Skip to main content

Advertisement

Log in

The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This article provides an overview about the Bode River catchment that was selected as the hydrological observatory and main region for hydro-ecological research within the TERrestrial ENvironmental Observatories Harz/Central German Lowland Observatory. It first provides information about the general characteristics of the catchment including climate, geology, soils, land use, water quality and aquatic ecology, followed by the description of the interdisciplinary research framework and the monitoring concept with the main components of the multi-scale and multi-temporal monitoring infrastructure. It also shows examples of interdisciplinary research projects aiming to advance the understanding of complex hydrological processes under natural and anthropogenic forcings and their interactions in a catchment context. The overview is complemented with research work conducted at a number of intensive research sites, each focusing on a particular functional zone or specific components and processes of the hydro-ecological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Altermann M, Rinklebe J, Merbach I, Körschens M, Langer U, Hofmann B (2005) Chernozem—soil of the year 2005. J Plant Nutr Soil Sci 168:725–740

    Article  Google Scholar 

  • Anis MR, Rode M (2015a) A new magnitude category disaggregation approach for temporal high-resolution rainfall intensities. Hydrol Process 29:1119–1128

    Article  Google Scholar 

  • Anis MR, Rode M (2015b) Effect of climate change on runoff components using high resolution rainfall-runoff modelling. Hydrol Process. doi:10.1002/hyp10381

    Google Scholar 

  • Baldocchi DD, Valentini R, Running S, Oechel W, Dahlman R (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Glob Change Biol 2(3):159–168

    Article  Google Scholar 

  • Basu NB, Thompson SE, Rao PSC (2011) Hydrologic and biogeochemical functioning of intensively managed catchments: a synthesis of top-down analyses. Water Resour Res 47:W00J15. doi:10.1029/2011WR010800

    Google Scholar 

  • Becker A, McDonnell JJ (1998) Topographical and ecological controls of runoff generation and lateral flows in mountain catchments. In: Hydrology, water resources and ecology in headwaters (proceedings of the HeadWater’98 conference held at Meran/Merano, Italy, April 1998). IAHS Publ. no. 248

  • Bernhofer C, Goldberg V, Franke J, Surke M, Adam M (2008) Regionale Klimadiagnose Sachsen-Anhalt. Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt, Sonderheft 5/2008, 66 pp (in German)

  • Bogena H, Schulz K, Vereecken H (2006) Towards a network of observatories in terrestrial environmental research. Adv Geosci 9:109–114

    Article  Google Scholar 

  • Bogena HR, Herbst M, Huisman JA, Rosenbaum U, Weuthen A, Vereecken H (2010) Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J 9:1002–1013. doi:10.2136/vzj2009.0173

    Article  Google Scholar 

  • Bogena H, Kunkel R, Pütz T, Vereecken H, Krüger E, Zacharias S, Dietrich P, Wollschläger U, Kunstmann H, Papen H, Schmid H, Munch J, Priesack E, Schwank M, Bens O, Brauer A, Borg E, Hajnsek I (2012) TERENO—Ein langfristiges Beobachtungsnetzwerk für die terrestrische Umweltforschung. Hydrol Wasserbewirtsch 56:138–143

    Google Scholar 

  • Borchardt D (1982) Geoökologische Erkundung und hydrologische Analyse von Kleineinzugsgebieten des unteren Mittelgebirgsbereichs, dargestellt am Beispiel von Experimentalgebieten der oberen Selke/Harz. Petermanns Geogr Mitt 126(4):251–262 (in German)

    Google Scholar 

  • Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (2003) Hydrologischer Atlas von Deutschland

  • Burt T (2003) Monitoring change in hydrological systems. Sci Total Environ 310:9–16

    Article  Google Scholar 

  • Chrisman B, Zreda M (2013) Quantifying mesoscale soil moisture with the cosmic-ray rover. Hydrol Earth Syst Sci 17:5097–5108

    Article  Google Scholar 

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14:2903–2920

    Article  Google Scholar 

  • Dierke C, Werban U (2013) Relationships between gamma-ray data and soil properties at an agricultural test site. Geoderma 199:90–98. doi:10.1016/j.geoderma.2012.10.017

    Article  Google Scholar 

  • FFG Elbe (2015) Strategische Umweltprüfung zur Aktualisierung des Maßnahmenprogramms nach § 82 WHG (in German)

