Skip to main content
Log in

Bioresolution of racemic phenyl glycidyl ether by a putative recombinant epoxide hydrolase from Streptomyces griseus NBRC 13350

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to produce enantiomerically pure epoxides for the synthesis of value-added chemicals, a novel putative epoxide hydrolase (EH) sgeh was cloned and overexpressed in pET28a/Escherichia coli BL21(DE3). The 1047 bp sgeh gene was mined from Streptomyces griseus NBRC 13350 genome sequence. The recombinant hexahistidyl-tagged SGEH was purified (16.6-fold) by immobilized metal-affinity chromatography, with 90% yield as a homodimer of 100 kDa. The recombinant E. coli whole cells overexpressing SGEH could kinetically resolve racemic phenyl glycidyl ether (PGE) into (R)-PGE with 98% ee, 40% yield, and enantiomeric ratio (E) of 20. This was achieved under the optimized reaction conditions i.e. cell/substrate ratio of 20:1 (w/w) at pH 7.5 and 20 °C in 10% (v/v) dimethylformamide (DMF) in a 10 h reaction. 99% enantiopure (R)-PGE was obtained when the reaction time was prolonged to 12 h with a yield of 34%. In conclusion, an economically viable and environment friendly green process for the production of enantiopure (R)-PGE was developed by using wet cells of E. coli expressing recombinant SGEH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott AP, Boothby D, Capper G et al (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids. J Am Chem Soc 126:9142

    Article  CAS  Google Scholar 

  • Bala N, Chimni SS (2010) Recent developments in the asymmetric hydrolytic ring opening of epoxides catalysed by microbial epoxide hydrolase. Tetrahedron: Asymmetry 21:2879–2898

    Article  CAS  Google Scholar 

  • Bala N, Chimni SS, Saini HS, Chadha BS (2010) Bacillus alcalophilus MTCC10234 catalyzed enantioselective kinetic resolution of aryl glycidyl ethers. J Mol Catal B Enzym 63:128–134

    Article  CAS  Google Scholar 

  • Beloti LL, Costa BZ, Toledo MAS et al (2013) A novel and enantioselective epoxide hydrolase from Aspergillus brasiliensis CCT 1435: purification and characterization. Protein Expr Purif 91:175–183

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Breuer M, Ditrich K, Habicher T et al (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  • Choi WJ, Choi CY (2005) Production of chiral epoxides: epoxide hydrolase-catalyzed enantioselective hydrolysis. Biotechnol Bioprocess Eng 10:167–179

    Article  CAS  Google Scholar 

  • Choi WJ, Huh EC, Park HJ et al (1998) Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol Tech 12:225–228

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Faber K (2011) Biotransformations in organic chemistry: a textbook, 6th ed. Springer-Science & Business Media

  • Faber K, Mischitz M, Kroutil Wo (1996) Microbial epoxide hydrolases. Acta Chem Scand 50:249–258

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In John M. Walker (ed) The proteomics protocols handbook. Humana Press. pp 571–607

  • Gong PF, Xu JH (2005) Bio-resolution of a chiral epoxide using whole cells of Bacillus megaterium ECU1001 in a biphasic system. Enzym Microb Technol 36:252–257

    Article  CAS  Google Scholar 

  • Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun 14:1235–1237

    Article  Google Scholar 

  • Goswami A, Totleben MJ, Singh AK, Patel RN (1999) Stereospecific enzymatic hydrolysis of racemic epoxide: a process for making chiral epoxide. Tetrahedron Asymmetry 10:3167–3175

    Article  CAS  Google Scholar 

  • Guruprasad K, Reddy BVB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  CAS  Google Scholar 

  • Hames BD (ed) (1998) Gel electrophoresis of proteins: a practical approach, 3rd edn, Oxford University Press, Oxford, New York

    Google Scholar 

  • Horsman GP, Lechner A, Ohnishi Y et al (2013) Predictive model for epoxide hydrolase-generated stereochemistry in the biosynthesis of nine-membered enediyne antitumor antibiotics. BioChemistry 52:5217–5224

