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Québec Research Center and Laval University, 2705 Laurier

Boulevard, Quebec, QC G1V 4G2, Canada

2 Centre for Cancer Genetic Epidemiology, Department of

Public Health and Primary Care, University of Cambridge,

Strangeways Research Laboratory, Worts Causeway,

Cambridge, UK

3 The Wellcome Trust Sanger Institute, Wellcome Trust

Genome Campus Hinxton, Cambridge CB10 1HH, UK

4 Department of Human Genetics, McGill University,

Montreal, QC H3A 1B1, Canada

5 McGill University and Genome Quebec Innovation Centre,

Montreal, QC H3A 0G1, Canada

6 Yorkshire Regional Genetics Service, Chapel Allerton

Hospital, Leeds LS7 4SA, UK

7 Department of Clinical Genetics, Helsinki University

Hospital, HUS, Meilahdentie 2, P.O. BOX 160,

00029 Helsinki, Finland

8 Lunenfeld-Tanenbaum Research Institute, Mount Sinai

Hospital, Toronto, ON M5G 1X5, Canada

123

Breast Cancer Res Treat

DOI 10.1007/s10549-016-4018-2

http://dx.doi.org/10.1007/s10549-016-4018-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s10549-016-4018-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10549-016-4018-2&amp;domain=pdf


Eric Hahnen67 • Ute Hamann68 • Thomas V. O. Hansen69 • Steven Hart70 •

John L. Hays71,72,73 • HEBON74
• Frans B. L. Hogervorst75 • Peter J. Hulick76 •

Evgeny N. Imyanitov77 • Claudine Isaacs78 • Louise Izatt79 • Anna Jakubowska66 •

Paul James80,81 • Ramunas Janavicius82,83 • Uffe Birk Jensen84 • Esther M. John85,86 •

Vijai Joseph87 • Walter Just88 • Katarzyna Kaczmarek66 • Beth Y. Karlan89 •

KConFab Investigators81,90 • Carolien M. Kets91 • Judy Kirk92 • Mieke Kriege93 •
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Abstract

Purpose Cis-acting regulatory SNPs resulting in differen-

tial allelic expression (DAE) may, in part, explain the

underlying phenotypic variation associated with many

complex diseases. To investigate whether common variants

associated with DAE were involved in breast cancer sus-

ceptibility among BRCA1 and BRCA2 mutation carriers, a

list of 175 genes was developed based of their involvement

in cancer-related pathways.

Methods Using data from a genome-wide map of SNPs

associated with allelic expression, we assessed the association

of*320SNPs located in the vicinity of these geneswith breast

and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2

mutation carriers ascertained from 54 studies participating in

the Consortium of Investigators of Modifiers of BRCA1/2.

Results We identified a region on 11q22.3 that is signifi-

cantly associated with breast cancer risk in BRCA1 muta-

tion carriers (most significant SNP rs228595 p = 7 9

10-6). This association was absent in BRCA2 carriers

(p = 0.57). The 11q22.3 region notably encompasses

genes such as ACAT1, NPAT, and ATM. Expression

quantitative trait loci associations were observed in both

normal breast and tumors across this region, namely for

ACAT1, ATM, and other genes. In silico analysis revealed

some overlap between top risk-associated SNPs and rele-

vant biological features in mammary cell data, which

suggests potential functional significance.

Conclusion We identified 11q22.3 as a new modifier locus

in BRCA1 carriers. Replication in larger studies using

estrogen receptor (ER)-negative or triple-negative (i.e.,

ER-, progesterone receptor-, and HER2-negative) cases

could therefore be helpful to confirm the association of this

locus with breast cancer risk.

Keywords Breast cancer � Genetic modifiers � Differential
allelic expression � Genetic susceptibility � Cis-regulatory
variants � BRCA1 and BRCA2 mutation carriers

Introduction

Pathogenic mutations in the BRCA1 and BRCA2 genes

substantially increase a woman’s lifetime risk of develop-

ing breast and ovarian cancers [1–4]. These risks vary

significantly according to (a) age at disease diagnosis in

carriers of identical mutations, (b) the cancer site in the

individual who led to the family’s ascertainment, (c) the

degree of family history of the disease [1, 4, 5], and (d) the
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type and location of BRCA1 and BRCA2 mutations [6].