  • Friese K, Schultze M, Boehrer B, Koschorreck M, Buettner O, Herzsprung P, Kuehn B, Roenicke H, Tittel J, Wendt-Potthoff K, Wollschläger U, Dietze M, Rinke K (2014) Ecological response of two hydro-morphological similar pre-dams to contrasting land-use in the Rappbode reservoir system (Germany). Int Rev Hydrobiol 99(5):335–349. doi:10.1002/iroh.201301672

    Article  Google Scholar 

  • Frühauf M, Schwab M (2008) 5.6.2 Landschaftscharakter und Oberflächengestalt. In: Bachmann GH et al (eds) Geologie von Sachsen-Anhalt (in German)

  • Gerrits AMJ, Savenije HHG, Hoffmann L, Pfister L (2007) New technique to measure forest floor interception—an application in a beech forest in Luxembourg. Hydrol Earth Syst Sci 11:695–701

    Article  Google Scholar 

  • Glaser R (2008) Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Wissenschaftliche Buchgesellschaft, Darmstadt, 272 pp (in German)

  • Graeff Th, Zehe E, Reusser D, Lück E, Schröder B, Wenk G, John H, Bronstert A (2009) Process identification through rejection of model structures in a mid-mountainous rural catchment: observations of rainfall-runoff response, geophysical conditions and model inter-comparison. Hydrol Process 23:702–718. doi:10.1002/hyp.7171

    Article  Google Scholar 

  • Grathwohl P, Rügner H, Wöhling Th, Osenbrück K, Schwientek M, Gayler S, Wollschläger U, Selle B, Pause M, Delfs J-O, Grzeschik M, Weller U, Ivanov M, Cirpka OA, Maier U, Kuch B, Nowak W, Wulfmeyer V, Warrach-Sagi K, Streck Th, Attinger S, Bilke L, Dietrich P, Fleckenstein JH, Kalbacher Th, Kolditz O, Rink K, Samaniego L, Vogel H-J, Werban U, Teutsch G (2013) Catchments as reactors: a comprehensive approach for water fluxes and solute turnover. Environ Earth Sci. doi:10.1007/s12665-013-2281-7

    Google Scholar 

  • Halbedel S, Büttner O, Weitere M (2013) Linkage between the temporal and spatial variability of dissolved organic matter and whole-stream metabolism. Biogeosciences 10:5555–5569. doi:10.5194/bg-10-5555-2013

    Article  Google Scholar 

  • Hannes M, Wollschläger U, Schrader F, Durner W, Gebler S, Pütz T, Fank J, von Unold G, Vogel H-J (2015) A comprehensive filtering scheme for high-resolution estimation of the water balance components from high-precision lysimeters. Hydrol Earth Syst Sci 19:3405–3418. doi:10.5194/hess-19-3405-2015

    Article  Google Scholar 

  • Hannes M, Wollschläger U, Wöhling T, Vogel H-J (2016) Revisiting hydraulic hysteresis based on long-term monitoring of hydraulic states in lysimeters. Water Resour Res 52:3847–3865. doi:10.1002/2015WR018319

    Article  Google Scholar 

  • Hesse C, Krysanova V, Voß A (2012) Implementing in-stream processes in large-scale landscape modeling for the impact assessment on water quality. Model Assess, Environ. doi:10.1007/s10666-012-9320-8

    Google Scholar 

  • Hesser FB, Franko U, Rode M (2010) Spatially distributed lateral nitrate transport at the catchment scale. J Environ Qual 39:193–203

    Article  Google Scholar 

  • Horowitz AJ (2013) A review of selected inorganic surface water quality-monitoring practices: are we really measuring what we think, and if so, are we doing it right? Environ Sci Technol 47(6):2471–2486

    Article  Google Scholar 

  • Ippolito A, Kattwinkel M, Rasmussen JJ, Schäfer RB, Fornaroli R, Liess M (2015) Modeling global distribution of agricultural insecticides in surface waters. Environ Pollut 198:54–60

    Article  Google Scholar 

  • Jagdhuber T, Hajnsek I, Bronstert A, Papathanassiou KP (2013) Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition. IEEE Trans Geosci Remote Sens 51(4):2201–2215. doi:10.1109/TGRS.2012.2209433