    Article  CAS  Google Scholar 

  • Hu D, Wang R, Shi X et al (2016) Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system. J Biotechnol 236:152–158

    Article  CAS  Google Scholar 

  • Hwang S, Choi CY, Lee EY (2008) Enantioconvergent bioconversion of p-chlorostyrene oxide to (R)-p-chlorophenyl-1,2-ethandiol by the bacterial epoxide hydrolase of Caulobacter crescentus. Biotechnol Lett 30:1219–1225

    Article  CAS  Google Scholar 

  • Jia X, Wang Z, Li Z (2008) Preparation of (S)-2-,3-, and 4-chlorostyrene oxides with the epoxide hydrolase from Sphingomonas sp. HXN-200. Tetrahedron Asymmetry 19:407–415

    Article  CAS  Google Scholar 

  • Kotik M, Archelas A, Wohlgemuth R (2012) Epoxide hydrolases and their application in organic synthesis. Curr Org Chem 16:451–482

    Article  CAS  Google Scholar 

  • Kumar P, Naidu V, Gupta P (2007) Application of hydrolytic kinetic resolution (HKR) in the synthesis of bioactive compounds. Tetrahedron 63:2745–2785

    Article  CAS  Google Scholar 

  • Kumar R, Wani SI, Chauhan NS et al (2011) Cloning and characterization of an epoxide hydrolase from Cupriavidus metallidurans-CH34. Protein Expr Purif 79:49–59

    Article  CAS  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Li C, Liu Q, Ding D et al (2003) Epoxide hydrolase-catalyzed resolution of ethyl 3-phenylglycidate using whole cells of Pseudomonas sp. BZS21. Biotechnol Lett 25:2113–2116

    Article  CAS  Google Scholar 

  • Lin S, Horsman GP, Chen Y et al (2009) Characterization of the SgcF epoxide hydrolase supporting an (R)-vicinal diol intermediate for enediyne antitumor antibiotic C-1027 biosynthesis. J Am Chem Soc 131:16410–16417

    Article  CAS  Google Scholar 

  • Lin S, Horsman GP, Shen B (2010) Characterization of the epoxide hydrolase NcsF2 from the Neocarzinostatin biosynthetic gene cluster. Org Lett 12:3816–3819

    Article  CAS  Google Scholar 

  • Lin H, Liu JY, Wang HB et al (2011) Biocatalysis as an alternative for the production of chiral epoxides: a comparative review. J Mol Catal B Enzym 72:77–89

    Article  CAS  Google Scholar 

  • Lindberg D, de la Fuente Revenga M, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147:169–1671

    Article  CAS  Google Scholar 

  • Peeliwal AK, Bagade SB, Bonde CG (2010) A review: stereochemical consideration and eudismic ratio in chiral drug development. J Biomed Sci Res 2:29–45

    Google Scholar 

  • Saini P, Wani SI, Kumar R et al (2014) Trigger factor assisted folding of the recombinant epoxide hydrolases identified from C. pelagibacter and S. nassauensis. Protein Expr Purif 104C:71–84

    Article  Google Scholar 

  • Sambrook J, Russell DW (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Shuping Z, Haiwei Y, Zhongce H, Yuguo Z (2013) Enzymatic resolution of epichlorohydrin catalyzed by whole cells in an organic solvent/buffer biphasic system. Chin J Catal 34:1339–1347

    Article  Google Scholar 

  • Spelberg JHL, Rink R, Kellogg RM, Janssen DB (1998) Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter. Tetrahedron Asymmetry 9:459–466

    Article  CAS  Google Scholar 

  • Straathof AJJ, Jongejan JA (1997) The enantiomeric ratio: origin, determination and prediction. Enzyme Microb Technol 21:559–571

    Article  CAS  Google Scholar 

  • van Loo B, Kingma J, Arand M et al (2006) Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis. Appl Environ Microbiol 72:2905–2917