These observations suggest that other factors, including

lifestyle/hormonal factors [7] as well as other genetic fac-

tors, modify cancer risks in BRCA1 and BRCA2 mutation

carriers. Direct evidence for such genetic modifiers of risk

has been obtained through the association studies per-

formed by the Consortium of Investigators of Modifiers of

BRCA1/2 (CIMBA), which have shown that several com-

mon breast cancer susceptibility alleles identified through

population-based genome-wide association studies

(GWASs) are also associated with breast cancer risk among

BRCA1 and BRCA2 mutation carriers [8–10].

Global analysis of GWAS data has shown that the vast

majority of common variants associated with susceptibility

to cancer lie within genomic non-coding regions and are

predicted to account for cancer risk through regulation of

gene expression [11, 12]. A recent expression quantitative

trait loci (cis-eQTL) analysis for mRNA expression in 149

known cancer risk loci performed in five tumor types

(breast, colon, kidney, lung, and prostate) has shown that

approximately 30 % of such risk loci were significantly

associated with eQTLs present in at least one gene within

500 kb [13]. These results suggest that additional cancer

susceptibility loci may be identified through studying

genetic variants that affect the regulation of gene expres-

sion. In the present study, we selected genes of interest for

their known involvement in cancer etiology, identified 320

genetic variants in the vicinity of these genes with evidence

of differential allelic expression (DAE), and then

investigated the associations of these variants with breast

and ovarian cancer risks among BRCA1 and BRCA2

mutation carriers. These included variants in genes

involved in DNA repair (homologous recombination and

DNA interstrand crosslink repair), interaction with and/or

modulation of BRCA1 and BRCA2 cellular functions, cell

cycle control, centrosome amplification and interaction

with AURKA, apoptosis, ubiquitination, as well as known

tumor suppressors, mitotic kinases, and other kinases, sex

steroid action, and mammographic density.

Materials and methods

Subjects

All study participants were female carriers of a deleteri-

ous germline mutation in either BRCA1 or BRCA2 and

aged 18 years or older [14]. Fifty-four collaborating

CIMBA studies contributed a total of 23,463 samples

(15,252 BRCA1 mutation carriers and 8211 BRCA2

mutation carriers) to this study, including 12,127 with

breast cancer (7797 BRCA1 and 4330 BRCA2 carriers)

and 3093 with ovarian cancer (2462 BRCA1 and 631

BRCA2 carriers). The number of samples included from

each study is provided in Online Resource 1. The

recruitment strategies, clinical, demographic, and pheno-

typic data collected from each participant have been

previously reported [14].
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Ethics statement

BRCA1 and BRCA2 mutation carriers were recruited

through the CIMBA initiative, following approval of the

corresponding protocol by the Institutional Review Board

or Ethics Committee at each participating center (Online

Resource 2); written informed consent was obtained from

all study participants [8, 9].

SNP selection and differential allelic expression

SNP selection was performed by first identifying a list of 175

genes of interest involved in cancer-related pathways and/or

mechanisms. The list of genes was established by analyzing

published results and by using available public databases

such as the Kyoto encyclopedia of genes and genomes

(http://www.genome.jp/kegg/). Next, DAE SNPs located

within these gene regions were identified using previously

reported data on allelic expression cis-associations, derived

using (1) the lllumina Human1M-duo BeadChip for lym-

phoblastoid cell lines from Caucasians (CEU population)

(n = 53) [15], the Illumina Human 1M Omni-quad for pri-

mary skin fibroblasts derived from Caucasian donors

(n = 62) [13, 16], and the Illumina Infinium II assay with

Human 1.2M Duo custom BeadChip v1 for human primary

monocytes (n = 188) [17]. Briefly, 1000 Genomes project

data were used as a reference set (release 1000G Phase I v3)

for the imputation of genotypes from HapMap individuals.

Genotypes were inferred using algorithms implemented in

IMPUTE2 [18]. The unrelated fibroblast panel consisted of

31 parent–offspring trios, in which the genotypes of off-

spring were used to permit accurate phasing. Mapping of

each allelic expression trait was carried out by first normal-

izing allelic expression ratios at each SNP using a polyno-

mial method [19] and then calculating average phased allelic

expression scores across annotated transcripts, followed by

correlation of these scores to local (transcript ± 500 kb)

SNP genotypes in fibroblasts as described earlier [16]. A

total of 355 genetic variants were selected on the basis of

evidence of association with DAE in the selected 175 genes

(see Online Resource 3 for a complete list of SNPs and

genes). Following the selection process, SNPs were sub-

mitted for design and inclusion on a custom-made Illumina

Infinium array (iCOGS) as previously described [8, 9]. Fol-

lowing probe design and post-genotyping quality control,

316 and 317 SNPs were available for association analysis in

BRCA1 and BRCA2 mutation carriers, respectively. Geno-

typing and quality control procedures have been described in

detail elsewhere [8, 9].