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org. Verified 26 Mar 2012

  • Jensen KH, Illangasekare TH (2011) HOBE: a hydrological observatory. Vadose Zone J 10:1–7. doi:10.2136/vzj2011.0006

    Article  Google Scholar 

  • Jiang S (2014) Hydrological water quality modelling of nested meso-scale catchments. Dissertation, TU Braunschweig, 140 pp

  • Jiang S, Jomaa S, Rode M (2014) Modelling inorganic nitrogen leaching in nested mesoscale catchments in central Germany. Ecohydrology. doi:10.1002/eco.1462

    Google Scholar 

  • Jiang S, Jomaa S, Büttner O, Meon G, Rode M (2015) Multi-site identification of a distributed hydrological nitrogen model using Bayesian uncertainty analysis. J Hydrol 529:940–950

    Article  Google Scholar 

  • Jomaa S, Jiang S, Thraen D, Rode M (2016) Modelling the effect of different agricultural practices on stream nitrogen load in central Germany. Energy Sustain Soc 6:1. doi:10.1186/s13705-016-0077-9

    Article  Google Scholar 

  • Kamjunke N, Büttner O, Jäger C, Marcus H, von Tümpling W, Halbedel S, Norf H, Brauns M, Borchardt D, Weitere M (2013) Biogeochemical patterns in a river network along a land use gradient. Environ Monit Assess. doi:10.1007/s10661-013-3247-7

    Google Scholar 

  • Kamjunke N, Mages M, Büttner O, Marcus H, Weitere M (2015a) Relationship between the elemental composition of stream biofilms and water chemistry—a catchment approach. Environ Monit Assess 187:432

    Article  Google Scholar 

  • Kamjunke N, Herzsprung P, Neu TR (2015b) Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Sci Total Environ 506–507:353–360

    Article  Google Scholar 

  • Kattwinkel M, Kühne JV, Foit K, Liess M (2011) Climate change, agricultural insecticide exposure, and risk for freshwater communities. Ecol Appl 21(6):2068–2081

    Article  Google Scholar 

  • Kirchner JW, Neal C (2013) Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proc Natl Acad Sci USA 110(30):12213–12218

    Article  Google Scholar 

  • Kirchner JW, Feng X, Neal C, Robson AJ (2004) The fine structure of water-quality dynamics: the (high-frequency) wave of the future. Hydrol Process 18:1353–1359. doi:10.1002/hyp.5537

    Article  Google Scholar 

  • Kistner I, Ollesch G, Meissner R, Rode M (2013) Spatial-temporal dynamics of available phosphorus concentration in topsoil of arable land in a small low mountain catchment—experimental results and modelling. Agric Ecosyst Environ 176:24–38

    Article  Google Scholar 

  • Köhli M, Schrön M, Zreda M, Schmidt U, Dietrich P, Zacharias S (2015) Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour Res 51(7):5772–5790. doi:10.1002/2015WR017169

    Article  Google Scholar 

  • Krause S, Freer J, Hannah DM, Howden NJK, Wagener Th, Worall F (2013) Catchment similarity concepts for understanding dynamic biogeochemical behavior of river basins. Process, Hydrol. doi:10.1002/hyp.10093

    Google Scholar 

  • Kropp J, Roithmeier O, Hattermann F, Rachimow C, Lüttger A, Wechsung F, Lasch P, Christiansen ES, Reyer C, Suckow F, Gutsch M, Holsten A, Kartschall T, Wodinski M, Hauf Y, Conradt T, Österle H, Walther C, Lissmer T, Lux N, Tekken V, Ritchie S, Kossak J, Klaus M, Costa L, Vetter T, Klose M (2010) Saxony-Anhalt climate change study: climate change in Saxony-Anhalt—Vulnerabilites to consequences of climate change (Klimawandel in Sachsen-Anhalt—Verletzlichkeiten gegenüber den Folgen des Klimawandels). PIK, Potsdam-Institute for Climate Impact Research, Potsdam (in German)

    Google Scholar 

  • Kumar R, Samaniego L, Attinger S (2013) Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour Res. doi:10.1029/2012WR012195