    Article  Google Scholar 

  • Wang Z, Wang Y, Shi H, Su Z (2014) Improvement of the production efficiency of L-(+)-tartaric acid by heterogeneous whole-cell bioconversion. Appl Biochem Biotechnol 172:3989–4001

    Article  CAS  Google Scholar 

  • Woo J-H, Kang J-H, Hwang Y-O et al (2010) Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Maritimibacter alkaliphilus KCCM 42376. J Biosci Bioeng 109:539–544

    Article  CAS  Google Scholar 

  • Woo JH, Kang KM, Kwon TH et al (2015) Isolation, identification and characterization of marine bacteria exhibiting complementary enantioselective epoxide hydrolase activity for preparing chiral chlorinated styrene oxide derivatives. J Ind Eng Chem 28:225–228

    Article  CAS  Google Scholar 

  • Wu S, Shen J, Zhou X, Chen J (2007) A novel enantioselective epoxide hydrolase for (R)-phenyl glycidyl ether to generate (R)-3-phenoxy-1,2-propanediol. Appl Microbiol Biotechnol 76:1281–1287

    Article  CAS  Google Scholar 

  • Wu K, Wang H, Sun H, Wei D (2015) Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol Biotechnol 99:9511–9521

    Article  CAS  Google Scholar 

  • Xu Y, Xu JH, Pan J, Tang YF (2004) Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii cell/substrate ratio influences the optical purity of (R)-epoxides. Biotechnol Lett 26:1217–1221

    Article  CAS  Google Scholar 

  • Yeates CA, Smit MS, Botes AL et al (2007) Optimisation of the biocatalytic resolution of styrene oxide by whole cells of Rhodotorula glutinis. Enzym Microb Technol 40:221–227

    Article  CAS  Google Scholar 

  • Yildirim D, Tukel SS, Alptekin O, Alagoz D (2013) Immobilized Aspergillus niger epoxide hydrolases: cost-effective biocatalysts for the preparation of enantiopure styrene oxide, propylene oxide and epichlorohydrin. J Mol Catal B Enzym 88:84–90

    Article  CAS  Google Scholar 

  • Yurkovich ME, Tyrakis PA, Hong H et al (2012) A late-stage intermediate in salinomycin biosynthesis is revealed by specific mutation in the biosynthetic gene cluster. Chembiochem 13:66–71

    Article  CAS  Google Scholar 

  • Zhao J, Chu Y-Y, Li A-T, Ju X, Kong X-D, Pan J, Tang Y, Xu J-H (2011) An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers. Adv Synth Catal 353:1510–1518

    Article  CAS  Google Scholar 

  • Zocher F, Enzelberger MM, Bornscheuer UT et al (1999) A colorimetric assay suitable for screening epoxide hydrolase activity. Anal Chim Acta 391:345–351

    Article  CAS  Google Scholar 

  • Zocher F, Enzelberger MM, Bornscheuer UT et al (2000) Epoxide hydrolase activity of Streptomyces strains. J Biotechnol 77:287–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Streptomyces griseus NBRC 13350 was a gift from Prof. Yasuo Ohnishi, The University of Tokyo, JAPAN. This work was financially supported by Department of Biotechnology (DBT) via Grant No. BT/PR/4694/PID/6/633/2012, Government of India, New Delhi. Authors PS and NK gratefully acknowledge DBT for the SRF and JRF, respectively. The financial assistance received from Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE) and University Grants Commission-Special Assistance Programme (UGC-SAP) (DRS Phase-I) is duly acknowledged. The author SIW (UGC-SAP Project fellow) acknowledges fellowship received under this scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Sareen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors affirm that the said publication complies with obligations and norms of the ethical standards of research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 506 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, P., Kumar, N., Wani, S.I. et al. Bioresolution of racemic phenyl glycidyl ether by a putative recombinant epoxide hydrolase from Streptomyces griseus NBRC 13350. World J Microbiol Biotechnol 33, 82 (2017). https://doi.org/10.1007/s11274-017-2248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2248-z

Keywords

Navigation