Statistical analysis

Associations between genotypes and breast and ovarian

cancer risks were evaluated within a survival analysis

framework, using a one degree-of-freedom score test statistic

based on modeling the retrospective likelihood of the
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62 Department of Clincial Genetics, Rigshospitalet,

Blegdamsvej 9, 4062 Copenhagen, Denmark

63 Department of Pathology and Laboratory Medicine,

University of Kansas Medical Center, 3901 Rainbow

Boulevard, 4019 Wahl Hall East, MS 3040, Kansas City,

Kansas, USA

64 Department of Dermatology, University of Utah School of

Medicine, 30 North 1900 East, SOM 4B454, Salt Lake City,

UT 84132, USA

65 Clinical Genetics Branch, DCEG, NCI NIH, 9609 Medical

Center Drive, Room 6E-454, Bethesda, MD, USA

66 Department of Genetics and Pathology, Pomeranian Medical

University, Polabska 4, 70-115 Szczecin, Poland

67 Centre of Familial Breast and Ovarian Cancer, Department of

Gynaecology and Obstetrics and Centre for Integrated

Oncology (CIO), Center for Molecular Medicine Cologne

(CMMC), University Hospital of Cologne, 50931 Cologne,

Germany

68 Molecular Genetics of Breast Cancer, German Cancer

Research Center (DKFZ), Im Neuenheimer Feld 580,

69120 Heidelberg, Germany

69 Center for Genomic Medicine, Rigshospitalet, Copenhagen

University Hospital, Blegdamsvej 9, 2100 Copenhagen,

Denmark

70 Department of Health Sciences Research, Mayo Clinic, 200

First Street SW, Rochester, MN 55905, USA

71 Division of Medical Oncology, Department of Internal

Medicine, The Ohio State University, Columbus, OH 43210,

USA

72 Division of Gynecologic Oncology, Department of Obstetrics

and Gynecology, The Ohio State University, Columbus,

OH 43210, USA

Breast Cancer Res Treat

123

http://www.genome.jp/kegg/


observed genotypes conditional on the disease phenotypes

[20, 21]. To estimate the magnitude of the associations

[hazard ratios (HRs)], we maximized the retrospective like-

lihood, which was parameterized in terms of the per-allele

HR. All analyses were stratified by country of residence and

using calendar year and cohort-specific incidence rates of

breast and ovarian cancers for mutation carriers. Given 320

tests, the cutoff value for significance after a Bonferroni

adjustment for multiple testing was p\ 1.5 9 10-4.

The associations between the genotypes and tumor

subtypes were evaluated using an extension of the retro-

spective likelihood approach that models the association

with two or more subtypes simultaneously [22].

Imputation was performed separately for BRCA1 and

BRCA2 mutation carriers to estimate genotypes for other

common variants across a ±50-kb region centered around

the 12 most strongly associated SNPs (following the NCBI

Build 37 assembly), using the March 2012 release of the

1000 Genomes Project as the reference panel and the

IMPUTE v.2.2 software [18]. In all analyses, only SNPs

with an imputation accuracy coefficient r2 [0.30 were

considered [8, 9].

Functional annotation

Publicly available genomic data were used to annotate the

SNPs most strongly associated with breast cancer risk at

locus 11q22.3. The following regulatory features were

obtained for breast cell types from ENCODE and NIH

Roadmap Epigenomics data through the UCSC Genome

Browser: DNase I hypersensitivity sites, chromatin hid-

den Markov modeling (ChromHMM) states, and histone

modifications of epigenetic markers, more specifically

commonly used marks associated with enhancers

(H3K4Me1 and H3K27Ac) and promoters (H3K4Me3

and H3K9Ac). To identify putative target genes, we

examined potential functional chromatin interactions

between distal and proximal regulatory transcription

factor-binding sites and the promoters at the risk loci,

using the chromatin interaction analysis by paired end tag

(ChiA-PET) and genome conformation capture (Hi-C, 3C,

and 5C) datasets downloaded from GEO and from 4D-

genome [23]. Maps of active mammary super-enhancer

regions in human mammary epithelial cells (HMECs)

were obtained from Hnisz et al. [24]. Enhancer–promoter

specific interactions were predicted from the integrated

method for predicting enhancer targets (IM-PETs) [25].

