth and intracrystalline zonation patterns in hydrothermal environments. In: Jamtveit B, Meakin P (eds) Growth dissolution pattern form. Geosystems, Springer, pp 65–84

    Chapter  Google Scholar 

  19. Golosovsky IV, Salazar-Alvarez G, López-Ortega A et al (2009) magnetic proximity effect features in antiferromagnetic/ferrimagnetic core–shell nanoparticles. Phys Rev Lett 102:247201. doi:10.1103/PhysRevLett.102.247201

    Article  Google Scholar 

  20. Vasilakaki M, Trohidou KN, Nogués J (2015) Enhanced magnetic properties in antiferromagnetic-core/ferrimagnetic-shell nanoparticles. Sci Rep 5:9609. doi:10.1038/srep09609

    Article  Google Scholar 

  21. Farzaneh F (2011) Synthesis and characterization of Cr2O3 nanoparticles with triethanolamine in water under microwave irradiation. J Sci Islam Repub Iran 22:329–333

    Google Scholar 

  22. McCart PA, Farris L, Mayanovic RA, Yan H. Investigations of TiO2 nanoparticles surface-doped with Eu in aqueous fluids to high P-T conditions. Symp DDD—Extreme Environ Route Nov Mater. 2013 doi: 10.1557/opl.2013.1141

  23. (2008) TOPAS V4: General profile and structure analysis software for powder diffraction data. User’s Manual. Bruker AXS, Karlsruhe, Germany

  24. Cheary RW, Coelho A (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25:109–121. doi:10.1107/S0021889891010804

    Article  Google Scholar 

  25. Coelho AA (2003) Indexing of powder diffraction patterns by iterative use of singular value decomposition. J Appl Crystallogr 36:86–95. doi:10.1107/S0021889802019878

    Article  Google Scholar 

  26. Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr 20:79–83. doi:10.1107/S0021889887087090

    Article  Google Scholar 

  27. Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Crystallogr 27:892–900. doi:10.1107/S0021889894004218

    Article  Google Scholar 

  28. Campbell BJ, Evans JSO, Perselli F, Stokes HT (2007) Rietveld refinement of structural distortion-mode amplitudes. Ed Newsl No 8:81

    Google Scholar 

  29. Campbell BJ, Stokes HT, Tanner DE, Hatch DM (2006) ISODISPLACE: a web-based tool for exploring structural distortions. J Appl Crystallogr 39:607–614. doi:10.1107/S0021889806014075

    Article  Google Scholar 

  30. Dinnebier R, Müller M (2012) Modern Rietveld refinement, a practical guide. In: Mittemeijer EJ, Welzel U (eds) Modern diffraction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  31. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/S0909049505012719

    Article  Google Scholar 

  32. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–324. doi:10.1107/S0909049500016964

    Article  Google Scholar 

  33. Rehr JJ, Kas JJ, Prange MP et al (2009) Ab initio theory and calculations of X-ray spectra. Comptes Rendus Phys 10:548–559. doi:10.1016/j.crhy.2008.08.004

    Article  Google Scholar 

  34. Hedin L, Lundqvist BI (1971) Explicit local exchange-correlation potentials. J Phys C Solid State Phys 4:2064. doi:10.1088/0022-3719/4/14/022

    Article  Google Scholar 

  35. Mayanovic RA, Yan H, Anderson AJ et al (2012) In situ X-ray absorption spectroscopic study of the adsorption of Ni2+ on Fe3O4 nanoparticles in supercritical aqueous fluids. J Phys Chem C 116:2218–2225. doi:10.1021/jp2067793

    Article  Google Scholar 

  36. Yan H, Mayanovic RA, Demster JW, Anderson AJ (2013) In situ monitoring of the adsorption of Co2+ on the surface of Fe3O4 nanoparticles in high-temperature aqueous fluids. J Supercrit Fluids 81:175–182. doi:10.1016/j.supflu.2013.05.017

    Article  Google Scholar 

  37. Balzar D, Audebrand N, Daymond MR et al (2004) Size-strain line-broadening analysis of the ceria round-robin sample. J Appl Crystallogr 37:911–924. doi:10.1107/S0021889804022551

    Article  Google Scholar 

  38. Carta D, Casula MF, Falqui A et al (2009) A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn Co, Ni). J Phys Chem C 113:8606–8615. doi:10.1021/jp901077c

    Article  Google Scholar 

  39. Yan H, Mayanovic RA, Demster J, Anderson AJ. In situ XANES Study of Co2 + Ion Adsorption on Fe3O4 Nanoparticles in Supercritical Aqueous Fluids. Symp—Mater Chall Curr Future Nucl Technol. 2012 doi: 10.1557/opl.2012.183

  40. Bodade AB, Rohokale PG, Padole PR (2011) Electrical and gas sensing properties of chemically modified nanocrystalline Cr2O3 based H2S sensor. Nano Trends J Nanotech Appl 11:18–21

    Google Scholar 

  41. Hossain MD, Dey S, Mayanovic RA, Benamara M (2016) Structural and magnetic properties of well-ordered inverted core–shell α-Cr2O3/α-MxCr2-xO3 (M = Co, Ni, Mn, Fe) Nanoparticles. MRS Adv. doi:10.1557/adv.2016.324

    Google Scholar 

  42. Chandra S, Khurshid H, Li W et al (2012) Spin dynamics and criteria for onset of exchange bias in superspin glass Fe/γ-Fe2O3 core–shell nanoparticles. Phys Rev B 86:14426. doi:10.1103/PhysRevB.86.014426

    Article  Google Scholar 

  43. Fernandes V, Mossanek RJO, Schio P et al (2009) Dilute-defect magnetism: origin of magnetism in nanocrystalline CeO2. Phys Rev B 80:35202. doi:10.1103/PhysRevB.80.035202

    Article  Google Scholar 

  44. Phokha S, Pinitsoontorn S, Maensiri S (2013) Structure and magnetic properties of monodisperse Fe3+-doped CeO2 nanospheres. Nano-Micro Lett 5:223–233. doi:10.1007/BF03353753

    Article  Google Scholar 

Download references

Acknowledgements

S.D. and R.M. acknowledge partial support from EFree, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001057. The PNC/XSD facilities at the APS, and research at these facilities, are supported by DOE–BES, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by DOE–BES, under contract DE-AC02-06CH11357. We thank Alexander Jankovic and the JVIC center at MSU for assistance with the XPS measurements on our samples.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal Dey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Hossain, M.D., Mayanovic, R.A. et al. Novel highly ordered core–shell nanoparticles. J Mater Sci 52, 2066–2076 (2017). https://doi.org/10.1007/s10853-016-0495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0495-2

Keywords

Navigation