    Google Scholar 

  • Kunkel R, Sorg J, Eckardt R, Kolditz O, Rink K, Vereecken H (2013) TEODOOR: a distributed geodata infrastructure for terrestrial observation data. Environ Earth Sci 69:507–521. doi:10.1007/s12665-013-2370-7

    Article  Google Scholar 

  • Langheinrich U, Böhme D, Wegener U, Lüderitz V (2002) Streams in the Harz national parks (Germany)—a hydrochemical and hydrobiological evaluation. Limnologica 32:309–321

    Article  Google Scholar 

  • Lausch A, Pause M, Merbach I, Zacharias S, Doktor D, Volk M, Seppelt R (2013a) A new multi-scale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field and landscape. Environ Monit Assess 185(2):1215–1235

    Article  Google Scholar 

  • Lausch A, Zacharias S, Dierke C, Pause M, Kühn I, Doktor D, Dietrich P, Werban U (2013b) Analysis of vegetation and soil pattern using hyperspectral remote sensing, EMI and Gamma ray measurements. Vadose Zone J. doi:10.2136/vzj2012.0217

    Google Scholar 

  • Liedtke H (1995) Nördliches und östliches Harzvorland. In: Liedtke H, Marcinek L (eds) 5.7. Physische Geographie Deutschlands. Justus Perthes Verlag, Gotha (in German)

    Google Scholar 

  • Liess M, Schulz R (1999) Linking insecticide contamination and population response in an agricultural stream. Environ Toxicol Chem 18(9):1948–1955

    Article  Google Scholar 

  • Lin H (2010) Earth’s critical zone and hydropedology: concepts, characteristics, and advances. Hydrol Earth Syst Sci 14:25–45

    Article  Google Scholar 

  • Lin H, Bouma J, Pachepsky Y, Western A, Thompson J, van Genuchten R, Vogel H-J, Lilly A (2006) Hydropedology: synergistic integration of pedology and hydrology. Water Resour Res 42:W05301. doi:10.1029/2005WR004085

    Article  Google Scholar 

  • Lindenschmidt K-E, Ollesch G, Rode M (2004) Implementing more physically-based hydrological modelling to improve the simulation of non-point dissolved phosphorus transport in small and medium-sized river basins. Hydrol Sci J 49(3):495–510

    Article  Google Scholar 

  • Martini E, Wollschläger U, Kögler S, Behrens T, Dietrich P, Reinstorf F, Schmidt K, Weiler M, Werban U, Zacharias S (2015) Spatial and temporal dynamics of hillslope-scale soil moisture patterns: characteristic states and transition mechanisms. Vadose Zone J. doi:10.2136/vzj2014.10.0150

    Google Scholar 

  • Martini E, Werban U, Zacharias S, Pohle M, Dietrich P, Wollschläger U (2016) Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network. Hydrol Earth Syst Sci Discuss. doi:10.5194/hess-2016-93

    Google Scholar 

  • Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135

    Article  Google Scholar 

  • Meybeck M, Moatar F (2012) Daily variability of river concentrations and fluxes: indicators based on the segmentation of the rating curve. Hydrol Process 26(8):1188–1207

    Article  Google Scholar 

  • Montgomery JL, Harmon T, Kaiser W, Sanderson A, Haas CN, Hooper R, Minsker B, Schnoor J, Clesceri NL, Graham W, Brezonik P (2007) The WATERS network: an integrated environmental observatory network for water research. Environ Sci Technol 41:6642–6647

    Article  Google Scholar 

  • Mueller C, Krieg R, Merz R, Knoeller K (2015) Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns. Isotopes Environ Health Stud. doi:10.1080/10256016.2015.1019489

    Google Scholar 

  • Mueller Ch, Zink M, Samaniego L, Krieg R, Merz R, Rode M, Knoeller K (2016) Discharge driven nitrogen dynamics in a mesoscale river basin as constrained by stable isotope patterns. Environ Sci Technol. doi:10.1021/acs.est.6b01057

    Google Scholar 

  • Munz M, Oswald SE, Schmidt C (2016) Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures. J Hydrol 539:74–87. doi:10.1016/j.jhydrol.2016.05.012

    Article  Google Scholar 

  • Munze R, Orlinskiy P, Gunold R, Paschke A, Kaske O, Beketov MA, Hundt M, Bauer C, Schüürmann G, Moder M, Liess M (2015) Pesticide impact on aquatic invertebrates identified with Chemcatcher (R) passive samplers and the SPEAR (pesticides) index. Sci Total Environ 537:69–80