RNA-Seq data from ENCODE was used to evaluate the

expression of exons across the 11q22.3 locus in MCF7

and HMEC cell lines. For MCF7 and HMEC, alignment

files from 19 and 4 expression datasets, respectively,

were downloaded from ENCODE using a rest API

wrapper (ENCODExplorer R package) [26] in the bam

format and processed using metagene R packages [27] to

normalize in Reads per Millions aligned and to convert

into coverages.
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eQTL analyses

The influence of germline genetic variations on gene

expression was assessed using a linear regression model,

as implemented in the R library eMAP (http://www.bios.

unc.edu/*weisun/software.htm). An additive effect was

inferred by modeling subjects’ copy number of the rare

allele, i.e., 0, 1, or 2 for a given genotype. Only rela-

tionships in cis (defined as those for which the SNP is

located at \1 Mb upstream or downstream from the

center of the transcript) were investigated. The eQTL

analyses were performed on both normal and tumor breast

tissues (see Online Resource 4 for the list and description

of datasets, as well as the sources of genotype and

expression data). For all sample sets, the genotyping data

were processed as follows: SNPs with call rates\0.95 or

minor allele frequencies, MAFs (\0.05) were excluded, as

were SNPs out of Hardy–Weinberg equilibrium with

P\ 10-13. All samples with a call rate \80 % were

excluded. Identity by state was computed using the R

GenABEL package [28], and samples from closely related

individuals whose identity by state was lower than 0.95

were removed. The SNP and sample filtration criteria

were applied iteratively until all samples and SNPs met

the set thresholds.

Results

From the 175 genes selected for their involvement in

cancer-related pathways and/or mechanisms, we identified

a set of 355 genetic variants showing evidence of associ-

ation with DAE (see Online Resource 3 for the complete

list of genes and SNPs). Of those, 39 and 38 SNPs were

excluded because of low Illumina design scores, low call

rates, and/or evidence of deviation from Hardy–Weinberg

equilibrium (P value \10-7), for BRCA1 and BRCA2

analyses, respectively. A total of 316 and 317 SNPs (rep-

resenting 227 independent SNPs with a pairwise r2\0.1)

were successfully genotyped in 15,252 BRCA1 and 8211

BRCA2 mutation carriers, respectively. Association results

for breast and ovarian cancer risks for all SNPs are pre-

sented in Online Resource 5.

Breast cancer association analysis

Evidence of association with breast cancer risk (at

p\ 10-2) was observed for nine SNPs in BRCA1 mutation

carriers and three SNPs in BRCA2 mutation carriers

(Table 1). The strongest association with breast cancer risk

among BRCA1 carriers was observed for rs6589007,

located at 11q22.3 in intron 15 of the NPAT gene
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(p = 4.6 9 10-3) at approximately 54 kb upstream of the

ATM gene. Similar associations were observed for two

other highly correlated variants (r2[0.8) on chromosome

11, namely rs183459 (p = 5.7 9 10-3) also located within

NPAT and rs228592 (p = 5.5 9 10-3) located in intron 11

of ATM. No association was observed between SNPs at this

locus and breast cancer risk for BRCA2 carriers (Online

Resource 5).

The strongest evidence of association with breast cancer

risk in BRCA2 mutation carriers was observed for

Table 1 Associations with breast cancer risk in BRCA1 and BRCA2 mutation carriers for SNPs observed at p\ 10-2

Locations Positions SNPs Nearest

genes

Unaffected

(number)

Affected

(number)

Unaffected

(MAF)

Affected

(MAF)

HR* (95 % CI) p values

BRCA1 mutation carriers

1q42.13 227,308,416 rs11806633 CDC42BPA 7455 7797 0.07 0.06 1.128 (1.039–1.225) 4.8 9 10-3

2p23.2 28,319,320 rs6721310 BRE 7454 7793 0.33 0.33 1.064 (1.018–1.111) 5.4 9 10-3

2q11.2 100,019,496 rs2305354 REV1 7451 7796 0.44 0.45 1.057 (1.015–1.100) 7.1 9 10-3

4p15.33 14,858,341 rs1389999 CEBP 7454 7795 0.35 0.35 0.940 (0.901–0.982) 5.3 9 10-3

5q14.1 79,901,952 rs425463 DHFR,

MSH3

7430 7755 0.33 0.35 1.058 (1.013–1.105) 9.5 9 10-3

11q22.3 108,040,104 rs6589007 NPAT,

ACAT1,

ATM

7451 7797 0.41 0.42 1.062 (1.019–1.107) 4.6 9 10-3

11q22.3 108,089,197 rs183459 NPAT,

ATM

7447 7789 0.40 0.41 1.061 (1.018–1.105) 5.7 9 10-3

11q22.3 108,123,189 rs228592 ATM 7449 7792 0.42 0.41 1.061 (1.018–1.106) 5.5 9 10-3

