Skip to main content
Log in

Modeling chloride ingress in concrete with thermodynamically calculated chemical binding

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

An alternative approach is developed to incorporate chloride binding/release processes during modeling of ingress of external chlorides in concrete through the use of thermodynamic modeling of chemical reactions. Transport of chloride in concrete is modeled through transient finite element analysis. At each time marching step, the chloride binding/release reactions are modeled using thermodynamic calculations. For this purpose, an open-source thermodynamic modeling software is used to model all possible reactions within the cementitious matrix including the reactions of chlorides with unhydrated and hydrated cementitious materials. The predictive ability of thermodynamic calculations is presented by comparing them with experimental data. The proposed and traditional modeling approaches for chloride transport with binding are compared. Finally, a parametric investigation is presented to demonstrate some of the strengths of the proposed approach using thermodynamic calculations over the traditional approach using binding isotherms to simulate chloride ingress in concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Cement notation is used. C3A: 3CaO·Al2O3

    C4AF: 4CaO·Al2O3·Fe2O3

    C–S–H: Stoichiometry varies; a typical composition is 0.8–1.5

    CaO·SiO2·1.0–2.5 H2O.

References

  1. Bertolini, L., Elsener, B., Pedeferri, P., Polder, R.: Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  2. Broomfield, J.P.: Corrosion of Steel in Concrete. Taylor & Francis, New York (2007)

    Google Scholar 

  3. Revie, R.W., Uhlig, H.H.: Corrosion and Corrosion Control, 4th edn. Wiley-Interscience, New York (2008)

    Book  Google Scholar 

  4. Bohni, H.: Corrosion in Concrete Structures. CRC Press, New York (2005)

    Book  Google Scholar 

  5. Kurtis, K.E., Mehta, P.K.: A critical review of deterioration of concrete due to corrosion of reinforcing steel. ACI Spec. Publ. 170, 535–554 (1997)

    Google Scholar 

  6. Mehta, P.K., Monteiro, P.J.M.: Concrete: Microstructure, Properties, and Materials. McGraw-Hill Professional, New York (2005)

    Google Scholar 

  7. Koch, G.H., Brongers, M., P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H.: Corrosion cost and preventative strategies in the United States. In: NACE International (2003)

  8. Samson, E., Marchand, J.: Modeling the transport of ions in unsaturated cement-based materials. Comput. Struct. 85(23–24), 1740–1756 (2007). doi:10.1016/j.compstruc.2007.04.008

    Article  Google Scholar 

  9. Samson, E., Marchand, J.: Numerical solution of the extended Nernst–Planck model. J. Colloid Interface Sci. 215(1), 1–8 (1999). doi:10.1006/jcis.1999.6145

    Article  Google Scholar 

  10. Azad, V.J., Li, C., Verba, C., Ideker, J.H., Isgor, O.B.: A COMSOL–GEMS interface for modeling coupled reactive-transport geochemical processes. Comput. Geosci. UK 92, 79–89 (2016)

    Article  Google Scholar 

  11. Karadakis, K., Azad, V.J., Ghods, P., Isgor, O.B.: Numerical investigation of the role of mill scale crevices on the corrosion initiation of carbon steel reinforcement in concrete. J. Electrochem. Soc. 163(6), C306–C315 (2016)

    Article  Google Scholar 

  12. Martin-Perez, B., Pantazopoulou, S.J., Thomas, M.D.A.: Numerical solution of mass transport equations in concrete structures. Comput. Struct. 79(13), 1251–1264 (2001). doi:10.1016/S0045-7949(01)00018-9

    Article  Google Scholar 

  13. Isgor, O.B., Razaqpur, A.G.: Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cem. Concr. Comp. 26(1), 57–73 (2004). doi:10.1016/S0958-9465(02)00125-7

    Article  Google Scholar 

  14. van der Zanden, A.J.J., Taher, A., Arends, T.: Modelling of water and chloride transport in concrete during yearly wetting/drying cycles. Constr. Build. Mater. 81, 120–129 (2015)

    Article  Google Scholar 

  15. Marchand, J., Samson, E.: Predicting the service-life of concrete structures—Limitations of simplified models. Cem. Concr. Comp. 31(8), 515–521 (2009). doi:10.1016/j.cemconcomp.2009.01.007

    Article  Google Scholar 

  16. Florea, M.V.A., Brouwers, H.J.H.: Chloride binding related to hydration products Part I: ordinary portland cement. Cem. Concr. Res. 42(2), 282–290 (2012)

    Article  Google Scholar 

  17. Yuan, Q., Shi, C.J., De Schutter, G., Audenaert, K., Deng, D.H.: Chloride binding of cement-based materials subjected to external chloride environment—a review. Constr. Build. Mater. 23(1), 1–13 (2009)

    Article  Google Scholar 

  18. Birnin-Yauri, U.A., Glasser, F.P.: Friedel’s salt, Ca2Al(OH)(6)(Cl, OH)center dot 2H(2)O: its solid solutions and their role in chloride binding. Cem. Concr. Res. 28(12), 1713–1723 (1998)