    Article  Google Scholar 

  • Musolff A, Schmidt C, Selle B, Fleckenstein JH (2015) Catchment controls on solute export. Adv Water Resour 86:133–146. doi:10.1016/j.advwatres.2015.09.026

    Article  Google Scholar 

  • Musolff A, Schmidt C, Rode M, Lischeid G, Weise SM, Fleckenstein JH (2016) Groundwater heads control nitrate export from an agricultural lowland catchment. Adv Water Resour. doi:10.1016/j.advwatres.2016.07.003

    Google Scholar 

  • Ogée J, Brunet Y, Loustau D, Berbigier P, Delzon S (2003) MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Glob Change Biol 9:697–717

    Article  Google Scholar 

  • Ollesch G, Sukhanovski Y, Kistner I, Rode M, Meissner R (2005) Characterisation and modelling of the spatial heterogeneity of snowmelt erosion. Earth Surf Proc Land 30:197–211

    Article  Google Scholar 

  • Ollesch G, John H, Meissner R, Reinstorf F (2010) Anthropogenic alteration of water balance and runoff processes in a small low mountain catchment. In: Status and perspectives of hydrology in small basins, vol 336. IAHS Publ

  • Paola C, Foufoula-Georgiou E, Dietrich WE, Hondzo M, Mohrig D, Parker G, Power ME, Rodriguez-Iturbe I, Voller V, Wilcock P (2006) Toward a unified science of the Earth’s surface: opportunities for synthesis among hydrology, geomorphology, geochemistry, and ecology. Water Resour Res 42:W03S10. doi:10.1029/2005WR004336

    Article  Google Scholar 

  • Parr T, Sier A, Battarbee R, Mackay A, Burgess J (2003) Detecting environmental change: science and society—perspectives on long-term research and monitoring in the 21st century. Sci Total Environ 310:1–8

    Article  Google Scholar 

  • Pause M, Lausch A, Bernhardt M, Hacker J, Schulz K (2014) Improving soil moisture retrieval from airborne L-band radiometer data by considering spatially varying roughness. Can J Remote Sens. doi:10.1080/07038992.2014.907522

    Google Scholar 

  • Paz-Kagan T, Zaady E, Salbach C, Schmidt A, Lausch A, Zacharias S, Notesco G, Ben Dor E, Karnieli A (2015) Developing a Spectral Soil Quality Index (SSQI) map using imaging spectroscopy. Remote Sens 7(11):15748–15781. doi:10.3390/rs71115748

    Article  Google Scholar 

  • Pütz Th, Kiese R, Zacharias S, Bogena H, Priesack E, Wollschläger U, Schwank M, Papen H, von Unold G, Vereecken H (2011) TERENO-SOILCan—Ein Lysimeter Netzwerk in Deutschland. In: Proceedings 14. Gumpensteiner Lysimetertagung 2011, 5–10 (in German)

  • Pütz Th, Kiese R, Wollschläger U, Groh J, Rupp H, Zacharias S, Priesack E, Gerke HH, Gasche R, Bens O, Borg E, Baessler C, Kaiser K, Herbrich M, Munch J-C, Sommer M, Vogel H-J, Vanderborght J, Vereecken H (2016) TERENO-SOILCan—A lysimeter network in Germany observing soil processes and plant diversity influenced by climate change. Environ Earth Sci (this issue)

  • Qu W, Bogena H, Huisman JA, Vereeecken H (2013) Calibration of a novel low-cost soil water content sensor based on a ring oscillator. Vadose Zone J. doi:10.2136/vzj2012.0139

    Google Scholar 

  • Reed PM, Brooks RP, Davis KJ, DeWalle DR, Dressler KA, Duffy CJ, Lin H, Miller DA, Najjar RG, Salvage KM, Wagener Th, Yarnal B (2006) Bridging river basin scales and processes to assess human-climate impacts and the terrestrial hydrologic system. Water Resour Res 42:W07418. doi:10.1029/2005WR004153

    Article  Google Scholar 

  • Reinstorf F, Tiedge J, Bauspieß J, John H, Ollesch G (2010) Time series modelling in the Schaefertal catchment in the Lower Harz Mountains/Central Germany. In: Status and perspectives of hydrology in small basins, vol 336. IAHS Publ