12p13.33 986,004 rs7967755 WNK1,

RAD52

7454 7797 0.16 0.152 0.927 (0.876–0.980) 7.5 9 10-3

BRCA2 mutation carriers

6p22.1 28,231,243 rs9468322 NKAPL 3880 4329 0.04 0.05 1.235 (1.080–1.412) 4.2 9 10-3

8q11.21 48,708,742 rs6982040 PRKDC 3876 4327 0.006 0.002 0.497 (0.292–0.843) 2.7 9 10-3

16p13.3 1,371,154 rs2268049 UBE2I 3880 4325 0.14 0.16 1.116 (1.031–1.207) 4.5 9 10-3

CI confidence interval, HR hazard ratio, MAF minor allele frequency, SNP single-nucleotide polymorphism

* Hazard ratio per allele (one degree of freedom) estimated from the retrospective likelihood analysis
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rs6982040, located at 8q11.21 in intron 74 of the PRKDC

gene (p = 2.7 9 10-3). However, this variant had a very

low frequency in affected and unaffected individuals (MAF

values of 0.002 and 0.006, respectively). No association

was observed for this locus in BRCA1 carriers (Online

Resource 5).

Of the nine SNPs associated with breast cancer risk in

BRCA1 mutation carriers, three were primarily associated

with estrogen receptor (ER)-negative breast cancer:

rs11806633 at 1q42.13 in the CDC42BPA gene

(p = 9.0 9 10-3), rs6721310 at 2p23.2 in the BRE gene

(p = 3.0 9 10-3), and rs2305354 at 2q11.2 in the REV1

gene (p = 1.0 9 10-3), although the differences between

ER-positive and ER-negative disease associations were not

statistically significant (Table 2). Of the three BRCA2-as-

sociated loci, only rs9468322 at 6p22.1 was associated with

Table 2 Associations with breast cancer risk by tumor subtype in BRCA1 and BRCA2 mutation carriers

Locations Positions SNPs ER-positive ER-negative ER-diff

HR (95 % CI) p values HR (95 % CI) p values p-diff

BRCA1 mutation carriers

1q42.13 227,308,416 rs11806633 1.10 (0.90–1.33) 0.35 1.14 (1.03–1.25) 9.0 9 10-3 0.73

2p23.2 28,319,320 rs6721310 1.00 (0.88–1.09) 0.96 1.08 (1.04–1.15) 3.0 9 10-3 0.20

2q11.2 100,019,496 rs2305354 0.98 (0.91–1.10) 0.71 1.09 (1.03–1.13) 1.0 9 10-3 0.09

4p15.33 14,858,341 rs1389999 0.94 (0.85–1.04) 0.20 0.94 (0.89–0.99) 2.0 9 10-2 0.95

5q14.1 79,901,952 rs425463 1.04 (0.94–1.15) 0.48 1.07 (1.01–1.12) 1.6 9 10-2 0.67

11q22.3 108,040,104 rs6589007 1.08 (0.99–1.19) 9.8 9 10-2 1.06 (1.01–1.11) 2.0 9 10-2 0.66

11q22.3 108,089,197 rs183459 1.08 (0.99–1.19) 9.3 9 10-2 1.05 (1.00–1.11) 3.7 9 10-2 0.62

11q22.3 108,123,189 rs228592 1.08 (0.96–1.19) 9.7 9 10-2 1.06 (1.00–1.11) 3.4 9 10-2 0.64

12p13.33 986,004 rs7967755 0.96 (0.84–1.09) 0.54 0.92 (0.86–0.98) 1.0 9 10-2 0.56

BRCA2 mutation carriers

6p22.1 28,231,243 rs9468322 1.30 (1.12–1.51) 5.0 9 10-4 1.00 (0.72–1.40) 0.99 0.17

8q11.21 48,708,742 rs6982040 N/A N/A N/A N/A N/A

16p13.3 1,371,154 rs2268049 1.10 (1.01–1.21) 4.0 9 10-2 1.17 (0.98–1.39) 8.0 9 10-2 0.56

CI confidence interval, HR hazard ratio, SNP single-nucleotide polymorphism, N/A not available

* Hazard ratio per allele (one degree of freedom) estimated from the retrospective likelihood analysis
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ER-positive disease (p = 5.0 9 10-4), although the dif-

ferences in HRs between ER-positive and ER-negative

tumors were not statistically significant (Table 2).