    Article  Google Scholar 

  19. Glasser, F.P., Kindness, A., Stronach, S.A.: Stability and solubility relationships in AFm phases—part 1. Chloride, sulfate and hydroxide. Cem. Concr. Res. 29(6), 861–866 (1999)

    Article  Google Scholar 

  20. Suryavanshi, A.K., Scantlebury, J.D., Lyon, S.B.: Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cem. Concr. Res. 26(5), 717–727 (1996)

    Article  Google Scholar 

  21. Plusquellec, G., Nonat, A.: Interactions between calcium silicate hydrate (C–S–H) and calcium chloride, bromide and nitrate. Cem. Concr. Res. 90, 89–96 (2016)

    Article  Google Scholar 

  22. Martin-Perez, B., Zibara, H., Hooton, R.D., Thomas, M.D.A.: A study of the effect of chloride binding on service life predictions. Cem. Concr. Res. 30(8), 1215–1223 (2000)

    Article  Google Scholar 

  23. Neville, A.M.: Properties of Concrete, 4th edn. Pearson Education Limited, Essex (1996)

    Google Scholar 

  24. Samson, E., Marchand, J., Robert, J.L., Bournzel, J.P.: Modelling ion diffusion mechanisms in porous media. Int. J. Numer. Meth. Eng. 46(12), 2043–2060 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Davies, C.: Electrochemistry, Newnes. In: London (1967)

  26. Nilsson, L.O., Massat, M., Tang, L.: The effect of non-linear chloride binding on the prediction of chloride penetration into concrete structutres. In: Malhotra, V.M. (ed.) Durability of Concrete, pp. 469–486. American Concrete Institute (ACI), Detroit (1994)

    Google Scholar 

  27. Tang, L.P., Nilsson, L.O.: Chloride binding-capacity and binding isotherms of OPC pastes and mortars. Cem. Concr. Res. 23(2), 247–253 (1993)

    Article  Google Scholar 

  28. Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., Berner, U.R.: GEM-selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17(1), 1–24 (2013). doi:10.1007/s10596-012-9310-6

    MATH  Google Scholar 

  29. Wagner, T., Kulik, D.A., Hingerl, F.F., Dmytrieva, S.V.: Gem-selektor geochemical modeling package: TSolmod library and data interface for multicomponent phase models. Can. Miner. 50(5), 1173–1195 (2012). doi:10.3749/canmin.50.5.1173

    Article  Google Scholar 

  30. Kulik, D., Berner, U., Curti, E.: Modelling chemical equilibrium partitioning with the GEMS-PSI code (2004)

  31. Kulik, D.A.: Gibbs energy minimization approach to modeling sorption equilibria at the mineral-water interface: thermodynamic relations for multi-site-surface complexation. Am. J. Sci. 302(3), 227–279 (2002). doi:10.2475/ajs.302.3.227

    Article  Google Scholar 

  32. Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 C. Comput. Geosci. UK 18(7), 899–947 (1992)

    Article  Google Scholar 

  33. Hummel, W., Berner, U., Curti, E., Pearson, F., Thoenen, T.: Nagra/PSI chemical thermodynamic data base. Radiochim. Acta 90(9–11), 805–813 (2002)

    Google Scholar 

  34. Lothenbach, B., Winnefeld, F.: Thermodynamic modelling of the hydration of portland cement. Cem. Concr. Res. 36(2), 209–226 (2006). doi:10.1016/j.cemconres.2005.03.001

    Article  Google Scholar 

  35. Loser, R., Lothenbach, B., Leemann, A., Tuchschmid, M.: Chloride resistance of concrete and its binding capacity—comparison between experimental results and thermodynamic modeling. Cem. Concr. Comp. 32(1), 34–42 (2010)

    Article  Google Scholar 

  36. Zibara, H.: Binding of External Chlorides by Cement Pastes. University of Toronto, Toronto (2001)

    Google Scholar 

  37. Powers, T.C., Brownyard, T.L.: Studies of the physical properties of hardened portland cement paste. J. Am. Concr. Inst. 18(3), 249–336 (1946)

    Google Scholar 

  38. Lumley, J.S., Gollop, R.S., Moir, G.K., Taylor, H.F.W.: Degrees of reaction of the slag ln some blends with portland cements. Cem. Concr. Res. 26(1), 139–151 (1996)

    Article  Google Scholar 

  39. Zeng, Q., Li, K.F., Fen-chong, T., Dangla, P.: Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr. Build. Mater. 27(1), 560–569 (2012)

    Article  Google Scholar 

  40. Boddy, A., Bentz, E., Thomas, M.D.A., Hooton, R.D.: An overview and sensitivity study of a multimechanistic chloride transport model. Cem. Concr. Res. 29(6), 827–837 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Burkan Isgor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, V.J., Isgor, O.B. Modeling chloride ingress in concrete with thermodynamically calculated chemical binding. Int J Adv Eng Sci Appl Math 9, 97–108 (2017). https://doi.org/10.1007/s12572-017-0189-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-017-0189-2

Keywords

Navigation