  • Reuter H, Krause G, Monig A, Wulkow M, Horn H (2003) RIONET: a water quality management tool for river basins. Water Sci Technol 48:47–53

    Google Scholar 

  • Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen Wetterdienstes 194 (in German)

  • Richter S, Völker J, Borchardt D, Mohaupt V (2013) The Water Framework Directive as an approach for Integrated Water Resources Management: results from the experiences in Germany on implementation, and future perspectives. Environ Earth Sci 69:719–728. doi:10.1007/s12665-013-2399-7

    Article  Google Scholar 

  • Rink K, Bilke L, Kolditz O (2014) Visualization Strategies for Environmental Modelling Data. Environ Earth Sci 72(10):3857–3868. doi:10.1007/s12665-013-2970-2

    Article  Google Scholar 

  • Rinke K, Kuehn B, Bocianov S, Wendt-Potthoff K, Büttner O, Tittel J, Schultze M, Herzsprung P, Rönicke H, Rink K, Rinke K, Dietze M, Matthes M, Paul L, Friese K (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69:523–536. doi:10.1007/s12665-013-2464-2

    Article  Google Scholar 

  • Rode M, Suhr U (2007) Uncertainties in selected river water quality data. Hydrol Earth Syst Sci 11(2):863–874

    Article  Google Scholar 

  • Rode M, Arhonditsis G, Balin D, Kebede T, Krysanova V, van Griensven A, van der Zee S (2010) New challenges in integrated water quality modelling. Hydrol Process 24:3447–3461

    Article  Google Scholar 

  • Rode M, Halbedel S, Anis MR, Weitere M (2016) Continuous in-stream assimilatory nitrate uptake from high frequency sensor measurements. Environ Sci Technol 50(11):5685–5694. doi:10.1021/acs.est.6b00943

    Article  Google Scholar 

  • Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour Res 46(5):W05523. doi:10.1029/2008WR007327

    Article  Google Scholar 

  • Schmidt R (1995) Böden. In: Liedke H, Marcinek J (eds) Physische Geographie Deutschlands. Justus Perthes Verlag, Gotha, p 559

    Google Scholar 

  • Schmidt C, Musolff A, Trauth N, Vieweg M, Fleckenstein JH (2012) Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed. Hydrol Earth Syst Sci 16:3689–3697. doi:10.1594/hess-16-3689-2012

    Article  Google Scholar 

  • Schröter I, Paasche H, Dietrich P, Wollschläger U (2015) Estimation of catchment-scale soil moisture patterns based on terrain data and sparse TDR measurements. Vadose Zone J. doi:10.2136/vzj2015.01.0008

    Google Scholar 

  • Schuberth K (2008) 2 Geomorphologischer Überblick. In: Bachmann GH et al (eds) Geologie von Sachsen-Anhalt, 689 pp (in German)

  • Schulz K, Seppelt R, Zehe E, Vogel H-J, Attinger S (2006) Importance of spatial structures in advancing hydrological sciences. Water Resour Res 42:W03S03. doi:10.1029/2005WR004301

    Article  Google Scholar 

  • Seibert J, Grabs T, Kohler S, Laudon H, Winterdahl M, Bishop K (2009) Linking soil- and stream-water chemistry based on a Riparian flow-concentration integration model. Hydrol Earth Syst Sci 13:2287–2297. doi:10.5194/hess-13-2287-2009

    Article  Google Scholar 

  • Shrestha RR, Bárdossy A, Rode M (2007) Modelling Nitrate dynamics at a catchment scale: a combined deterministic and fuzzy rule based model. J Hydrol 342:143–156

    Article  Google Scholar 

  • Shrestha RR, Osenbrueck K, Rode M (2013) Assessment of catchment response and calibration of a hydrological model using high-frequency discharge-nitrate concentration data. Hydrol Res. doi:10.2166/nh.2013.087

    Google Scholar 

  • Staelens J, De Schrijver A, Verheyen K, Verhoest NEC (2008) Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrol Process 22(1):33–45