Although evidence of association with breast cancer risk

was observed for the above-described loci in BRCA1 and

BRCA2 mutation carriers, none of these associations

reached significance after a Bonferroni adjustment for

multiple testing. Imputation using the 1000 Genomes data

(encompassing ± 50 kb centered on each of the 12 asso-

ciated variants, Online Resource 6) identified several SNPs

Fig. 1 Manhattan plot depicting the strength of association between

breast cancer risk in BRCA1 mutation carriers and all imputed and

genotyped SNPs located across the 11q22.3 locus bound by hg19

coordinates chr11:107990104_108173189. Directly genotyped SNPs

are represented as triangles and imputed SNPs (r2[ 0.3,

MAF[ 0.02) are represented as circles. The linkage disequilibrium

(r2) for the most strongly associated genotyped SNP with each SNP

was computed based on subjects of European ancestry that were

included in the 1000 Genome Mar 2012 EUR release. Pairwise r2

values are plotted using a red scale, where white and red means

r2 = 0 and 1, respectively. SNPs are plotted according to their

chromosomal position: physical locations are based on the GRCh37/

hg19 map. SNP rs228606 was genotyped in the iCOGS array but was

not included in our original hypothesis of association with DAE. Gene

annotation is based on the NCBI RefSeq gene descriptors from the

UCSC genome browser
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with significant associations in BRCA1 mutation carriers at

the 11q22.3 locus (with SNP rs228595 as the most sig-

nificant, p = 7.38 9 10-6), and which were partly corre-

lated with the genotyped SNPs (r2\0.4, Fig. 1). After

imputation, we also found associations (albeit not statisti-

cally significant after multiple testing adjustments),

between one imputed SNP at locus 12p13 (rs2255390,

p = 5.0 9 10-4) and breast cancer risk for BRCA1 carri-

ers, and two SNPs and breast cancer risk for BRCA2 car-

riers, namely 6p22 (chr6:28226644:I, p = 9.0 9 10-4) and

8q11 (rs189286892, p = 2.0 9 10-4).

Ovarian cancer association analyses

Evidence of association with ovarian cancer risk (p\ 10-2)

was observed for six SNPs in BRCA1 mutation carriers and

three SNPs in BRCA2 mutation carriers (Table 3). The

strongest association with ovarian cancer risk in BRCA1

carriers was observed for rs12025623 located at 1p36.12

(p = 7 9 10-3) in an intron of the ALPL gene. Another

correlated variant (r2[0.7) on chromosome 1 was also

genotyped, namely rs1767429 (p = 9 9 10-3), which was

also located within ALPL. The strongest evidence of asso-

ciation with ovarian cancer risk in BRCA2 mutation carriers

was observed for rs2233025 (p = 5 9 10-3), located at

1p32.22 within the MAD2L2 gene. None of these associa-

tions remained statistically significant after multiple testing

adjustments. Imputed genotypes of SNPs in a region

encompassing ± 50 kb centered on each of the nine asso-

ciated variants did not identify stronger associations.

eQTL analysis in breast tissue

To identify the genes influenced via the observed associ-

ations with breast cancer at locus 11q22.3, eQTL analysis

was performed using gene expression data from tumor and

normal breast tissues (for detailed descriptions of datasets,

refer to Online Resource 4), and all genotyped as well as

imputed SNPs within a 1-Mb region on either side of the

most significant genotyped SNP. eQTL associations were

observed in both normal and tumor breast tissues in this

region, although none of those were correlated with our

most significant risk SNPs (Online Resource 7). The

strongest eQTL associations were observed in the breast

cancer tissue dataset BC241 for the SLC35F2 gene

(rs181187590, p = 1.4 9 10-5, r2 = 0.08, i.e., 8 % of the

variation in SLC35F2 expression was attributable to this

SNP). Other eQTLs observed in this dataset included

ELMOD1 (rs181187590, p = 1.3 9 10-4, r2 = 0.06),

EXPH5 (rs181187590, p = 3 9 10-4, r2 = 0.054), and

ATM (rs4987915, p = 3.7 9 10-4, r2 = 0.05). In The

Cancer Genome Atlas (TCGA) BC765 breast cancer

dataset, the strongest associations with gene expression

were observed for the non-coding RNA lLOC643923

(rs183293362, p = 2.3 9 10-4, r2 = 0.02), ATM

(rs4987924, p = 8.3 9 10-4, r2 = 0.015), and KDELC2

Table 3 Associations with ovarian cancer risk in BRCA1 and BRCA2 mutation carriers for SNPs observed at p\ 10-2

Locations Positions SNPs Nearest genes Unaffected

(number)

Affected

(number)

Unaffected

(MAF)

HR* (95 % CI) p values

BRCA1 mutation carriers

1p36.12 21,889,340 rs1767429 ALPL, RAP1GAP 12,765 2460 0.42 1.092 (1.024–1.164) 9 9 10-3

1p36.12 21,892,479 rs12025623 ALPL, RAP1GAP 12,789 2460 0.36 1.098 (1.027–1.173) 7 9 10-3

6p21.32 32,913,246 rs1480380 BRD2, HLA-DMB, HLA-

DMA

12,790 2462 0.07 1.178 (1.041–1.333) 9 9 10-3

10p12.1 27,434,716 rs788209 ANKRD26, YME1L1,

MASTL, ACBD5

12,754 2455 0.15 0.879 (0.804–0.961) 5 9 10-3

17p13.1 8,071,592 rs3027247 MIR3676, C17orf59,

AURKB, C17orf44,

C17orf68, PFAS

12,786 2461 0.29 0.905 (0.844–0.970) 5 9 10-3

17q22 53,032,425 rs17817865 MIR4315-1, TOM1L1,

COX11, STXBP4

12,790 2462 0.27 0.905 (0.842–0.971) 8 9 10-3

BRCA2 mutation carriers

1p32.22 11,735,652 rs2233025 MAD2L2, FBXO6 7574 631 0.18 0.777 (0.657–0.919) 5 9 10-3

9p13.3 35,055,669 rs595429 VCP, FANCG, c9orf131 7579 631 0.46 0.856 (0.758–0.964) 6 9 10-3

17q25.3 76,219,783 rs2239680 DHX29, SKIV2L2 7579 630 0.28 0.828 (0.722–0.948) 7 9 10-3

CI confidence interval, HR hazard ratio, MAF minor allele frequency, SNP single-nucleotide polymorphism

* Hazard ratio per allele (one degree of freedom) estimated from the retrospective likelihood analysis
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(rs4753834, p = 8.6 9 10-4, r2 = 0.015) loci. The eQTL

analysis performed for the TCGA normal breast tissue

dataset (NB93) showed an association between SNP

chr11:108075271:D and ACAT1 gene expression level

(p = 6.5 9 10-3, r2 = 0.08). No association was observed

in the normal breast tissue dataset NB116.

Functional annotation

In order to assess the potential functional role of the most

significant risk SNPs in the 11q22.3 region, ENCODE

chromatin biological features were evaluated in available

breast cells, namely HMECs, breast myoepithelial cells,

and MCF7 breast cancer cells. We observed some overlap

between features of interest and candidate SNPs within

the 11q22.3 region (Fig. 2). The most interesting variant

was rs228606, which overlapped a monomethylated

H3K4 mark in HMECs. Analysis of data from the

Roadmap Epigenomics project also showed overlap with

a monomethylated H3K4 mark and with an acetylated

H3K9 mark in primary breast myoepithelial cells. From

ChiA-PET data, chromosomal interactions were found in

the NPAT and ATM genes in MCF7 cells, located mainly

in the vicinity of the promoter regions of these genes,

which encompassed a strongly associated imputed SNP at

this locus, namely chr11:108098459_TAA_T. Lastly,

although super-enhancers and predicted enhancer–pro-

moter interactions mapped to the 11q22.3 locus in

HMECs, none overlapped with our top candidate SNPs

(Fig. 2).

Discussion

DAE is a common phenomenon in human genes, which

represents a new approach to identifying cis-acting mech-

anisms of gene regulation. It offers a new avenue for the

study of GWAS variants significantly associated with

various diseases/traits. Indeed, the majority of GWAS hits

localize outside known protein-coding regions [11, 12],

suggesting a regulatory role for these variants. In the pre-

sent study, we have assessed the association between 320

SNPs associated with DAE and breast/ovarian cancer risk

among BRCA1 and BRCA2 mutation carriers. Using this

approach, we found evidence of association for a region at

11q22.3, with breast cancer risk in BRCA1 mutation car-

riers. Analysis of imputed SNPs across a 185-kb region

(±50 kb from the center of each of the three genotyped

SNPs at this locus) revealed a set of five strongly correlated

SNPs that were significantly associated with breast cancer

risk. This region contains several genes including ACAT1,

NPAT, and ATM. ACAT1 (acetyl-CoA acetyltransferase 1)

encodes a mitochondrial enzyme that catalyzes the rever-

sible formation of acetoacetyl-CoA from two molecules of

acetyl-CoA. Defects in this gene are associated with

ketothiolase deficiency, an inborn error of isoleucine cat-

abolism [29]. NPAT (nuclear protein, co-activator of his-

tone transcription) is required for progression through the

G1 and S phases of the cell cycle, for S phase entry [30],

and for the activation of the transcription of histones H2A,

H2B, H3, and H4 [31]. NPAT germline mutations have

been associated with Hodgkin lymphoma [32]. Finally,

ATM (ataxia telangiectasia mutated) encodes an important

cell cycle checkpoint kinase that is required for cellular

response to DNA damage and for genome stability.