    Article  Google Scholar 

  • Stöcker G (1994) Moore und Fließgewässer am Brocken.- In Landesamt für Umweltschutz Sachsen-Anhalt (ed) Der Nationalpark Hochharz. Naturschutz im Land Sachsen-Anhalt 31:42–44

  • Trauth N, Schmidt C, Maier U, Vieweg M, Fleckenstein JH (2013) Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour Res 49(9):5834–5850

    Article  Google Scholar 

  • Trauth N, Schmidt C, Vieweg M, Maier U, Fleckenstein JH (2014) Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions. J Geophys Res 119(5):910–928

    Article  Google Scholar 

  • Trauth N, Schmidt C, Vieweg M, Oswald SE, Fleckenstein JH (2015) Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions. Water Resour Res. doi:10.1002/2014WR015857

    Google Scholar 

  • van der Velde Y, de Rooij GH, Rozemeijer JC, van Geer FC, Broers HP (2010) Nitrate response of a lowland catchment: on the relation between stream concentration and travel time distribution dynamics. Water Resour Res 46:W11534

    Google Scholar 

  • Van Stan JT, Lewis ES, Hildebrandt A, Rebmann C, Friesen J (2015) online first): interacting bark structure and rainfall conditions impact stemflow variability in a temperate beech-oak forest. Hydrol Sci J. doi:10.1080/02626667.2015.1083104

    Google Scholar 

  • Vieweg M, Trauth N, Fleckenstein JH, Schmidt C (2013) Robust optode-based method for measuring in situ oxygen profiles in gravelly streambeds. Environ Sci Technol 47:9858–9865. doi:10.1021/es401040w

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threads to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440

    Article  Google Scholar 

  • Wenk G (2004). Die hydrologischen Untersuchungsgebiete Schäfertal und Waldbach im Unterharz. Unpublished report, University of Applied Sciences Magdeburg-Stendal (in German)

  • Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz Th, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O, Borg E, Brauer A, Dietrich P, Hajnsek I, Helle G, Kiese R, Kunstmann H, Klotz S, Munch JC, Papen H, Priesack E, Schmid HP, Steinbrecher R, Rosenbaum U, Teutsch G, Vereecken H (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10:955–973. doi:10.2136/vzj2010.0139

    Article  Google Scholar 

  • Zebisch M, Grothmann T, Schröter D, Hasse C, Fritsch U, Cramer W (2005) Climate change in Germany. Vulnerability and Adaptation of Climate Sensitive Sectors. Environmental Research of the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety. Research Report 201 41 253, UBA-FB 000844/e, Dessau, Germany

  • Zreda M, Shuttleworth WJ, Zeng X, Zweck C, Desilets D, Franz T, Rosolem R, Ferre TPA (2012) The cosmic-ray soil moisture observing system. Hydrol Earth Syst Sci 16:4079–4099. doi:10.5194/hess-16-4079-2012

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their constructive comments on the manuscript. We would like to thank the German Meteorological Service (DWD), the State Office of Flood Protection and Water Management (LHW) Saxony-Anhalt, the Dam Operation Authority (TSB), the Water Supply Elbaue-Ostharz Ltd. (FWV), the State Office for Geology and Mining Saxony-Anhalt (LAGB) and the State Office for Geodesy and Geoinformation Saxony-Anhalt (LVermGeo LSA) for kind cooperation and for providing data. We would also like to thank Josefine Umlauft, Sebastian Semella and Ingmar Schröter for GIS work, Martin Schultze for proofreading and all colleagues and technicians who are involved in the work in the Observatory as well as farmers and land owners for support and access to the sites. The research was supported by TERENO (TERrestrial ENvironmental Observatories) funded by the Helmholtz Association and the Federal Ministry of Education and Research (BMBF). WESS is supported by a grant from the Ministry of Science, Research and Arts of Baden-Württemberg (AZ Zu 33-721.3-2) and the Helmholtz Centre for Environmental Research—UFZ, Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Wollschläger.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Water in Germany”, guest edited by Daniel Karthe, Peter Chifflard, Bernd Cyffka, Lucas Menzel, Heribert Nacken, Uta Raeder, Mario Sommerhäuser and Markus Weiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wollschläger, U., Attinger, S., Borchardt, D. et al. The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environ Earth Sci 76, 29 (2017). https://doi.org/10.1007/s12665-016-6327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6327-5

Keywords

Navigation