Mutations in this gene are associated with ataxia telang-

iectasia, an autosomal recessive disorder [33]. ATM is also

an intermediate-risk breast cancer susceptibility gene, with

rare heterozygous variants being associated with increased

risk of developing the disease [34]. Although several

studies have assessed the role of the most common ATM

variants in breast cancer susceptibility, the results obtained

are inconsistent [35]. A recent study had identified an

association between an ATM haplotype and breast cancer

risk in BRCA1 mutation carriers with a false discovery rate-

adjusted p value of 0.029 for overall association of the

haplotype [36]. Four of the five SNPs making up the

haplotype were almost perfectly correlated (r2[0.9) with

the three originally genotyped SNPs of the present study.

These SNPs were, however, only moderately correlated

(r2[0.4) with the most significant risk SNPs (p = 10-6),

identified later through imputation.

Although eQTL analysis has identified cis-eQTL asso-

ciations between several variants and ACAT1, ATM as well

bFig. 2 Functional annotation of the 11q22.3 locus. Upper panel

functional annotations using data from the ENCODE and NIH

Roadmap Epigenomics projects. From top to bottom, epigenetic

signals evaluated included DNase clusters in MCF7 cells and HMECs,

chromatin state segmentation by hidden Markov model (ChromHMM)

in HMECs, breast myoepithelial cells, and variant human mammary

epithelial cells (vHMECs), where red represents an active promoter

region, orange a strong enhancer, and yellow a poised enhancer (the

detailed color scheme of chromatin states is described in the UCSC

browser), and histone modifications in MCF7 and HMEC cell lines.

All tracks were generated by the UCSC genome browser (hg 19

release). Lower panel long-range chromatin interactions: from top to

bottom, ChiA-PET interactions for RNA polymerase II in MCF-7 cells

identified through ENCODE and 4D-genome. The ChiA-PET raw data

available from the GEO database under the following accession

(GSE33664, GSE39495) were processed with the GenomicRanges

package. Maps of mammary cell super-enhancer locations as defined

in Hnisz et al. [24] are shown in HMECs. Predicted enhancer–

promoter determined interactions in HMECs, as defined by the

integrated method for predicting enhancer targets (IM-PET), are

shown. The annotation was obtained through the Bioconductor

annotation package TxDb.Hsapiens.UCSC.hg19.knownGene. The

tracks have been generated using ggplot2 and ggbio library in R
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as other neighboring genes in both breast carcinoma and

normal breast tissues, none of these associations involved

the most significantly associated risk SNPs. Furthermore,

the correlation between eQTLs and the most significant

risk SNPs was weak. The lack of consistency between the

eQTL results and the allelic imbalance data originally used

for SNP selection in the design of the present study can

probably be explained by the differences between the cell

types used in these analyses. The list of allelic imbalance-

associated SNPs was selected from studies performed in

lymphoblastoid cell lines [15], primary skin fibroblasts

[13, 16], and primary monocytes [17], while eQTLs were

analyzed in breast carcinoma and normal breast tissue. This

tissue heterogeneity in the data sources used represents one

of the limitations of this study, although no such data were

available in mammary cells when this study was originally

designed.

The identification of a region at 11q22.3 that is associ-

ated specifically with breast cancer risk in BRCA1 mutation

carriers may explain why association studies performed

using breast cancer cases from the general population have

so far yielded conflicting results with regard to common

variants at this locus. The majority of tumors arising in

BRCA1 carriers show either low or absent ER expression,

while the majority of BRCA2-associated tumors are ER

positive, as in most sporadic cancers arising in the general

population. Large-scale studies using only ER-negative or

triple-negative (i.e., ER-, progesterone receptor-, and

HER2-negative) cases could therefore be helpful to con-

firm the association of this locus with breast cancer risk.
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Pitié-Salpétrière, Paris: Florence Coulet, Chrystelle Colas, Florent

Soubrier, Mathilde Warcoin. CHU Vandoeuvre-les-Nancy: Johanna

Sokolowska, Myriam Bronner. CHU Besançon: Marie-Agnès Col-
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